1
|
Walayat N, Blanch M, Moreno HM. Surimi and Low-Salt Surimi Gelation: Key Components to Enhance the Physicochemical Properties of Gels. Gels 2025; 11:142. [PMID: 39996685 PMCID: PMC11855292 DOI: 10.3390/gels11020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Surimi-based products are nutritionally valuable due to their essential amino acid composition, their content of high-quality proteins with excellent digestibility, and their low fat content. However, to achieve the desired texture, a significant amount of salt (1-3%) must be added, which could compromise their health benefits. This study provides an overview of surimi production, the gelation mechanism of myosin, and the most relevant gelation enhancers that could be used in manufacturing low-salt surimi-based products. Reducing the salt content in surimi-based products presents a significant challenge for the industry, not only from technological and sensory perspectives but also in response to the growing demand of consumers for healthier food options. So, this manuscript highlights several strategies for achieving optimal quality characteristics in relation to functional properties for the surimi products industry. In addition, surimi as a raw material is often misunderstood by consumers, who may question its nutritional value and, consequently, its consumption. Therefore, it is crucial to thoroughly explain the processing of this raw material and emphasize the importance of proper myofibrillar protein gelation to develop high-value surimi-based products.
Collapse
Affiliation(s)
- Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China;
| | - María Blanch
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| | - Helena M. Moreno
- Department Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Liu JC, Zhang LD, Liu Y, Zhou TQ, Lai B, Wang C, Yan JN, Wu HT. Modification of gel properties of Meretrix meretrix (clam) with polysaccharides: physical characterization and interaction mechanism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1613-1623. [PMID: 39364803 DOI: 10.1002/jsfa.13937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND This study investigated the contribution of 11 polysaccharides (2%, w/w), including pectin (PC), κ-carrageenan (KC), ι-carrageenan (IC), gellan gum (GG), guar gum (GM), sodium alginate (SA), konjac gum (KG), gum arabic (GA), fucoidan (FC), locust bean gum (LBG), and curdlan (CD), to the gel and microstructural properties of Meretrix meretrix clam gel (MMG). RESULTS The hardness, springiness and chewiness of MMG with KC, IC, GG, SA and FC addition increased by ~10%-250%, while PC, GM, KG and LBG groups decreased by ~0.6% to 69%. KC, IC, SA, GG and FC decreased the cooking loss rate (CLR) by 69.4% to 88.7% and correspondingly enhanced the water holding capacity (WHC) by 10.2% to 21.4%, which was accompanied by an increased bound water and immobilized water area and high hydrogen proton density. The addition of KC transformed the MMG microstructure from a loose network with large pores to a compact, dense network, reducing lacunarity by 57.9%. The primary intermolecular forces in MMG with the incorporation of KC, IC, GG, SA and FC were hydrophobic interactions and disulfide bonds, which increased by 32.8%-105.3% and 45.6%-114.5% than MMG alone, respectively. CONCLUSION Collectively, KC, IC, GG, SA and FC could improve the gel properties of MMG and the strongest synergistic combination was found in the MMG/KC system. This study suggests that the incorporation of polysaccharides is a strategy with potential for modifying the gel properties of shellfish surimi products. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Lin-Da Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yue Liu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Tian-Qi Zhou
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Bin Lai
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Ce Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jia-Nan Yan
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Hai-Tao Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Key Laboratory of Aquatic Product Processing and Quality Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
3
|
Nie J, Xue C, Xiong S, Yin T, Huang Q. Comparative analysis of soluble and insoluble dietary fiber on improving the gelation performance and fishy odors of silver carp surimi. Int J Biol Macromol 2024; 262:129938. [PMID: 38325685 DOI: 10.1016/j.ijbiomac.2024.129938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
This work investigated the effects and mechanisms of soluble and insoluble dietary fiber (SDF and IDF) on the gelation performance and fishy odors of silver carp surimi. The results showed that the gel properties of surimi increased and then decreased with increasing SDF content, and the best gel properties were achieved at 1 wt% SDF. The gel strength, elasticity and deformation resistance of surimi increased in a dose-dependent manner as affected by IDF, but its effect on viscosity and recovery ratio was similar to SDF. Moreover, 2 wt% SDF and 1 wt% IDF reduced the content and odor activity value (OAV) of most fishy compounds in surimi, and the latter was superior to the former. The rheological characteristics indicated that SDF affected the thermal gelation properties of surimi mainly through filling, concentration and volume exclusion, and IDF mainly through filling, concentration and intermolecular interactions between IDF and myofibrillar protein. Additionally, SDF and IDF inhibited the release of fishy odors by improving the gel network structure and their adsorption, but more SDF (2 wt%) promoted the formation of escape channels for odors release. In summary, 1 wt% IDF could simultaneously improve the gelation performance and fishy odors of silver carp surimi.
Collapse
Affiliation(s)
- Jinggui Nie
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Chao Xue
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China; Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4108, Australia
| | - Shanbai Xiong
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Tao Yin
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology, and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China; National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan 430070, China.
| |
Collapse
|
4
|
Zhang S, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. A mini review on manipulation of carbohydrate for better use in surimi and surimi products: modification and compounding. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:14-20. [PMID: 37551539 DOI: 10.1002/jsfa.12906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
Carbohydrate is widely used in the production of surimi and surimi products to improve their qualities, such as anti-freezing capability, gelling ability, nutrition, flavor and 3D printability. More and more native carbohydrates have been modified through physical methods (e.g., ball milling, irradiation and differential sedimentation), chemical method (e.g., deacetylation, hydroxypropylation and acetic acid esterification) or enzymatic method (e.g., chitosanase) before being used in the processing of surimi and surimi products in recent years. At the same time, different carbohydrates are compounded and applied to surimi and surimi products. The modified and compounded carbohydrates in surimi have been proved to improve quality of surimi and surimi products more pronouncedly than native carbohydrates. Therefore, this review summarizes the manipulation of carbohydrate by modification and compounding to improve the qualities of surimi and surimi products. Moreover, the prospects for carbohydrate modification and compounding for use in surimi and surimi products are discussed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sijing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Wuhan Business University, Wuhan, People's Republic of China
| | - Liangzi Zhang
- Wuhan Business University, Wuhan, People's Republic of China
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
- Wuhan Business University, Wuhan, People's Republic of China
- National R&D Branch Center for Conventional Freshwater Fish Processing, Wuhan, People's Republic of China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-product, Ministry of Agriculture and Rural Affairs/Institute of Agro-product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, People's Republic of China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, People's Republic of China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, People's Republic of China
| | - Huawei Ma
- Guangxi Key Laboratory of Aquatic Preservation and Processing Technology, Guangxi Academy of Fishery Science, Nanning, People's Republic of China
| |
Collapse
|
5
|
Lan H, Chen L, Wang Y, Lu M, Chen B, Ai C, Teng H. Effect of к-carrageenan on saltiness perception and texture characteristic related to salt release in low-salt surimi. Int J Biol Macromol 2023; 253:126852. [PMID: 37703970 DOI: 10.1016/j.ijbiomac.2023.126852] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/15/2023]
Abstract
The purpose of this study was to investigate the effect of Kappa (к)-carrageenan on texture and perception of saltiness of low salt surimi. The low-field nuclear magnetic resonance (LF-NMR) and microstructure results showed that к-carrageenan could promote the formation of more immobilized water in low salt surimi gel, change its matrix structure, and lead to the uneven spatial distribution of sodium, thus enhancing saltiness perception. The rheological properties of surimi showed that к-carrageenan could increase the network strength of low salt surimi gel and improve its thermostability. Furthermore, the low salt surimi gel added with к-carrageenan has lower cooking loss, higher water holding capacity (WHC), gel strength and improved texture properties. Therefore, к-carrageenan has the effects of improving the quality and increasing salt perception of surimi gel. This study provides a new method for reducing salt consumption in food industry.
Collapse
Affiliation(s)
- Haijing Lan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yitong Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Minxin Lu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Boyu Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chao Ai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Hui Teng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| |
Collapse
|
6
|
Chang L, Li Y, Bai X, Xia X, Xu W. Inhibition of Chitosan Ice Coating on the Quality Deterioration of Quick-Frozen Fish Balls during Repeated Freeze-Thaw Cycles. Foods 2023; 12:foods12040717. [PMID: 36832791 PMCID: PMC9955944 DOI: 10.3390/foods12040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Chitosan ice coating's properties and its inhibitory effect on the quality deterioration of quick-frozen fish balls during repeated freeze-thaw cycles were investigated. When the chitosan (CH) coating concentration increased, the viscosity and ice coating rate increased, while water vapor permeability (WVP), water solubility, and transmittance decreased, and 1.5% CH was regarded as the excellent coating to apply to freeze-thaw quick-frozen fish balls. As the freeze-thaw cycles increased, the frost production, total volatile base nitrogen (TVB-N) values, and free water content of all of the samples increased significantly (p < 0.05), and the whiteness values, textural properties, and water-holding capacity (WHC) decreased. Freeze-thaw cycles expanded the aperture between the muscle fibers and the occurrence of crystallization and recrystallization between cells increased, damaging the original intact tissue structure, which were confirmed by SEM and optical microscopy. Compared with the untreated ones, the frost production, free water, and TVB-N of the samples with 1.5% CH decreased during 1, 3, 5, and 7 cycles, and were reduced by 23.80%, 32.21%, 30.33%, and 52.10% by the 7th cycle. The WHC and texture properties showed an increasing trend during the freeze-thaw cycles. Therefore, the chitosan ice coating effectively inhibited the quality deterioration by reducing water loss, the occurrence of ice crystallization and recrystallization, and the pores of the samples.
Collapse
Affiliation(s)
- Lixin Chang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ying Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xue Bai
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| | - Weidong Xu
- Office of Student Work, Heilongjiang Agricultural Engineering Vocational College, Harbin 150088, China
- Correspondence: (X.X.); (W.X.); Tel.: +86-451-55191289 (X.X.); +86-451-86700713 (W.X.)
| |
Collapse
|