1
|
Yang H, Zhang L, Kang X, Si Y, Song P, Su X. Reaction Pathway Differentiation Enabled Fingerprinting Signal for Single Nucleotide Variant Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412680. [PMID: 39903775 PMCID: PMC11948007 DOI: 10.1002/advs.202412680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Accurate identification of single-nucleotide variants (SNVs) is paramount for disease diagnosis. Despite the facile design of DNA hybridization probes, their limited specificity poses challenges in clinical applications. Here, a differential reaction pathway probe (DRPP) based on a dynamic DNA reaction network is presented. DRPP leverages differences in reaction intermediate concentrations between SNV and WT groups, directing them into distinct reaction pathways. This generates a strong pulse-like signal for SNV and a weak unidirectional increase signal for wild-type (WT). Through the application of machine learning to fluorescence kinetic data analysis, the classification of SNV and WT signals is automated with an accuracy of 99.6%, significantly exceeding the 80.7% accuracy of conventional methods. Additionally, sensitivity for variant allele frequency (VAF) is enhanced down to 0.1%, representing a ten-fold improvement over conventional approaches. DRPP accurately identified D614G and N501Y SNVs in the S gene of SARS-CoV-2 variants in patient swab samples with accuracy over 99% (n = 82). It determined the VAF of ovarian cancer-related mutations KRAS-G12R, NRAS-G12C, and BRAF-V600E in both tissue and blood samples (n = 77), discriminating cancer patients and healthy individuals with significant difference (p < 0.001). The potential integration of DRPP into clinical diagnostics, along with rapid amplification techniques, holds promise for early disease diagnostics and personalized diagnostics.
Collapse
Affiliation(s)
- Huixiao Yang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Linghao Zhang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Xinmiao Kang
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yunpei Si
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Ping Song
- School of Biomedical EngineeringZhangjiang Institute for Advanced Study and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xin Su
- State Key Laboratory of Organic‐Inorganic CompositesBeijing Key Laboratory of BioprocessBeijing Advanced Innovation Center for Soft Matter Science and EngineeringCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100191China
| |
Collapse
|
2
|
Ma X, Wang J, Zhang S, Yan X, Feng K, Luo Y, Yao J, Liu T, Yuan Y, Yue T, Sheng Q. DNA Reaction Network Central Controller for Dynamic Spatiotemporal Logical Assembly and Its Application for Rational Design of Fluorometric/Electrical Biosensing. ACS Sens 2024; 9:6768-6778. [PMID: 39663250 DOI: 10.1021/acssensors.4c02493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This work introduces a fluorometric/electrical dual-biosensing logic system based on a DNA reaction network (DRN). This system was used to spatiotemporally modulate the kinetic behavior of DNA nanostructures. The system, acting as a programmable and modulative central controller introduced to implement, enabled the monitoring of the target gliotoxin. The DRN encompasses multiple pathways and provides a potential mechanistic way to develop dynamic networks that can evolve under directional controllable conditions. We demonstrated the implementation of a DRN to control the assembly and disassembly of a DNA conveyor belt. By exposing the responsive switches of the DNA conveyor belt, the DRN activates the operation of fluorescent DNA-driving axes based on the aggregation-induced emission effect, enabling signal generation and collection through continuous rolling on the surface of the DNA conveyor belt. The biosensor was employed to monitor gliotoxin, and under optimal conditions, dual-signal detection was achieved at 1.14 × 10-7 and 2.45 × 10-7 μg·mL-1. The biosensor was integrated with a handheld electrochemical workstation, which enabled the successful monitoring of gliotoxin. This strategy enables self-tuning control and the multilayer hierarchical assembly of kinetic behaviors and is applicable to diverse fields such as biometric systems, medical diagnosis, and logic computing.
Collapse
Affiliation(s)
- Xin Ma
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
| | - Jian Wang
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
| | - Sai Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi 712046, China
| | - Xiaohai Yan
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
| | - Kewei Feng
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
| | - Junfeng Yao
- Xi'an Ice Peak Beverage Company Limited, Xi'an, Shaanxi 710043, China
- Research Institute of Ice Peak Beverage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianliang Liu
- Xi'an Ice Peak Beverage Company Limited, Xi'an, Shaanxi 710043, China
- Research Institute of Ice Peak Beverage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
- Research Institute of Ice Peak Beverage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
- Research Institute of Ice Peak Beverage, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering/Research Center of Food Safety Risk Assessment and Control, Northwest University, Xi'an, Shaanxi 710069, China
- Research Institute of Ice Peak Beverage, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
3
|
Rong Q, Deng Y, Chen F, Yin Z, Hu L, Su X, Zhou D. Polymerase-Based Signal Delay for Temporally Regulating DNA Involved Reactions, Programming Dynamic Molecular Systems, and Biomimetic Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400142. [PMID: 38676334 DOI: 10.1002/smll.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Complex temporal molecular signals play a pivotal role in the intricate biological pathways of living organisms, and cells exhibit the ability to transmit and receive information by intricately managing the temporal dynamics of their signaling molecules. Although biomimetic molecular networks are successfully engineered outside of cells, the capacity to precisely manipulate temporal behaviors remains limited. In this study, the catalysis activity of isothermal DNA polymerase (DNAP) through combined use of molecular dynamics simulation analysis and fluorescence assays is first characterized. DNAP-driven delay in signal strand release ranged from 100 to 102 min, which is achieved through new strategies including the introduction of primer overhangs, utilization of inhibitory reagents, and alteration of DNA template lengths. The results provide a deeper insight into the underlying mechanisms of temporal control DNAP-mediated primer extension and DNA strand displacement reactions. Then, the regulated DNAP catalysis reactions are applied in temporal modulation of downstream DNA-involved reactions, the establishment of dynamic molecular signals, and the generation of barcodes for multiplexed detection of target genes. The utility of DNAP-based signal delay as a dynamic DNA nanotechnology extends beyond theoretical concepts and achieves practical applications in the fields of cell-free synthetic biology and bionic sensing.
Collapse
Affiliation(s)
- Qinze Rong
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingnan Deng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- Sinopec Key Laboratory of Research and Application of Medical and Hygienic Materials, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing, 100013, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lingfei Hu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
4
|
Mou J, Zhang H, Zhang L, Zhang B, Liu J, Zheng S, Kou Q, Wang H, Su X, Guo S, Ke Y, Zhang Y. Simulation-Guided Rational Design of DNA Walker-Based Theranostic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400963. [PMID: 38686696 DOI: 10.1002/smll.202400963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Indexed: 05/02/2024]
Abstract
Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.
Collapse
Affiliation(s)
- Jingyan Mou
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haoping Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Linghao Zhang
- State Key Laboratory of Organic-Inorganic Composites College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Beibei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiajia Liu
- State Key Laboratory of Organic-Inorganic Composites College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shasha Zheng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiaoni Kou
- State Key Laboratory of Organic-Inorganic Composites College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Su
- State Key Laboratory of Organic-Inorganic Composites College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30322, USA
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
5
|
Gao Y, Gong C, Chen M, Huan S, Zhang XB, Ke G. Endogenous Enzyme-Driven Amplified DNA Nanocage Probe for Selective and Sensitive Imaging of Mature MicroRNAs in Living Cancer Cells. Anal Chem 2024; 96:9453-9459. [PMID: 38818873 DOI: 10.1021/acs.analchem.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Selective and sensitive imaging of intracellular mature microRNAs (miRNAs) is of great importance for biological process study and medical diagnostics. However, this goal remains challenging because of the interference of precursor miRNAs (pre-miRNAs) and the low abundance of mature miRNAs. Herein, we develop an endogenous enzyme-driven amplified DNA nanocage probe (Acage) for the selective and sensitive imaging of mature miRNAs in living cells. The Acage consists of a microRNA-responsive probe, an endogenous enzyme-driven fuel strand, and a DNA nanocage framework with an inner cavity. Benefiting from the size selectivity of DNA nanocage, smaller mature miRNAs rather than larger pre-miRNAs are allowed to enter the cavity of DNA nanocage for molecular recognition; thus, Acage can significantly reduce the signal interference of pre-miRNAs. Moreover, with the driving force of an endogenous enzyme apurinic/apyrimidinic endonuclease 1 (APE1) for efficient signal amplification, Acage enables sensitive intracellular miRNA imaging without an additional external intervention. With these features, Acage was successfully applied for intracellular imaging of mature miRNAs during drug treatment. We believe that this strategy provides a promising pathway for better understanding the functions of mature microRNAs in biological processes and medical diagnostics.
Collapse
Affiliation(s)
- Yingying Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chaonan Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Yang J, Zhang T, Zhang L, Su X. A non-equilibrium dissipation system with tunable molecular fuel flux. NANOSCALE 2024; 16:4219-4228. [PMID: 38334944 DOI: 10.1039/d3nr06136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cells convert macromolecule fuel into small molecule fuel through energy pathways, including glycolysis, the citric acid cycle, and oxidative phosphorylation. These processes drive vital dissipative networks or structures. Distinct from direct fuel (DF) utilization (directly acquire and utilize small molecule fuel), this macromolecule fuel mechanism is referred to as indirect fuel (IF) utilization, wherein the generation rate of small molecule fuel (fuel flux) can be effectively regulated. Here, we reported a bionic dissipation system with tunable fuel flux based on dynamic DNA nanotechnology. By regulating the rates of strand displacement and enzymatic reactions, we controlled the fuel flux and further tuned the strength of non-equilibrium transient states. Interestingly, we found that within a certain range, the fuel flux was positively correlated with the strength of the transient state. Once saturation was reached, it became negatively correlated. An appropriate fuel flux supports the maintenance of high-intensity non-equilibrium transients. Furthermore, we harnessed the dissipation system with tunable molecular fuel flux to regulate the dynamic assembly and disassembly of AuNPs. Different fuel fluxes resulted in varying assembly and disassembly rates and strengths for AuNPs, accomplishing a biomimetic process of regulating microtubule assembly through the control of fuel flux within living organisms. This work demonstrated a dissipation system with tunable molecular fuel flux, and we envision that this system holds significant potential for development in various fields such as biomimetics, synthetic biology, smart materials, biosensing, and artificial cells.
Collapse
Affiliation(s)
- Jiayu Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Tengfang Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Yao Y, Lei X, Wang Y, Zhang G, Huang H, Zhao Y, Shi S, Gao Y, Cai X, Gao S, Lin Y. A Mitochondrial Nanoguard Modulates Redox Homeostasis and Bioenergy Metabolism in Diabetic Peripheral Neuropathy. ACS NANO 2023; 17:22334-22354. [PMID: 37782570 DOI: 10.1021/acsnano.3c04462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.
Collapse
Affiliation(s)
- Yangxue Yao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoyu Lei
- Research Center for Nano Biomaterials, and Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yun Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Hongxiao Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yuxuan Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Fu J, Zhang L, Long Y, Liu Z, Meng G, Zhao H, Su X, Shi S. Multiplexed CRISPR-Based Nucleic Acid Detection Using a Single Cas Protein. Anal Chem 2023; 95:16089-16097. [PMID: 37883656 DOI: 10.1021/acs.analchem.3c01861] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Thanks to its ease, speed, and sensitivity, CRISPR-based nucleic acid detection has been increasingly explored for molecular diagnostics. However, one of its major limitations is lack of multiplexing capability because the detection relies on the trans-cleavage activity of the Cas protein, which necessitates the use of multiple orthogonal Cas proteins for multiplex detection. Here we report the development of a multiplexed CRISPR-based nucleic acid detection system with single-nucleotide resolution using a single Cas protein (Cas12a). This method, termed as CRISPR-TMSD, integrates the toehold-mediated strand displacement (TMSD) reaction, and the cis-cleavage activity of the Cas protein and multiplexed detection are achieved using a single Cas protein owing to the use of target-specific reporters. A set of computational simulation toolkits was used to design the TMSD reporter, allowing for highly sensitive and specific identification of target sequences. In combination with the recombinase polymerase amplification (RPA), the detection limit can reach as low as 1 copy/μL. As proof of concept, CRISPR-TMSD was subsequently used to detect an oncogenic gene and SARS-CoV-2 RNA with a single-nucleotide resolution. This work represents a conceptually new strategy for designing a CRISPR-based diagnostic system and has great potential to expand the application of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Jinyu Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanlin Long
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Geng Meng
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xin Su
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Kou Q, Yang J, Wang L, Zhao H, Zhang L, Su X. Enhanced DNA Entropy-Driven Circuit by Locked Nucleic Acids and Simulation-Guided Localization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47415-47424. [PMID: 37773989 DOI: 10.1021/acsami.3c11189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiarui Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyang Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Wang Y, Sun C, Wang Z, Sun J. Projection Synchronization of Three-Dimensional Chaotic Systems With Active Control Based on DNA Strand Displacement. IEEE Trans Nanobioscience 2023; 22:836-844. [PMID: 37022384 DOI: 10.1109/tnb.2023.3241652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emergence of biological computing based on DNA strand displacement has allowed chaotic systems to have more abundant dynamic behaviors. So far, the synchronization of chaotic systems based on DNA strand displacement has been mainly realized by coupling control and PID control. In this paper, the projection synchronization of chaotic systems based on DNA strand displacement is achieved using an active control method. First, some basic catalytic reaction modules and annihilation reaction modules are constructed based on the theoretical knowledge of DNA strand displacement. Second, the chaotic system and the controller are designed according to the above mentioned modules. On the basis of chaotic dynamics, the complex dynamic behavior of the system is verified by the lyapunov exponents spectrum and the bifurcation diagram. Third, the active controller based on DNA strand displacement is used to realize the projection synchronization between the drive system and the response system, where the projection can be adjusted within a certain range by changing the value of the scale factor. The result of projection synchronization of chaotic system is more flexible, which is realized by active controller. Our control method provides an efficient way to achieve synchronization of chaotic systems based on DNA strand displacement. The designed projection synchronization is verified to have excellent timeliness and robustness by the results Visual DSD simulation.
Collapse
|
11
|
Park S, Cho E, Chueng STD, Yoon JS, Lee T, Lee JH. Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis. BIOSENSORS 2023; 13:617. [PMID: 37366982 DOI: 10.3390/bios13060617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Liver cancer is a prevalent global health concern with a poor 5-year survival rate upon diagnosis. Current diagnostic techniques using the combination of ultrasound, CT scans, MRI, and biopsy have the limitation of detecting detectable liver cancer when the tumor has already progressed to a certain size, often leading to late-stage diagnoses and grim clinical treatment outcomes. To this end, there has been tremendous interest in developing highly sensitive and selective biosensors to analyze related cancer biomarkers in the early stage diagnosis and prescribe appropriate treatment options. Among the various approaches, aptamers are an ideal recognition element as they can specifically bind to target molecules with high affinity. Furthermore, using aptamers, in conjunction with fluorescent moieties, enables the development of highly sensitive biosensors by taking full advantage of structural and functional flexibility. This review will provide a summary and detailed discussion on recent aptamer-based fluorescence biosensors for liver cancer diagnosis. Specifically, the review focuses on two promising detection strategies: (i) Förster resonance energy transfer (FRET) and (ii) metal-enhanced fluorescence for detecting and characterizing protein and miRNA cancer biomarkers.
Collapse
Affiliation(s)
- Seonga Park
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | - Euni Cho
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
| | | | - June-Sun Yoon
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jin-Ho Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
12
|
Wang Z, Zhang S, Kong Z, Li S, Sun J, Zheng Y, He Z, Ye H, Luo C. Self-adaptive nanoassembly enabling turn-on hypoxia illumination and periphery/center closed-loop tumor eradication. Cell Rep Med 2023; 4:101014. [PMID: 37075700 PMCID: PMC10140616 DOI: 10.1016/j.xcrm.2023.101014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/21/2023]
Abstract
Solid tumors are regarded as complex evolving systems rather than simple diseases. Self-adaptive synthetic therapeutics are required to cope with the challenges of entire tumors; however, limitations in accurate positioning and destruction of hypoxic niches seriously hinder complete tumor eradication. In this study, we engineer a molecular nanoassembly of sorafenib and a hypoxia-sensitive cyanine probe (CNO) to facilitate periphery/center synergistic cancer therapies. The self-adaptive nanoassembly with cascade drug release features not only effectively kills the peripheral tumor cells in normoxic rims but precisely illuminates hypoxic niches following the reduction of CNO by nitroreductase. More important, CNO is found to synergistically induce tumor ferroptosis with sorafenib via nicotinamide adenine dinucleotide phosphate (NADPH) depletion in hypoxic niches. As expected, the engineered nanoassembly demonstrates self-adaptive hypoxic illumination and periphery/center synergetic tumor eradication in colon and breast cancer BALB/c mouse xenograft models. This study advances turn-on hypoxia illumination and chemo-ferroptosis toward clinical applicability.
Collapse
Affiliation(s)
- Ziyue Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhiqiang Kong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Songhao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hao Ye
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
13
|
Liu S, Xie T, Pei X, Li S, He Y, Tong Y, Liu G. CRISPR-Cas12a coupled with universal gold nanoparticle strand-displacement probe for rapid and sensitive visual SARS-CoV-2 detection. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 377:133009. [PMID: 36439054 PMCID: PMC9678389 DOI: 10.1016/j.snb.2022.133009] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Point of care (POC) diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are particularly significant for preventing transmission of coronavirus disease 2019 (COVID-19) by any user at any given time and place. CRISPR/Cas-assisted SARS-CoV-2 assays are viewed as supplemental to RT-PCR due to simple operation, convenient use and low cost. However, most current CRISPR molecular diagnostics based on fluorescence measurement increased the difficulty of POC test with need of the additional light sources. Some instrument-free visual detection with the naked eye has limitations in probe universality. Herein, we developed a universal, rapid, sensitive and specific SARS-CoV-2 POC test that combines the outstanding DNase activity of Cas12a with universal AuNPs strand-displacement probe. The oligo trigger, which is the switch the AuNPs of the strand-displacement probe, is declined as a result of Cas12a recognition and digestion. The amount of released AuNPs produced color change which can be visual with the naked eye and assessed by UV-Vis spectrometer for quantitative detection. Furthermore, a low-cost hand warmer is used as an incubator for the visual assay, enabling an instrument-free, visual SARS-CoV-2 detection within 20 min. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. After rapid virus RNA extraction and RT-PCR amplification, a minimum of 2.7 × 102 copies/mL was obtained successfully. The modular design can be applied to many nucleic acid detection applications, such as viruses, bacteria, species, etc., by simply modifying the crRNA, showing great potential in POC diagnosis.
Collapse
Affiliation(s)
- Sitong Liu
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Tie Xie
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shujing Li
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yifan He
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yigang Tong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Guoqi Liu
- Biotecnovo (Beijing) Co.,LTD, Beijing Economic and Technological Development Zone, Beijing, PR China
| |
Collapse
|
14
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
15
|
Liu S, Xie T, Huang Z, Pei X, Li S, He Y, Tong Y, Liu G. Systematically investigating the fluorescent signal readout of CRISPR-Cas12a for highly sensitive SARS-CoV-2 detection. SENSORS AND ACTUATORS. B, CHEMICAL 2022; 373:132746. [PMID: 36212739 PMCID: PMC9527496 DOI: 10.1016/j.snb.2022.132746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 05/31/2023]
Abstract
The CRISPR/Cas system is widely used for molecular diagnostics after the discovery of trans-cleavage activity, especially now with the COVID-19 outbreak. However, the majority of contemporary trans-cleavage activity-based CRISPR/Cas biosensors exploited standard single-strand DNA (ssDNA) reporters, which were based on the FRET principle from pioneering research. An in-depth comparison and understanding of various fluorescent readout types are essential to facilitate the outstanding analytical performance of CRISPR probes. We investigated various types of fluorescent reporters of Cas12a comprehensively. Results show that trans-cleavage of Cas12a is not limited to ssDNA and dsDNA reporters, but can be extended to molecular beacons (MB). And MB reporters can achieve superior analytical performance compared with ssDNA and ds DNA reporters at the same conditions. Accordingly, we developed a highly-sensitive SARS-CoV-2 detection with the sensitivity as low as 100 fM were successfully achieved without amplification strategy. The model target of ORF1a could robustly identify the current widespread emerging SARS-CoV-2 variants. A real coronavirus GX/P2V instead of SARS-CoV-2 were chosen for practical application validation. And a minimum of 27 copies/mL was achieved successfully. This inspiration can also be applied to other Cas proteins with trans-cleavage activity, which provides new perspectives for simple, highly-sensitive and universal molecular diagnosis in various applications.
Collapse
Affiliation(s)
- Sitong Liu
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Tie Xie
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Zhaohe Huang
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Xiaojing Pei
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shujing Li
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yifan He
- College of Chemistry and Materials Engineering and Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yigang Tong
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China
| | - Guoqi Liu
- Biotecnovo (Beijing) Co.,LTD, Beijing Economic and Technological Development Zone, Beijing, PR China
| |
Collapse
|
16
|
Kou Q, Wang L, Zhang L, Ma L, Fu S, Su X. Simulation-Assisted Localized DNA Logical Circuits for Cancer Biomarkers Detection and Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205191. [PMID: 36287076 DOI: 10.1002/smll.202205191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
DNA-based nanodevices equipped with localized modules have been promising probes for biomarker detection. Such devices heavily rely on the intramolecular hybridization reaction. However, there is a lack of mechanistic insights into this reaction that limits the sensing speed and sensitivity. A coarse-grained model is utilized to simulate the intramolecular hybridization of localized DNA circuits (LDCs) not only optimizing the performance, but also providing mechanistic insights into the hybridization reaction. The simulation guided-LDCs enable the detection of multiple biomarkers with high sensitivity and rapid speed showing good consistency with the simulation. Fluorescence assays demonstrate that the simulation-guided LDC shows an enhanced sensitivity up to 9.3 times higher than that of the same probes without localization. The detection limits of ATP, miRNA, and APE1 reach 0.14 mM, 0.68 pM, and 0.0074 U mL-1 , respectively. The selected LDC is operated in live cells with good success in simultaneously detecting the biomarkers and discriminating between cancer cells and normal cells. LDC is successfully applied to detect the biomarkers in cancer tissues from patients, allowing the discrimination of cancer/adjacent/normal tissues. This work herein presents a design workflow for DNA nanodevices holding great potential for expanding the applications of DNA nanotechnology in diagnostics and therapeutics.
Collapse
Affiliation(s)
- Qiaoni Kou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liang Ma
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Shengnan Fu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
17
|
Qin S, Chen X, Xu Z, Li T, Zhao S, Hu R, Zhu J, Li Y, Yang Y, Liu M. Telomere G-triplex lights up Thioflavin T for RNA detection: new wine in an old bottle. Anal Bioanal Chem 2022; 414:6149-6156. [PMID: 35725832 PMCID: PMC9208972 DOI: 10.1007/s00216-022-04180-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 02/07/2023]
Abstract
Few reports are found working on the features and functions of the human telomere G-triplex (ht-G3) though the telomere G-quadruplex has been intensely studied and widely implemented to develop various biosensors. We herein report that ht-G3 lights up Thioflavin T (ThT) and establish a sensitive biosensing platform for RNA detection by introducing a target recycling strategy. An optimal condition was selected out for ht-G3 to promote ThT to generate a strong fluorescence. Accordingly, an ht-G3-based molecular beacon was successfully designed against the corresponding RNA sequence of the SARS-CoV-2 N-gene. The sensitivity for the non-amplified RNA target achieves 0.01 nM, improved 100 times over the conventional ThT-based method. We believe this ht-G3/ThT-based label-free strategy could be widely applied for RNA detection.
Collapse
Affiliation(s)
- Shanshan Qin
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xuliang Chen
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhichen Xu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Tao Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Shuhong Zhao
- University of Chinese Academy of Sciences, Beijing, 10049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology - Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|