1
|
Bruno L, Mircea DM, Araniti F. Metabolomic Insights into the Allelopathic Effects of Ailanthus altissima (Mill.) Swingle Volatile Organic Compounds on the Germination Process of Bidens pilosa (L.). Metabolites 2025; 15:12. [PMID: 39852355 PMCID: PMC11766947 DOI: 10.3390/metabo15010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/15/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: This study explores the allelopathic effects of volatile organic compounds (VOCs) emitted by the invasive species Ailanthus altissima (Mill.) Swingle on the seed germination of Bidens pilosa. A. altissima is known for releasing allelopathic VOCs that suppress the growth of neighbouring plants, contributing to its invasive potential. Methods: To examine these effects, we exposed B. pilosa seeds to varying concentrations of A. altissima VOCs, assessing germination rates and metabolic changes through untargeted metabolomics. Results: Our findings revealed that VOCs from A. altissima significantly inhibited the germination speed and overall germination rates of B. pilosa in a dose-dependent manner. Metabolomic profiling showed disruptions in energy and amino acid metabolism pathways, specifically involving delayed breakdown of starch and key metabolites, indicating inhibition of critical metabolic processes during early germination stages. This metabolic delay likely impairs B. pilosa's establishment and competitiveness, enhancing A. altissima's ecological dominance. Conclusions: The results underscore the potential of VOC-based allelopathy as a mechanism of plant invasion, offering insights into the role of VOCs in interspecies plant competition and ecosystem dynamics.
Collapse
Affiliation(s)
- Leonardo Bruno
- Department of Biology, Ecology, and Hearth Sciences (DiBEST), University of Calabria, 87036 Arcavacata, Italy;
| | - Diana M. Mircea
- Mediterranean Agroforestry Institute (IAM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Fabrizio Araniti
- Department of Agricultural and Environmental Sciences—Production, Landscape, Agroenergy, University of Milan, 20133 Milan, Italy
| |
Collapse
|
2
|
Pointner T, Rauh K, Auñon-Lopez A, Kostadinović Veličkovska S, Mitrev S, Arsov E, Pignitter M. Comprehensive analysis of oxidative stability and nutritional values of germinated linseed and sunflower seed oil. Food Chem 2024; 454:139790. [PMID: 38805931 DOI: 10.1016/j.foodchem.2024.139790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Germination of seeds is known to affect the nutritional composition of cold-pressed oils. This study focused on the effects of germination on the antioxidants and oxidative stability of linseed and sunflower seed oil. As hypothesized, germination led to increased antioxidant activities and tocopherol, chlorophyll and carotenoid content. Analysis revealed a 37.2 ± 3.5-fold and 11.6 ± 1.5-fold increase in polyphenol content in linseed and sunflower seed oil from germinated seeds, respectively. Using LC-HRMS/MS, profiles with up to 69 polyphenolic substances were identified in germinated seed oils for the first time. Germination promoted lipid hydrolysis, as evidenced by NMR, with overall significant decreases in triacylglycerol content leading to increased diacylglycerol and free fatty acid values. Rancimat measurements predicted a 4.10 ± 0.52-fold longer shelf-life for germinated linseed oil. This study successfully demonstrated the potential of germination to develop PUFA-rich oils with enhanced antioxidant capacity and oxidative stability.
Collapse
Affiliation(s)
- Tobias Pointner
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| | - Katharina Rauh
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Arturo Auñon-Lopez
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090 Vienna, Austria.
| | | | - Saša Mitrev
- Faculty of Agriculture, University Goce Delčev, Štip, Republic of North Macedonia.
| | - Emilija Arsov
- Faculty of Agriculture, University Goce Delčev, Štip, Republic of North Macedonia.
| | - Marc Pignitter
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Govindasamy P, Muthusamy SK, Bagavathiannan M, Mowrer J, Jagannadham PTK, Maity A, Halli HM, G. K. S, Vadivel R, T. K. D, Raj R, Pooniya V, Babu S, Rathore SS, L. M, Tiwari G. Nitrogen use efficiency-a key to enhance crop productivity under a changing climate. FRONTIERS IN PLANT SCIENCE 2023; 14:1121073. [PMID: 37143873 PMCID: PMC10151540 DOI: 10.3389/fpls.2023.1121073] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/20/2023] [Indexed: 05/06/2023]
Abstract
Nitrogen (N) is an essential element required for the growth and development of all plants. On a global scale, N is agriculture's most widely used fertilizer nutrient. Studies have shown that crops use only 50% of the applied N effectively, while the rest is lost through various pathways to the surrounding environment. Furthermore, lost N negatively impacts the farmer's return on investment and pollutes the water, soil, and air. Therefore, enhancing nitrogen use efficiency (NUE) is critical in crop improvement programs and agronomic management systems. The major processes responsible for low N use are the volatilization, surface runoff, leaching, and denitrification of N. Improving NUE through agronomic management practices and high-throughput technologies would reduce the need for intensive N application and minimize the negative impact of N on the environment. The harmonization of agronomic, genetic, and biotechnological tools will improve the efficiency of N assimilation in crops and align agricultural systems with global needs to protect environmental functions and resources. Therefore, this review summarizes the literature on nitrogen loss, factors affecting NUE, and agronomic and genetic approaches for improving NUE in various crops and proposes a pathway to bring together agronomic and environmental needs.
Collapse
Affiliation(s)
- Prabhu Govindasamy
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Senthilkumar K. Muthusamy
- Division of Crop Improvement, Indian Council of Agricultural Research (ICAR)-Central Tuber Crops Research Institute, Thiruvananthapuram, India
| | - Muthukumar Bagavathiannan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
- *Correspondence: Muthukumar Bagavathiannan, ; Prabhu Govindasamy,
| | - Jake Mowrer
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | | | - Aniruddha Maity
- Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Hanamant M. Halli
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Sujayananad G. K.
- Crop Protection, Indian Council of Agricultural Research (ICAR)-Indian Institute of Pulse Research, Kanpur, India
| | - Rajagopal Vadivel
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Pune, India
| | - Das T. K.
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rishi Raj
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vijay Pooniya
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Subhash Babu
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sanjay Singh Rathore
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Muralikrishnan L.
- Division of Agricultural Extension, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gopal Tiwari
- Division of Agronomy, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
4
|
Du Y, Fu X, Chu Y, Wu P, Liu Y, Ma L, Tian H, Zhu B. Biosynthesis and the Roles of Plant Sterols in Development and Stress Responses. Int J Mol Sci 2022; 23:ijms23042332. [PMID: 35216448 PMCID: PMC8875669 DOI: 10.3390/ijms23042332] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/01/2023] Open
Abstract
Plant sterols are important components of the cell membrane and lipid rafts, which play a crucial role in various physiological and biochemical processes during development and stress resistance in plants. In recent years, many studies in higher plants have been reported in the biosynthesis pathway of plant sterols, whereas the knowledge about the regulation and accumulation of sterols is not well understood. In this review, we summarize and discuss the recent findings in the field of plant sterols, including their biosynthesis, regulation, functions, as well as the mechanism involved in abiotic stress responses. These studies provide better knowledge on the synthesis and regulation of sterols, and the review also aimed to provide new insights for the global role of sterols, which is liable to benefit future research on the development and abiotic stress tolerance in plant.
Collapse
Affiliation(s)
- Yinglin Du
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Xizhe Fu
- The College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310012, China;
| | - Yiyang Chu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Peiwen Wu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Ye Liu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Lili Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Huiqin Tian
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.D.); (Y.C.); (P.W.); (Y.L.); (L.M.); (H.T.)
- Correspondence:
| |
Collapse
|