1
|
Liu Y, Yang B, Liu H, Guo L, Liu X. Effect and mechanism of Lycium barbarum polysaccharide on gastrointestinal motility in slow transit constipation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2923-2931. [PMID: 39305326 DOI: 10.1007/s00210-024-03446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/09/2024] [Indexed: 03/19/2025]
Abstract
Slow transit constipation (STC) seriously affects the physical and mental health of patients. While the active ingredients of traditional Chinese medicine (TCM) are widely used in the treatment of STC due to their low toxicity and side effects, the aim of this study was to investigate the effect of Lycium barbarum polysaccharide (LBP) on STC. The STC mouse model was induced by the compound diphenoxylate. Defecation, fecal moisture, and weight loss of the STC models were monitored. Gastrointestinal (GI) motility was assessed by intestinal propulsive rate, and enzyme-linked immunosorbent assay (ELISA) kits were used to analyze the levels of substance P (SP) and vasoactive intestinal peptide (VIP). The expression levels of inflammatory cytokines (Tnf-α, Il-6, and Il-1β), stem cell factor receptor (C-kit), stem cell factor (Scf), Bcl-2, Bax, and Caspase-3 were evaluated by qRT-PCR. The defecation, fecal moisture, and body weight of mice with STC were significantly improved by LBP, and LBP increased the intestinal propulsive rate of STC, increased the secretion of SP, and decreased the secretion of VIP. The intervention of LBP further suppressed the expression levels of Tnf-α, Il-6, and Il-1β in STC. LBP promoted the expression of the C-kit, Scf, and Bcl-2 and inhibited the expression of Bax and Caspase-3. LBP may alleviate symptoms of slow transit constipation (STC) and enhance gastrointestinal motility by modulating gastrointestinal hormone levels, promoting proliferation, and inhibiting the apoptosis of interstitial cells of Cajal (ICCs).
Collapse
Affiliation(s)
- Yan Liu
- School of Medicine, HeXi University, Zhangye, Gansu, 734000, China
| | - Bo Yang
- Department of Clinical Pharmacy, Zhangye Second People's Hospital, Zhangye, Gansu, 734000, China.
| | - Haiying Liu
- School of Medicine, HeXi University, Zhangye, Gansu, 734000, China
| | - Liwei Guo
- School of Medicine, HeXi University, Zhangye, Gansu, 734000, China
| | - Xiaoling Liu
- School of Medicine, HeXi University, Zhangye, Gansu, 734000, China
| |
Collapse
|
2
|
Wen Y, Zhan Y, Li J, Xu L, Huang C, Wu R, Tang X. Zhi Zhu Ma Ren pill relieves constipation in mice through endoplasmic reticulum stress-mediated apoptosis. Am J Transl Res 2024; 16:5829-5845. [PMID: 39544779 PMCID: PMC11558397 DOI: 10.62347/ylie1988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/22/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE This study explores the detailed effects and mechanisms of Zhi Zhu Ma Ren Pill (ZZMRP) on constipation. METHODS Mouse constipation was induced by using loperamide (Lop). The effects and mechanisms of ZZMRP on constipation were addressed by various methods including charcoal meals, hematoxylin and eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labelling (TUNEL), transmission electron microscopy, and western blot experiments. RESULTS Lop-treated mice exhibited delayed transit and reduced ink progradation rates after charcoal meal administration. H&E staining confirmed severe pathologic symptoms in these mice. Additionally, a decline in interstitial Cajal cells (ICCs) was observed in Lop-treated mice, accompanied by reduced concentrations of 5-hydroxytryptamine (5-HT), acetylcholinesterase (AchE), substance P (SP), and vasoactive intestinal peptide (VIP), coupled with an elevated concentration of nitric oxide synthase (NOS). However, ZZMRP treatment markedly ameliorated these changes. In addition, ZZMRP introduction significantly reversed the Lop-induced enhancement in apoptosis rate, endoplasmic reticulum (ER) stress, and levels of proapoptotic proteins and ER stress proteins, and the decrease in the expression of antiapoptotic proteins. These effects were further confirmed with the use of 4-phenylbutyrate (4-PBA), which also reversed the changes in apoptosis rate and protein levels. CONCLUSION ZZMRP alleviates constipation primarily through modulating ER stress-mediated apoptosis in Lop-treated mice, suggesting its use as a therapeutic agent for constipation.
Collapse
Affiliation(s)
- Yong Wen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Yu Zhan
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610000, Sichuan, China
- Department of Anal and Intestine Surgery, Chengdu First People’s HospitalChengdu 610000, Sichuan, China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Ling Xu
- Department of General Surgery, Hospital of Luzhou Traditional Chinese MedicineLuzhou 646000, Sichuan, China
| | - Chengzi Huang
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical UniversityLuzhou 646000, Sichuan, China
| | - Rong Wu
- Department of Clinical Medicine, Hospital of Chengdu University of Traditional Chinese MedicineChengdu 610000, Sichuan, China
| | - Xuegui Tang
- Department of Integrated Traditional and Western Medicine Anorectal, Affiliated Hospital of North Sichuan Medical CollegeNanchong 637000, Sichuan, China
| |
Collapse
|
3
|
Shen X, Gong L, Li R, Huang N, Zhang H, Chen S, Liu Y, Sun R. Treatment of constipation with Aloe and its compatibility prescriptions. CHINESE HERBAL MEDICINES 2024; 16:561-571. [PMID: 39606261 PMCID: PMC11589282 DOI: 10.1016/j.chmed.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 07/23/2024] [Indexed: 11/29/2024] Open
Abstract
Constipation is a common and prevalent digestive system disease in clinical practice, which seriously affects human physical and mental health. Currently, chemical drugs have good short-term therapeutic effects. However, because of their adverse reactions, easy recurrence after drug discontinuation, and dependence with long-term use, the long-term efficacy is unsatisfactory. The pathogenesis of constipation is mainly attributed to dysfunction of zang-fu organs and imbalance of qi-blood and yin-yang, with the syndrome being asthenia in origin and asthenia in superficiality. Aloe is a traditional Chinese medicine with cold properties and a bitter taste, and one of the most commonly used herbs for constipation. Based on Aloe and its monomer components, combined with the existing compatibility studies of Aloe and several Chinese patent drugs represented by Aloe, this paper comprehensively and systematically introduced the research progress of Aloe and its compatibility prescriptions in the treatment of constipation from basic experiments to clinical observations, providing theoretical basis and medication guidance for the clinical rational application of Aloe and its prescriptions in the treatment of constipation. At the same time, it also provides the direction for future research on the mechanism of Aloe in the treatment of constipation.
Collapse
Affiliation(s)
- Xianhui Shen
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Liping Gong
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Rongrong Li
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Nana Huang
- The Second Hospital of Shandong University, Jinan 250033, China
| | - Huijie Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siyi Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Ying Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Rong Sun
- The Second Hospital of Shandong University, Jinan 250033, China
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Zhang W, Wang X, Yin S, Wang Y, Li Y, Ding Y. Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure. Eur J Nutr 2024; 63:1929-1944. [PMID: 38703229 DOI: 10.1007/s00394-024-03401-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE The traditional Chinese herbal medicine Suaeda salsa (L.) Pall (S. salsa) with a digesting food effect was taken as the research object, and its chemical composition and action mechanism were explored. METHODS The chemical constituents of S. salsa were isolated and purified by column chromatography, and their structures were characterized by nuclear magnetic resonance. The food accumulation model in mice was established, and the changes of the aqueous extract of S. salsa in gastric emptying and intestinal propulsion rate, colonic tissue lesions, serum brain-gut peptide hormone, colonic tissue protein expression, and gut microbiota structure were compared. RESULTS Ten compounds were isolated from S. salsa named as naringenin (1), hesperetin (2), baicalein (3), luteolin (4), isorhamnetin (5), taxifolin (6), isorhamnetin-3-O-β-D-glucoside (7), luteolin-3'-D-glucuronide (8), luteolin-7-O-β-D-glucuronide (9), and quercetin-3-O-β-D-glucuronide (10), respectively. The aqueous extract of S. salsa can improve the pathological changes of the mice colon and intestinal peristalsis by increasing the rate of gastric emptying and intestinal propulsion. By adjusting the levels of 5-HT, CCK, NT, SS, VIP, GT-17, CHE, MTL, and ghrelin, it can upregulate the levels of c-kit, SCF, and GHRL protein, and restore the imbalanced structure of gut microbiota, further achieve the purpose of treating the syndrome of indigestion. The effect is better with the increase of dose. CONCLUSION S. salsa has a certain therapeutic effect on mice with the syndrome of indigestion. From the perspective of "brain-gut-gut microbiota", the mechanism of digestion and accumulation of S. salsa was discussed for the first time, which provided an experimental basis for further exploring the material basis of S. salsa.
Collapse
Affiliation(s)
- Wenjun Zhang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xueyu Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Shuanghui Yin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ye Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yong Li
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yuling Ding
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
5
|
Li J, Zhao J, Tian C, Dong L, Kang Z, Wang J, Zhao S, Li M, Tong X. Mechanisms of regulation of glycolipid metabolism by natural compounds in plants: effects on short-chain fatty acids. Nutr Metab (Lond) 2024; 21:49. [PMID: 39026248 PMCID: PMC11256480 DOI: 10.1186/s12986-024-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Natural compounds can positively impact health, and various studies suggest that they regulate glucose‒lipid metabolism by influencing short-chain fatty acids (SCFAs). This metabolism is key to maintaining energy balance and normal physiological functions in the body. This review explores how SCFAs regulate glucose and lipid metabolism and the natural compounds that can modulate these processes through SCFAs. This provides a healthier approach to treating glucose and lipid metabolism disorders in the future. METHODS This article reviews relevant literature on SCFAs and glycolipid metabolism from PubMed and the Web of Science Core Collection (WoSCC). It also highlights a range of natural compounds, including polysaccharides, anthocyanins, quercetins, resveratrols, carotenoids, and betaines, that can regulate glycolipid metabolism through modulation of the SCFA pathway. RESULTS Natural compounds enrich SCFA-producing bacteria, inhibit harmful bacteria, and regulate operational taxonomic unit (OTU) abundance and the intestinal transport rate in the gut microbiota to affect SCFA content in the intestine. However, most studies have been conducted in animals, lack clinical trials, and involve fewer natural compounds that target SCFAs. More research is needed to support the conclusions and to develop healthier interventions. CONCLUSIONS SCFAs are crucial for human health and are produced mainly by the gut microbiota via dietary fiber fermentation. Eating foods rich in natural compounds, including fruits, vegetables, tea, and coarse fiber foods, can hinder harmful intestinal bacterial growth and promote beneficial bacterial proliferation, thus increasing SCFA levels and regulating glucose and lipid metabolism. By investigating how these compounds impact glycolipid metabolism via the SCFA pathway, novel insights and directions for treating glucolipid metabolism disorders can be provided.
Collapse
Affiliation(s)
- Jiarui Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jinyue Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Chuanxi Tian
- Beijing University of Chinese Medicine, Beijing, China
| | - Lishuo Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zezheng Kang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jingshuo Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shuang Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Xiaolin Tong
- Guang'anmen Hospital, Academician of Chinese Academy of Sciences, China Academy of Traditional Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Hua H, Yongtong W, Xufeng D, Fang L, Jing G, Fumao Z, Jie J, Lijiang J. Hemp seeds attenuate loperamide-induced constipation in mice. Front Microbiol 2024; 15:1353015. [PMID: 38638898 PMCID: PMC11024439 DOI: 10.3389/fmicb.2024.1353015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 04/20/2024] Open
Abstract
Constipation is a common gastrointestinal disease that seriously affects human physical and mental health. Studies have reported that hemp seeds can improve constipation, however the specific mechanism is still unclear. This study investigates that hemp seed (HS) and its water-ethanol extract (HSE) attenuates loperamide-induced constipation in mice. The research results show that: the fecal water content and small intestinal transit rate of mice in the hemp seed group and hemp seed hydroalcoholic extract group were significantly increased compared with MC group, and the first red feces defecation time was significantly shortened; HS and HSE significantly influence serum levels of Gastrin (Gas), motilin (MTL), substance P (SP), and endothelin (ET), potentially mediating their effects on gastrointestinal motility. HS and HSE can improve colon inflammation in constipated mice with H&E staining. Compared with the model of constipation group, the content of short-chain fatty acids in the HS group and HSE group increased significantly. Gut microbiome studies have shown that the structure and abundance of intestinal flora are altered. HS and HSE changed the abundance of Odoribacter, Bacteroide, Lactobacillus and Prevotella. Together, these results suggest that HS have the potential to stimulate the proliferation of beneficial gut microbes and promote intestinal motility, thereby improving gut health and relieving symptoms of constipation.
Collapse
Affiliation(s)
- Huang Hua
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Wang Yongtong
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ding Xufeng
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Li Fang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Gu Jing
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Zeng Fumao
- School of Food Science and Resources, Nanchang University, Nanchang, China
| | - Jiang Jie
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ji Lijiang
- Department of Anorectal Surgery, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| |
Collapse
|
7
|
Sun D, Yu J, Zhan Y, Cheng X, Zhang J, Li Y, Li Q, Xiong Y, Liu W. Lacidophilin tablets alleviate constipation through regulation of intestinal microflora by promoting the colonization of Akkermansia sps. Sci Rep 2024; 14:7152. [PMID: 38531966 DOI: 10.1038/s41598-024-57732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.
Collapse
Affiliation(s)
- Denglong Sun
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingting Yu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yang Zhan
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Xiaoying Cheng
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Jingwen Zhang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Yingmeng Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China
| | - Qiong Li
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., No. 1899 Meiling Road, Nanchang, 330103, Jiangxi Province, People's Republic of China.
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, No. 788 Huoju Avenue, Gaoxin Dev District, Nanchang, 330096, People's Republic of China.
| |
Collapse
|
8
|
Jaafar MH, Xu P, Mageswaran UM, Balasubramaniam SD, Solayappan M, Woon JJ, Teh CSJ, Todorov SD, Park YH, Liu G, Liong MT. Constipation anti-aging effects by dairy-based lactic acid bacteria. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:178-203. [PMID: 38618031 PMCID: PMC11007456 DOI: 10.5187/jast.2023.e93] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 04/16/2024]
Abstract
Constipation, which refers to difficulties in defecation and infrequent bowel movement in emptying the gastrointestinal system that ultimately produces hardened fecal matters, is a health concern in livestock and aging animals. The present study aimed to evaluate the potential effects of dairy-isolated lactic acid bacteria (LAB) strains to alleviate constipation as an alternative therapeutic intervention for constipation treatment in the aging model. Rats were aged via daily subcutaneous injection of D-galactose (600 mg/body weight [kg]), prior to induction of constipation via oral administration of loperamide hydrochloride (5 mg/body weight [kg]). LAB strains (L. fermentum USM 4189 or L. plantarum USM 4187) were administered daily via oral gavage (1 × 10 Log CFU/day) while the control group received sterile saline. Aged rats as shown with shorter telomere lengths exhibited increased fecal bulk and soften fecal upon administration of LAB strains amid constipation as observed using the Bristol Stool Chart, accompanied by a higher fecal moisture content as compared to the control (p < 0.05). Fecal water-soluble metabolite profiles showed a reduced concentration of threonine upon administration of LAB strains compared to the control (p < 0.05). Histopathological analysis also showed that the administration of LAB strains contributed to a higher colonic goblet cell count as compared to the control (p < 0.05). The present study illustrates the potential of dairy-sourced LAB strains as probiotics to ameliorate the adverse effect of constipation amid aging, and as a potential dietary intervention strategy for dairy foods including yogurt and cheese.
Collapse
Affiliation(s)
- Mohamad Hafis Jaafar
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
| | - Pei Xu
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
- Faculty of Cuisine, Sichuan Tourism
University, Chengdu 610100, China
| | - Uma-Mageswary Mageswaran
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
| | | | | | - Jia-Jie Woon
- Department of Medical Microbiology,
Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia
| | - Cindy Shuan-Ju Teh
- Department of Medical Microbiology,
Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Food Science and
Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of
Sao Paulo, Sao Paulo 05508-090, Brazil
| | | | - Guoxia Liu
- CAS Key Laboratory of Microbial
Physiological and Metabolic Engineering, State Key Laboratory of Microbial
Resources, Institute of Microbiology, Chinese Academy of
Sciences, Beijing 100864, China
- CAS-TWAS Centre of Excellence for
Biotechnology, Beijing 100101, China
| | - Min-Tze Liong
- Bioprocess Technology, School of
Industrial Technology, Universiti Sains Malaysia, Penang
11800, Malaysia
- Renewable Biomass Transformation
Cluster, School of Industrial Technology, Universiti Sains
Malaysia, Penang 11800, Malaysia
| |
Collapse
|
9
|
Camilleri E, Blundell R, Cuschieri A. Deciphering the anti-constipation characteristics of palm dates ( Phoenix dactylifera): a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2153865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Emma Camilleri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| | - Renald Blundell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Andrea Cuschieri
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Imsida, Malta
| |
Collapse
|
10
|
Liu J, Wang S, Yi R, Long X, Luo G, Zhao X, He Y. LimosiLactobacillus pentosus Isolated from Mustard Relieves Drug-induced Constipation in Mice Fed a High-fat Diet by Modulating Enteric Neurotransmitter Function. Probiotics Antimicrob Proteins 2023; 15:1371-1381. [PMID: 36083465 DOI: 10.1007/s12602-022-09991-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Functional constipation is one of the most common gastrointestinal disorders. Oxidative stress can aggravate organ dysfunction. Enteric neurotransmitters have significant effects on the regulation of the enteric nervous system and intestinal muscle contraction. Oxidative stress and reduced gastrointestinal motility are considered to be one of the main causes of constipation. This study aimed to investigate whether LimosiLactobacillus pentosus CQZC02 alleviated loperamide hydrochloride (Lop)-induced constipation in mice under high-fat diet (HFD) conditions and to elucidate the underlying mechanism, focusing on enteric neurotransmitters. Four-week-old female BALB/c mice were randomly divided into five groups: normal group (Nor), constipation model group (H-Lop), L. pentosus CQZC02 low-dose group (H-Lop + ZC02L), L. pentosus CQZC02 high-dose group (H-Lop + ZC02H), and LimosiLactobacillus bulgaricus control group (H-Lop + LB). The fecal weight, water content, and total gastrointestinal transit time were measured to determine whether the mice were constipated. Small bowel and colon tissue damage was assessed by hematoxylin and eosin staining, while the degree of damage was determined by double-blind scoring. The levels of serum oxidative stress markers malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase and neurotransmitters motilin, gastrin, substance P, endothelin, somatostatin, and vasoactive intestinal peptide were measured. The gene expression levels of endothelial nitric oxide synthase, inducible nitric oxide synthase, neuronal nitric oxide synthase, nuclear factor kappa-B, and cyclooxygenase-2 in small intestine tissue were calculated. The constipation symptoms of mice in H-Lop group were manifested by a variety of physiological indicators. In addition, compared with the H-Lop group, H-Lop + ZC02H could effectively relieve the symptoms of constipation in mice. In symptom characterization, the mice in the H-Lop + ZC02H group lost weight and increased feces and water content. In functional experiments, gastrointestinal motility was enhanced; the inflammation score of intestinal tissue was decreased, and gene expression levels were modulated; serum oxidative factor levels were modulated, and oxidative stress levels were decreased.
Collapse
Affiliation(s)
- Jia Liu
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Shuaiqi Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Ruokun Yi
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Xingyao Long
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China
| | - Guangli Luo
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Xin Zhao
- Collaborative Innovation Center for Child Nutrition and Health Development, Chongqing Engineering Research Center of Functional Food, Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, 400067, China.
| | - Yongpeng He
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
11
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ, Peng W. Targeting TRPV1 and TRPA1: A feasible strategy for natural herbal medicines to combat postoperative ileus. Pharmacol Res 2023; 196:106923. [PMID: 37709183 DOI: 10.1016/j.phrs.2023.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing-Wen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Ru Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Jie Wu
- Institute of Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
12
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
13
|
Hu Y, Gao X, Zhao Y, Liu S, Luo K, Fu X, Li J, Sheng J, Tian Y, Fan Y. Flavonoids in Amomum tsaoko Crevost et Lemarie Ameliorate Loperamide-Induced Constipation in Mice by Regulating Gut Microbiota and Related Metabolites. Int J Mol Sci 2023; 24:ijms24087191. [PMID: 37108354 PMCID: PMC10139007 DOI: 10.3390/ijms24087191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Amomum tsaoko (AT) is a dietary botanical with laxative properties; however, the active ingredients and mechanisms are still unclear. The active fraction of AT aqueous extract (ATAE) for promoting defecation in slow transit constipation mice is the ethanol-soluble part (ATES). The total flavonoids of ATES (ATTF) were the main active component. ATTF significantly increased the abundance of Lactobacillus and Bacillus and reduced the dominant commensals, such as Lachnospiraceae, thereby changing the gut microbiota structure and composition. Meanwhile, ATTF changed the gut metabolites mainly enriched in pathways such as the serotonergic synapse. In addition, ATTF increased the serum serotonin (5-HT) content and mRNA expression of 5-hydroxytryptamine receptor 2A (5-HT2A), Phospholipase A2 (PLA2), and Cyclooxygenase-2 (COX2), which are involved in the serotonergic synaptic pathway. ATTF increased Transient receptor potential A1 (TRPA1), which promotes the release of 5-HT, and Myosin light chain 3(MLC3), which promotes smooth muscle motility. Notably, we established a network between gut microbiota, gut metabolites, and host parameters. The dominant gut microbiota Lactobacillus and Bacillus, prostaglandin J2 (PGJ2) and laxative phenotypes showed the most significant associations. The above results suggest that ATTF may relieve constipation by regulating the gut microbiota and serotonergic synaptic pathway and has great potential for laxative drug development in the future.
Collapse
Affiliation(s)
- Yifan Hu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650500, China
| | - Xiaoyu Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650500, China
| | - Yan Zhao
- Department of Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Shuangfeng Liu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Kailian Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650500, China
| | - Xiang Fu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
| | - Jiayi Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
| | - Jun Sheng
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650500, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650500, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650500, China
| | - Yuanhong Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650500, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650500, China
- Yunnan Aromatic Bioengineering Technology Research Center, Yunnan Agricultural University, Kunming 650500, China
| |
Collapse
|
14
|
Brooks EL, Hussain KK, Kotecha K, Abdalla A, Patel BA. Three-Dimensional-Printed Electrochemical Multiwell Plates for Monitoring Food Intolerance from Intestinal Organoids. ACS Sens 2023; 8:712-720. [PMID: 36749605 DOI: 10.1021/acssensors.2c02245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Common symptoms of food intolerance are caused by chemical components within food that have a pharmacological activity to alter the motility of the gastrointestinal tract. Food intolerance is difficult to diagnose as it requires a long-term process of eliminating foods that are responsible for gastrointestinal symptoms. Enterochromaffin (EC) cells are key intestinal epithelium cells that respond to luminal chemical stimulants by releasing 5-HT. Changes in 5-HT levels have been shown to directly alter the motility of the intestinal tract. Therefore, a rapid approach for monitoring the impact of chemicals in food components on 5-HT levels can provide a personalized insight into food intolerance and help stratify diets. Within this study, we developed a three-dimensional (3D)-printed electrochemical multiwell plate to determine changes in 5-HT levels from intestinal organoids that were exposed to varying chemical components found in food. The carbon black/poly-lactic acid (CB/PLA) electrodes had a linear range in physiological concentrations of 5-HT (0.1-2 μM) with a limit of detection of 0.07 μM. The electrodes were stable for monitoring 5-HT overflow from intestinal organoids. Using the electrochemical multiwell plate containing intestinal organoids, increases in 5-HT were observed in the presence of 0.1 mM cinnamaldehyde and 10 mM quercetin but reduction in 5-HT levels was observed in 1 mM sorbitol when compared to control. These changes in the presence of chemicals commonly found in food were verified with ex vivo ileum tissue measurements using chromatography and amperometry with boron-doped diamond electrodes. Overall, our 3D electrochemical multiwell plate measurements with intestinal organoids highlight an approach that can be a high-throughput platform technology for rapid screening of food intolerance to provide personalized nutritional diet.
Collapse
Affiliation(s)
- Emily L Brooks
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khalil K Hussain
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Khushboo Kotecha
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K
| | - Aya Abdalla
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| | - Bhavik Anil Patel
- School of Applied Sciences, University of Brighton, Brighton BN2 4GJ, U.K.,Centre of Stress and Age-Related Diseases, University of Brighton, Brighton BN2 4GJ, U.K
| |
Collapse
|
15
|
Kon R, Ikarashi N, Onuma K, Yasukawa Z, Ozeki M, Sakai H, Kamei J. Effect of partially hydrolyzed guar gum on the expression of aquaporin-3 in the colon. Food Sci Nutr 2023; 11:1127-1133. [PMID: 36789055 PMCID: PMC9922137 DOI: 10.1002/fsn3.3150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, the development of functional foods targeting gastrointestinal disorders has been in progress. Partially hydrolyzed guar gum (PHGG), which is a water-soluble dietary fiber, is known to have a constipation-improving effect. However, many aspects of the mechanism remain unclear. In this study, we investigated the role of aquaporin-3 (AQP3), which regulates the water content of feces in ameliorative effect of PHGG on constipation. Rats were allowed to freely consume a normal diet or a diet containing 5% PHGG for 14 days, and defecation parameters were measured. We also analyzed the expression levels of genes involved in water transport in the colon. The defecation frequency and volume of rats treated with PHGG were not different from those from the control group, but the fecal water content was significantly increased, and soft stools were observed. The expressions of claudin-1, tight junction protein-1, and cadherin-1, which are involved in tight junctions or adherens junctions, were almost the same in the PHGG-treated group and the control group. The expression level of AQP3 in the colon was significantly decreased in the PHGG-treated group. In this study, PHGG decreased the colonic AQP3 expression, thereby suppressing water transport from the luminal side to the vascular side and improving constipation.
Collapse
Affiliation(s)
- Risako Kon
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | | | - Kazuhiro Onuma
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | - Zenta Yasukawa
- Department of Nutrition, Faculty of NutritionKanazawa Gakuin UniversityIshikawaJapan
| | | | - Hiroyasu Sakai
- Department of Biomolecular PharmacologyHoshi UniversityTokyoJapan
| | - Junzo Kamei
- Advanced Research Institute for Health ScienceJuntendo UniversityTokyoJapan
| |
Collapse
|
16
|
Evaluations of the in vivo laxative effects of aqueous root extracts of Euclea racemosa L. in mice. Metabol Open 2022; 17:100222. [PMID: 36606022 PMCID: PMC9807816 DOI: 10.1016/j.metop.2022.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Background Management of constipation with currently available modern medicines is costly and chances of side effects are high. This limits their clinical usefulness and remain to be solved, and calls for investigations of new and better compounds. The experimental plant, Euclea racemosa L. (E. racemosa L) is among plants, which are used for management of constipation traditionally but its effect is not yet experimentally validated. Therefore, the aim of the present study is to investigate the laxative effects of this plant. Methods The laxative effects of aqueous root extracts of E. racemosa L. were evaluated using gastrointestinal motility, laxative activity, and gastrointestinal secretion tests. Results In the laxative test, the 200 and 400 mg/kg doses of plant extract showed a significant increase in percent fecal water content. The plant extract also significantly accelerated the charcoal meal in gastrointestinal motility test of loperamide-constipated mice. Moreover, the experimental plant produced significant Gastrointestinal (GI) transit ratio at all doses but failed to produce a significantly higher fluid accumulation except 400 mg/kg doses of extract in gastrointestinal secretion test. The observed effect of the aqueous root extract might be due to the presence of secondary metabolites. The aqueous root extract of E. racemosa L. revealed the presence of terpenes, saponins, flavonoids and phenols when it was subjected to phytochemical screening. Conclusion The investigation obtained from this study suggested that E. racemosa L. has a beneficial effect in producing laxative effect and this substantiate the traditional use of the plant for its claimed indication.
Collapse
|
17
|
Jung SM, Ha AW, Choi SJ, Kim SY, Kim WK. Effect of Bacillus coagulans SNZ 1969 on the Improvement of Bowel Movement in Loperamide-Treated SD Rats. Nutrients 2022; 14:nu14183710. [PMID: 36145085 PMCID: PMC9500726 DOI: 10.3390/nu14183710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/27/2022] Open
Abstract
Bacillus coagulans SNZ 1969 (B. coagulans SNZ 1969) is a spore-forming bacterium reported to be effective in attenuating constipation. However, there is no study on whether B. coagulans SNZ 1969 could improve constipation through mucin secretion and changes in intestinal hormones. To address this knowledge gap, rats were orally administrated with various treatments for four weeks. The normal control (NOR) group received saline only. There were four constipation-induced groups. The LOP group received only loperamide (LOP), a constipation-inducing agent. The BIS group received both LOP and Bisacodyl (BIS, a constipation treatment agent). The SNZ-L group received both LOP and B. coagulans SNZ 1969 at 1 × 108 CFU/day. The SNZ-H group received LOP and B.coagulans SNZ 1969 at 1 × 1010 CFU/day. As indicators of constipation improvement, fecal pellet weight, fecal water content, gastrointestinal transit time, and intestinal motility were measured. Mucus secretion in the colon was determined by histological colon analysis and mucin-related gene expressions. Gastrointestinal (GI) hormones were also measured. SNZ-L and SNZ-H groups showed significantly increased fecal weights, fecal water contents, and intestinal motility than the LOP group. SNZ-L and SNZ-H groups also showed higher secretion of mucin in the colon and mRNA expression levels of Mucin 2 and Aquaporin 8 than the LOP group. The SNZ-H group showed significantly increased substance P but significantly decreased somatostatin and vasoactive intestinal peptide than the LOP group. The results of this study suggest that B. coagulans SNZ 1969 intake could attenuate constipation through mucin secretion and alteration of GI hormones.
Collapse
Affiliation(s)
- Soo-Min Jung
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Ae-Wha Ha
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Su-Jin Choi
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
| | - Se-Young Kim
- R&D Center, CTCBIO, Inc., Hwaseong 18576, Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Woo-Kyoung Kim
- Department of Food Science and Nutrition, College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Correspondence:
| |
Collapse
|
18
|
Wen Y, Zhan Y, Tang S, Kang J, Wu R, Tang X. Mechanistic Prediction of Chinese Herb Compound (Zhi Zhu Ma Ren Pill) in the Treatment of Constipation Using Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221124780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Constipation is one of the most prevalent chronic gastrointestinal diseases. Notably, previous studies have demonstrated that Chinese herbal compounds may exert effects on constipation. The present study aimed to predict the mechanisms underlying the effects of Zhi Zhu Ma Ren Pill (ZZMRP), which includes Aurantii Fructus Immaturus, Atractylodis Macrocephalae Rhizoma, Fructus Cannabis, Paeonia lactiflora and Radix Asteris in the treatment of constipation, using network pharmacology and molecular docking. Methods: The components and target information of ZZMRP were accessed using the Traditional Chinese Medicine Systems Pharmacology database and analysis platform, and the associated targets of constipation were obtained from the GeneCards, Disgenet, Online Mendelian Inheritance in Man, DrugBANK and Therapeutic Target Database databases. The major targets were subsequently selected using a Venn diagram and network topology analysis, which was followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Molecular docking was performed to authenticate the binding activity between active components and core targets. Results: A total of 44 active components, 249 targets of ZZMRP and 1501 targets associated with constipation were acquired. A total of 122 intersection targets were discovered between ZZMRP and constipation. Subsequently, 18 key targets were authenticated, including tumor protein 53, RAC-alpha serine/threonine-protein kinase, JUN and caspase-3. GO and KEGG pathway enrichment analysis indicated that mitogen-activated protein kinase, tumor necrosis factor, and phosphoinositide 3-kinase/protein kinase B signaling pathways may be involved in the treatment of constipation using ZZMRP. Molecular docking suggested that quercetin, kaempferol, and luteolin exhibited high binding affinities with several of the primary targets. Conclusions: The active components, core targets, and signaling pathways of ZZMRP in the treatment of constipation were predicted, which may be applicable to the development of treatments for constipation and application of ZZMRP.
Collapse
Affiliation(s)
- Yong Wen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, P.R. China
| | - Yu Zhan
- Affiliated Hospital of Integrated Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu, Sichuan, P.R. China
- Chengdu Integrated TCM & Western Medicine Hospital, Chengdu, Sichuan, P.R. China
| | - Shiyu Tang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
| | - Jian Kang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Rong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| | - Xuegui Tang
- Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, P.R. China
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P.R. China
| |
Collapse
|
19
|
Lei Z, Rong H, Yang Y, Yu S, Zhang T, Chen L, Nie Y, Song Q, Hu Q, Guo J. Loperamide Induces Excessive Accumulation of Bile Acids in the Liver of Mice with Different Diets. Toxicology 2022; 477:153278. [DOI: 10.1016/j.tox.2022.153278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/03/2023]
|
20
|
Wang L, Wu F, Hong Y, Shen L, Zhao L, Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115075. [PMID: 35134487 DOI: 10.1016/j.jep.2022.115075] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Slow transit constipation (STC) is a common gastrointestinal disorder seriously impacting patients' quality of life. At present, although conventional chemical drugs effectively control STC symptoms in the short term, the long-term effects are poor, and the side effects are significant. In this regard, traditional Chinese medicine (TCM) offers an opportunity for STC treatment. Many pharmacological and clinical studies have confirmed this efficacy of TCM with multiple targets and mechanisms. AIM OF THE STUDY This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for STC treatment and discussed their efficacy based on analyzing the pathogenesis of STC. MATERIALS AND METHODS The information was acquired from different databases, including PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. We then focused on the recent research progress in STC treatment by TCM. Finally, the future challenges and trends are proposed. RESULTS TCM has good clinical efficacy in the treatment of STC with multi-mechanisms. Based on the theory of syndrome differentiation, five kinds of dialectical treatment for STC by compound TCM prescriptions were introduced, namely: Nourishing Yin and moistening the intestines; Promoting blood circulation and removing blood stasis; Warming Yang and benefiting Qi; Soothing the liver and regulating Qi; and Benefiting Qi and strengthening the spleen. In addition, six single Chinese herbs and eight active ingredients also show good efficacy in STC treatment. CONCLUSIONS TCM, especially compound prescriptions, has bright prospects in treating STC attributed to its various holistic effects.
Collapse
Affiliation(s)
- LiangFeng Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
21
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
22
|
Mirazimi SMA, Dashti F, Tobeiha M, Shahini A, Jafari R, Khoddami M, Sheida AH, EsnaAshari P, Aflatoonian AH, Elikaii F, Zakeri MS, Hamblin MR, Aghajani M, Bavarsadkarimi M, Mirzaei H. Application of Quercetin in the Treatment of Gastrointestinal Cancers. Front Pharmacol 2022; 13:860209. [PMID: 35462903 PMCID: PMC9019477 DOI: 10.3389/fphar.2022.860209] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023] Open
Abstract
Many cellular signaling pathways contribute to the regulation of cell proliferation, division, motility, and apoptosis. Deregulation of these pathways contributes to tumor cell initiation and tumor progression. Lately, significant attention has been focused on the use of natural products as a promising strategy in cancer treatment. Quercetin is a natural flavonol compound widely present in commonly consumed foods. Quercetin has shown significant inhibitory effects on tumor progression via various mechanisms of action. These include stimulating cell cycle arrest or/and apoptosis as well as its antioxidant properties. Herein, we summarize the therapeutic effects of quercetin in gastrointestinal cancers (pancreatic, gastric, colorectal, esophageal, hepatocellular, and oral).
Collapse
Affiliation(s)
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Shahini
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Raha Jafari
- Department of Medicine, Mashhad Medical Sciences Branch, Islamic Azad University, Mashhad, Iran
| | - Mehrad Khoddami
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Parastoo EsnaAshari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Hossein Aflatoonian
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fateme Elikaii
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Melika Sadat Zakeri
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammad Aghajani
- Infectious Disease Research Center, School of Nursing and Midwifery, Kashan University of Medical Sciences, Kashan, Iran
| | - Minoodokht Bavarsadkarimi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
23
|
Zhan Y, Wen Y, Du LJ, Wang XX, Tang SY, Kong PF, Huang WG, Tang XG. Effects of Maren Pills on the Intestinal Microflora and Short-Chain Fatty Acid Profile in Drug-Induced Slow Transit Constipation Model Rats. Front Pharmacol 2022; 13:804723. [PMID: 35496291 PMCID: PMC9039019 DOI: 10.3389/fphar.2022.804723] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Slow transit constipation (STC) is becoming a common and frequently occurring disease in today’s society, and it is necessary to explore the safe and effective treatment of STC. Method: Our study aimed to investigate whether the laxative effect of Maren pills (MRW) is associated with the regulation of intestinal microflora and intestinal metabolism in the colon. Loperamide hydrochloride-induced STC rats received MRW intragastrically for two consecutive weeks to evaluate the laxative effect of MRW involving the regulation of intestinal microflora, intestinal metabolism, and 5-HT signaling pathway. Intestinal microflora was detected by 16s rDNA sequencing, intestinal metabolism of short-chain fatty acids (SCFAs) was detected by HPLC, and the 5-HT signaling pathway was detected by WB, ELISA, immunofluorescence, and immunohistochemical analysis. Results: Our results revealed that the treatments with MRW increased not only the body weight, 24-h fecal number, 24-h wet fecal weight, 24-h dry fecal weight, fecal water content, and the intestinal propulsion rate but also the colonic goblet cell number, colonic Muc-2 protein expression, and colonic mucus layer thickness in the STC model rats. Moreover, MRW activated the 5-HT pathway by increasing the levels of 5-HT, 5-HIAA, 5-HT4R, CFTR, cAMP, and PKA in the colon tissue of STC rats. The 16S rDNA sequencing results showed that MRW improved the colonic microflora structure in colonic contents of STC rats, mainly by increasing Lactobacillus and decreasing Prevotella. Finally, we found that MRW regulated the SCFA metabolism in the colonic contents of the STC rats, mainly by increasing the contents of acetic acid, propionic acid, and butyric acid; the relative abundance of Lactobacillus was positively correlated with either contents of acetic acid, propionic acid, and butyric acid, and the relative abundance of Clostridium was negatively correlated. Conclusion: Our study further showed that MRW could improve constipation in STC rats, and the mechanism may be by regulating the intestinal microflora structure and improving the metabolism of SCFAs.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Anorectal, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu, China
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| | - Yong Wen
- Department of Anorectal, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li-Juan Du
- Department of Anorectal, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiao-Xiang Wang
- Department of Digestive medicine, Chengdu First People's Hospital, Chengdu, China
| | - Shi-Yu Tang
- Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peng-Fei Kong
- Department of Anorectal Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wei-Guo Huang
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| | - Xue-Gui Tang
- Department of Anorectal Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
24
|
Kongdang P, Pruksakorn D, Koonrungsesomboon N. Preclinical experimental models for assessing laxative activities of substances/products under investigation: a scoping review of the literature. Am J Transl Res 2022; 14:698-717. [PMID: 35273679 PMCID: PMC8902583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Constipation is a common gastrointestinal problem worldwide. Its impact on health can range from an unpleasant problem to being seriously troublesome. When lifestyle modification fails to deal with constipation, laxatives are the mainstay of therapy. There are several types of laxatives currently available; however, there still remains a need for better laxatives because certain currently available laxatives are not appropriate for or accessible to some patients. Preclinical experiments to study the laxative potential of substances/products of interest are vital to improving that situation. The selection of appropriate experimental models for assessing the laxative activities of substances/products under investigation is crucial to achieving valid and meaningful results. This article provides a scoping review of the literature, outlining, and summarizing models currently being used in preclinical experiments assessing the laxative activities of substances/products under investigation. The review includes both screening models, e.g., the isolated organ bath system, in vivo fecal assessment and intestinal transit assay, and confirmation models, e.g., in vivo constipation models. Chemical substances/drugs used to induce constipation in in vivo constipation models, e.g., loperamide, diphenoxylate, montmorillonite, and clonidine, as well as standard laxative agents used as a positive control in experimental models, e.g., bisacodyl, carbachol, lactulose, sodium picosulfate, castor oil, phenolphthalein, and yohimbine, are described in detail. The purpose of this article is to assist researchers in the design and implementation of preclinical experimental models for assessing laxative activities of substances/products under investigation to achieve valid and meaningful preclinical results prior to experimentation in humans.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Biomedical Engineering Institute, Chiang Mai UniversityChiang Mai, Thailand
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
- Department of Pharmacology, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|