1
|
Shiri A, Sadeghi E, Abdolmaleki K, Dabirian F, Shirvani H, Soltani M. Eco-Friendly and Smart Electrospun Food Packaging Films Based on Polyvinyl Alcohol and Sumac Extract: Physicochemical, Mechanical, Antibacterial, and Antioxidant Properties. Food Sci Nutr 2025; 13:e70190. [PMID: 40270940 PMCID: PMC12014940 DOI: 10.1002/fsn3.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/26/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025] Open
Abstract
With the increasing concern over environmental pollution caused by synthetic packaging, there is a growing demand for sustainable, biodegradable, and functional materials in the food industry. In this study, the antioxidant, antimicrobial, physicochemical, and mechanical properties of electrospun edible films based on sumac extract and polyvinyl alcohol were investigated. The films demonstrated a clear colorimetric response to pH changes, shifting from red in acidic to yellow in alkaline conditions, making them suitable for food packaging and freshness monitoring. The film containing 30% sumac extract (P-SE 30%) exhibited strong antimicrobial activity against Escherichia coli (17.01 mm) and Staphylococcus aureus (18.02 mm), along with acceptable antioxidant activity (46.32%). The film with 10% sumac extract showed the best mechanical strength (0.034 MPa). Moreover, moisture content (4.3%) and water vapor permeability (9.49 g mm/m2 Pa) were significantly reduced. Also, the physicochemical properties (SEM, FT-IR, X-ray, thickness, Opacity, and mechanical) of electrospun films were improved compared to the control sample. In general, this study demonstrates the potential of electrospun films reinforced with sumac extract as a smart food packaging solution for enhancing food safety.
Collapse
Affiliation(s)
- Aylar Shiri
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| | - Ehsan Sadeghi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Research Center for Environmental Determinants of Health (RCEDH)Health Institute, Kermanshah University of Medical SciencesKermanshahIran
| | - Khadije Abdolmaleki
- Research Center of Oils and FatsKermanshah University of Medical SciencesKermanshahIran
| | - Farzad Dabirian
- Department of Materials and Textile Engineering, Faculty of EngineeringRazi UniversityKermanshahIran
| | - Hooman Shirvani
- Department of Agronomy and Plant Breeding, Faculty of AgricultureIlam UniversityIlamIran
| | - Mahya Soltani
- Student Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food TechnologyKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
2
|
Gong W, Yang TQ, He WY, Li YX, Hu JN. On-demand removable hydrogel film derived from gallic acid-phycocyanin and polyvinyl alcohol for fruit preservation. Food Chem 2025; 463:141404. [PMID: 39362103 DOI: 10.1016/j.foodchem.2024.141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
Postharvest spoilage of fruits accounts for significant losses ranging between 20 %-30 %, leading to considerable resource wastage and economic downturns. The development of an effective fresh-keeping packaging material is of paramount importance. This study introduces an innovative on-demand removable active fruit fresh-keeping film (GPP), created by embedding a GP (gallic acid-phycocyanin) fiber mesh hydrogel with functional properties into a polyvinyl alcohol (PVA) matrix. The resultant GPP hydrogel-based film demonstrates outstanding UV and water vapor barrier capabilities, mechanical stability, resistance to external mechanical stress, universal surface adhesion, antibacterial efficacy, and on-demand removal attributes, while being devoid of potential toxicity hazards. Utilizing grapes and blueberries as representative fruits, it is shown that the GPP hydrogel film significantly preserves the fruits' hardness, pH, total soluble solids content (TSS), and minimizes the rate of weight loss, thereby prolonging the shelf life to 13 days for grapes and 20 days for blueberries at ambient temperature. These results underscore the potential of this hydrogel-based film as an invaluable material for fruit preservation within the food industry.
Collapse
Affiliation(s)
- Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ting-Qi Yang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Wan-Ying He
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yu-Xin Li
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiang-Ning Hu
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Shen C, Yang Z, Wu D, Chen K. The preparation, resources, applications, and future trends of nanofibers in active food packaging: a review. Crit Rev Food Sci Nutr 2024; 64:9656-9671. [PMID: 37216478 DOI: 10.1080/10408398.2023.2214819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Active packaging is a novel strategy for maintaining the shelf life of products and ensuring their safety, freshness, and integrity that has emerged with the consumer demand for safer, healthier, and higher quality food. Nanofibers have received a lot of attention for the application in active food packaging due to their high specific surface area, high porosity, and high loading capacity of active substances. Three common methods (electrospinning, solution blow spinning, and centrifugal spinning) for the preparation of nanofibers in active food packaging and their influencing parameters are presented, and advantages and disadvantages between these methods are compared. The main natural and synthetic polymeric substrate materials for the nanofiber preparation are discussed; and the application of nanofibers in active packaging is elaborated. The current limitations and future trends are also discussed. There have been many studies on the preparation of nanofibers using substrate materials from different sources for active food packaging. However, most of these studies are still in the laboratory research stage. Solving the issues of preparation efficiency and cost of nanofibers is the key to their application in commercial food packaging.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Zhichao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, P.R. China
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P.R. China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
4
|
Asghari M, Sahari MA, Kia SJ, Tavakoli A, Barzegar M. Berberis integerrima bioactive molecules loaded in chitosan-based electrospun nanofibers for soybean oil oxidative protection. Int J Biol Macromol 2024; 268:131692. [PMID: 38702247 DOI: 10.1016/j.ijbiomac.2024.131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.
Collapse
Affiliation(s)
- Mohsen Asghari
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Ali Sahari
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| | - Seyed Jalal Kia
- Department of Polymer Engineering and Color Technology, Amir Kabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Tavakoli
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Mohsen Barzegar
- Department of Food Technology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Hedayati S, Tarahi M, Azizi R, Baeghbali V, Ansarifar E, Hashempur MH. Encapsulation of mint essential oil: Techniques and applications. Adv Colloid Interface Sci 2023; 321:103023. [PMID: 37863014 DOI: 10.1016/j.cis.2023.103023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/22/2023]
Abstract
Mint essential oil (MEO) is an outstanding antibacterial and antioxidant agent, that can be considered as a promising natural preservative, flavor, insecticide, coolant, and herbal medicine. However, the low solubility and volatility of MEO limits its extensive applications. In order to utilize MEO in different products, it is essential to develop treatments that can overcome these limitations. More recently, encapsulation technology has been developed as a promising method to overcome the shortcomings of MEO. In which, sensitive compounds such as essential oils (EOs) are entrapped in a carrier to produce micro or nanoparticles with increased stability against environmental conditions. Additionally, encapsulation of EOs makes transportation and handling easier, reduces their volatility, controls their release and consequently improves the efficiency of these bioactive compounds and extends their industrial applications. Several encapsulation techniques, such as emulsification, coacervation, ionic gelation, inclusion complexation, spray drying, electrospinning, melt dispersion, melt homogenization, and so on, have been emerged to improve the stability of MEO. These encapsulated MEOs can be also used in a variety of food, bioagricultural, pharmaceutical, and health care products with excellent performance. Therefore, this review aims to summarize the physicochemical and functional properties of MEO, recent advances in encapsulation techniques for MEO, and the application of micro/nanocapsulated MEO in different products.
Collapse
Affiliation(s)
- Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Rezvan Azizi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Baeghbali
- Food and Markets Department, Natural Resources Institute, University of Greenwich, Medway, UK
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
6
|
Murillo L, Rivero PJ, Sandúa X, Pérez G, Palacio JF, Rodríguez RJ. Antifungal Activity of Chitosan/Poly(Ethylene Oxide) Blend Electrospun Polymeric Fiber Mat Doped with Metallic Silver Nanoparticles. Polymers (Basel) 2023; 15:3700. [PMID: 37765554 PMCID: PMC10536667 DOI: 10.3390/polym15183700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this work, the implementation of advanced functional coatings based on the combination of two compatible nanofabrication techniques such as electrospinning and dip-coating technology have been successfully obtained for the design of antifungal surfaces. In a first step, uniform and beadless electrospun nanofibers of both polyethylene oxide (PEO) and polyethylene (PEO)/chitosan (CS) blend samples have been obtained. In a second step, the dip-coating process has been gradually performed in order to ensure an adequate distribution of silver nanoparticles (AgNPs) within the electrospun polymeric matrix (PEO/CS/AgNPs) by using a chemical reduction synthetic process, denoted as in situ synthesis (ISS). Scanning electron microscopy (SEM) has been used to evaluate the surface morphology of the samples, showing an evolution in average fiber diameter from 157 ± 43 nm (PEO), 124 ± 36 nm (PEO/CS) and 330 ± 106 nm (PEO/CS/AgNPs). Atomic force microscopy (AFM) has been used to evaluate the roughness profile of the samples, indicating that the ISS process induced a smooth roughness surface because a change in the average roughness Ra from 84.5 nm (PEO/CS) up to 38.9 nm (PEO/CS/AgNPs) was observed. The presence of AgNPs within the electrospun fiber mat has been corroborated by UV-Vis spectroscopy thanks to their characteristic optical properties (orange film coloration) associated to the Localized Surface Plasmon Resonance (LSPR) phenomenon by showing an intense absorption band in the visible region at 436 nm. Energy dispersive X-ray (EDX) profile also indicates the existence of a peak located at 3 keV associated to silver. In addition, after doping the electrospun nanofibers with AgNPs, an important change in the wettability with an intrinsic hydrophobic behavior was observed by showing an evolution in the water contact angle value from 23.4° ± 1.3 (PEO/CS) up to 97.7° ± 5.3 (PEO/CS/AgNPs). The evaluation of the antifungal activity of the nanofibrous mats against Pleurotus ostreatus clearly indicates that the presence of AgNPs in the outer surface of the nanofibers produced an important enhancement in the inhibition zone during mycelium growth as well as a better antifungal efficacy after a longer exposure time. Finally, these fabricated electrospun nanofibrous membranes can offer a wide range of potential uses in fields as diverse as biomedicine (antimicrobial against human or plant pathogen fungi) or even in the design of innovative packaging materials for food preservation.
Collapse
Affiliation(s)
- Leire Murillo
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
| | - Pedro J. Rivero
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Xabier Sandúa
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| | - Gumer Pérez
- Genetics, Genomics and Microbiology Research Group, Institute for Multidisciplinary Research in Applied Biology (IMAB), Public University of Navarre (UPNA), 31006 Pamplona, Spain;
| | - José F. Palacio
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain;
| | - Rafael J. Rodríguez
- Engineering Department, Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain; (L.M.); (X.S.); (R.J.R.)
- Institute for Advanced Materials and Mathematics (INAMAT2), Public University of Navarre (UPNA), Campus Arrosadía S/N, 31006 Pamplona, Spain
| |
Collapse
|
7
|
Black Tea Extracts/Polyvinyl Alcohol Active Nanofibers Electrospun Mats with Sustained Release of Polyphenols for Food Packaging Applications. Polymers (Basel) 2023; 15:polym15051311. [PMID: 36904553 PMCID: PMC10007190 DOI: 10.3390/polym15051311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The efficiency in the capabilities to store and release antioxidants depends on the film morphology and its manufacturing process, as well as on the type and methodology used to obtain the polyphenol extracts. Here, hydroalcoholic extracts of black tea polyphenols (BT) were obtained and dropped onto different polyvinyl alcohol (PVA) aqueous solutions (water or BT aqueous extract with and without citric acid, CA) to obtain three unusual PVA electrospun mats containing polyphenol nanoparticles within their nanofibers. It was shown that the mat obtained through the nanoparticles precipitated in BT aqueous extract PVA solution presented the highest total polyphenol content and antioxidant activity, and that the addition of CA as an esterifier or PVA crosslinker interfered with the polyphenols. The release kinetics in different food simulants (hydrophilic, lipophilic and acidic) were fitted using Fick's diffusion law and Peppas' and Weibull's models, showing that polymer chain relaxation is the main mechanism in all food simulants except for the acidic, which presented an abrupt release by Fick's diffusion mechanism of about 60% before being controlled. This research provides a strategy for the development of promising controlled-release materials for active food packaging, mainly for hydrophilic and acidic food products.
Collapse
|
8
|
Mendes JF, Norcino LB, Corrêa TQ, Barbosa TV, Paschoalin RT, Mattoso LHC. Obtaining poly (lactic acid) nanofibers encapsulated with peppermint essential oil as potential packaging via solution-blow-spinning. Int J Biol Macromol 2023; 230:123424. [PMID: 36708906 DOI: 10.1016/j.ijbiomac.2023.123424] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The development of active packaging based on biodegradable material and incorporating active compounds, such as essential oil, is a new technique to ensure food safety without harming the environment. In this study, nanofiber mats of poly (lactic acid)/ polyethylene glycol (PLA/PEG) blend incorporated with peppermint essential oil (PO) at different ratios (5-20 % v/w) were produced by solution-blow-spinning (SBS) for potential packaging application. Electron microscopy showed a cylindrical and interlaced morphology for PLA/PEG/PO and a significant increase in the diameter (139-192 nm) of the nanofibers by increasing PO content. All nanofibers showed high thermal stability (278-345 °C) suitable for use in the food industry. Nuclear magnetic resonance (13C NMR) spectrum confirmed PO in the nanofibers after SBS. ATR-FTIR spectral analysis supported the chemical composition of the nanofiber mats. PO addition led to obtaining hydrophobic nanofibers, enhancing the contact angle to 122° and decreasing water vapor permeability (60 % reduction compared to the PLA/PEG (3.0 g.mm.kPa-1.h-1.m-2). Although the PLA/PEG/20%PO nanofibers did not show halo formation in 24 h, they effectively extended the strawberries' shelf-life at 25 °C, evidencing PO release over time. It also reduced weight loss (2.5 % and 0.3 % weight loss after 5 days for PLA/PEG and PLA/PEG/20%PO, respectively) and increased firmness (8-12 N) for strawberries packed with the nanofiber mats. It is suggested that PLA/PEG films incorporating PO may be used as an active, environmentally friendly packaging material.
Collapse
Affiliation(s)
- Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil.
| | - Laís Bruno Norcino
- Graduate Program in Biomaterials Engineering, Federal University of Lavras, Lavras 37200-000, Minas Gerais, Brazil
| | - Thaila Quatrini Corrêa
- São Carlos Institute of Physics, University of São Paulo, PO Box 369, 13560-970 São Carlos, São Paulo, Brazil
| | - Talita Villa Barbosa
- São Carlos School of Engineering, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Rafaella T Paschoalin
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, São Paulo, Brazil
| | | |
Collapse
|
9
|
Moradinezhad F, Hedayati S, Ansarifar E. Assessment of Zataria Multiflora Essential Oil-Incorporated Electrospun Polyvinyl Alcohol Fiber Mat as Active Packaging. Polymers (Basel) 2023; 15:polym15041048. [PMID: 36850330 PMCID: PMC9965829 DOI: 10.3390/polym15041048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, an active packaging containing Zataria multiflora essential oil (ZMEO), a powerful natural antimicrobial agent, encapsulated into polyvinyl alcohol (PVA) fiber via electrospinning is presented. ZMEO was effective on pathogenic bacteria, particularly Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus, Listeria monosytogene), fungi and yeasts (Aspergillus fumigatus, Candida albicans). Results showed that the scanning electron microscopy (SEM) images of fibers had a bead-free and uniform structure. Fourier-transform infrared (FTIR) revealed that ZMEO was encapsulated into PVA through a physical process, without chemical interaction between the ingredients. Strawberries treated with PVA/ZMEO significantly (p < 0.05) preserved the anthocyanin (18.64%), total phenols (12.95%), antioxidant (22.72%), soluble solids (6.44%), titratable acidity (20.88%), firmness (27.2%), and color (15.55%) compared to the control sample during 15 days of cold storage. According to these findings, electrospinning was an efficient method for encapsulating bioactive compounds. ZMEO loaded into PVA fiber delayed the physiological and biochemical changes of fruits and extended the fruit's shelf-life. This study revealed the benefits of incorporating ZMEO into PVA fiber mats, which could lead to new possibilities for active packaging.
Collapse
Affiliation(s)
- Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand 9717434765, Iran
| | - Sara Hedayati
- Nutrition Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
- Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Elham Ansarifar
- Social Determinants of Health Research Center, Department of Public Health, School of Health, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Correspondence: or
| |
Collapse
|
10
|
Morais MS, Bonfim DPF, Aguiar ML, Oliveira WP. Electrospun Poly (Vinyl Alcohol) Nanofibrous Mat Loaded with Green Propolis Extract, Chitosan and Nystatin as an Innovative Wound Dressing Material. J Pharm Innov 2022; 18:1-15. [PMID: 36061220 PMCID: PMC9427432 DOI: 10.1007/s12247-022-09681-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 10/29/2022]
Abstract
Purposes The objective of this work was to produce and characterise biodegradable poly (vinyl alcohol) (PVA) nanofibre loaded with green propolis extract (GPE), chitosan (CS) and nystatin (NYS) alone and in mixtures as a potential wound dressing material. Methods The GPE, NYS and CS1% were loaded in electrospinning compositions based on PVA 7%, 8% and 12% solubilised in milli-Q water or a mixture of water and glacial acetic acid. The electrospinning compositions without actives (blank) and those loaded with actives were characterised by determining the pH, electrical conductivity and rheological properties. An image analysis procedure applied to photomicrographs obtained by scanning electronic microscopy (SEM) allowed the determination of the nanofibres' diameter distribution and average surface porosity. The disintegration time and swelling ratio of the nanofibre mats were also determined. Results The physicochemical parameters of the electrospinning compositions (pH, electrical conductivity and rheology) and the incorporated active ingredients (GPE, CS and NYS) affected the electrospun nanofibre mats properties. The electrospun nanofibres' mean diameters and surface porosity ranged from 151.5 to 684.5 nm and from 0.29 ± 0.04 to 0.50 ± 0.05. The PVA/CS electrospun nanofibres fibres exhibited the smallest diameters, high surface porosity, water absorption capacity and disintegration time. The characteristics of the PVA/CS nanofibres mat associated with the biodegradability of the polymers make them a novel material with the potential to be applied as wound and burn dressings.
Collapse
Affiliation(s)
- Maria S. Morais
- Laboratory of Pharmaceutical Processes, LAPROFAR, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903 Brazil
| | - Daniela P. F. Bonfim
- Department of Chemical Engineering, University Federal of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP Brazil
| | - Mônica L. Aguiar
- Department of Chemical Engineering, University Federal of São Carlos, Rod. Washington Luiz, km 235, São Carlos, SP Brazil
| | - Wanderley P. Oliveira
- Laboratory of Pharmaceutical Processes, LAPROFAR, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, 14040-903 Brazil
| |
Collapse
|
11
|
Ansarifar E, Hedayati S, Zeinali T, Fathabad AE, Zarban A, Marszałek K, Mousavi Khaneghah A. Encapsulation of Jujube Extract in Electrospun Nanofiber: Release Profile, Functional Effectiveness, and Application for Active Packaging. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|