1
|
Ma Z, Kim YM, Howard EW, Feng X, Kosanke SD, Yang S, Jiang Y, Parris AB, Cao X, Li S, Yang X. DMBA promotes ErbB2‑mediated carcinogenesis via ErbB2 and estrogen receptor pathway activation and genomic instability. Oncol Rep 2018; 40:1632-1640. [PMID: 30015966 PMCID: PMC6072406 DOI: 10.3892/or.2018.6545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Environmental factors, including 7,12‑dimethylbenz[a]anthracene (DMBA) exposure, and genetic predisposition, including ErbB2 overexpression/amplification, have been demonstrated to increase breast cancer susceptibility. Although DMBA‑ and ErbB2‑mediated breast cancers are well‑studied in their respective models, key interactions between environmental and genetic factors on breast cancer risk remain unclear. Therefore, the present study aimed to investigate the effect of DMBA exposure on ErbB2‑mediated mammary tumorigenesis. MMTV‑ErbB2 transgenic mice exposed to DMBA (1 mg) via weekly oral gavage for 6 weeks exhibited significantly enhanced mammary tumor development, as indicated by reduced tumor latency and increased tumor multiplicity compared with control mice. Whole mount analysis of premalignant mammary tissues from 15‑week‑old mice revealed increased ductal elongation and proliferative index in DMBA‑exposed mice. Molecular analyses of premalignant mammary tissues further indicated that DMBA exposure enhanced epidermal growth factor receptor (EGFR)/ErbB2 and estrogen receptor (ER) signaling, which was associated with increased mRNA levels of EGFR/ErbB2 family members and ER‑targeted genes. Furthermore, analysis of tumor karyotypes revealed that DMBA‑exposed tumors displayed more chromosomal alterations compared with control tumors, implicating DMBA‑induced chromosomal instability in tumor promotion in this model. Together, the data suggested that DMBA‑induced deregulation of EGFR/ErbB2‑ER pathways plays a critical role in the enhanced chromosomal instability and promotion of ErbB2‑mediated mammary tumorigenesis. The study highlighted gene‑environment interactions that may increase risk of breast cancer, which is a critical clinical issue.
Collapse
Affiliation(s)
- Zhikun Ma
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Young Mi Kim
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xiaoshan Feng
- Department of Oncology, First Affiliated Hospital of Henan University of Sciences and Technology, Luoyang, Henan 471500, P.R. China
| | - Stanley D Kosanke
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Xia Cao
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Xiaohe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Felts SJ, Van Keulen VP, Hansen MJ, Bell MP, Allen K, Belachew AA, Vile RG, Cunningham JM, Hoskin TL, Pankratz VS, Pease LR. Widespread Non-Canonical Epigenetic Modifications in MMTV-NeuT Breast Cancer. Neoplasia 2016; 17:348-57. [PMID: 25925377 PMCID: PMC4415121 DOI: 10.1016/j.neo.2015.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 11/26/2022] Open
Abstract
Breast tumors in (FVB × BALB-NeuT) F1 mice have characteristic loss of chromosome 4 and sporadic loss or gain of other chromosomes. We employed the Illumina GoldenGate genotyping platform to quantitate loss of heterozygosity (LOH) across the genome of primary tumors, revealing strong biases favoring chromosome 4 alleles from the FVB parent. While allelic bias was not observed on other chromosomes, many tumors showed concerted LOH (C-LOH) of all alleles of one or the other parent on sporadic chromosomes, a pattern consistent with cytogenetic observations. Surprisingly, comparison of LOH in tumor samples relative to normal unaffected tissues from these animals revealed significant variegated (stochastic) deviations from heterozygosity (V-LOH) in every tumor genome. Sequence analysis showed expected changes in the allelic frequency of single nucleotide polymorphisms (SNPs) in cases of C-LOH. However, no evidence of LOH due to mutations, small deletions, or gene conversion at the affected SNPs or surrounding DNA was found at loci with V-LOH. Postulating an epigenetic mechanism contributing to V-LOH, we tested whether methylation of template DNA impacts allele detection efficiency using synthetic oligonucleotide templates in an assay mimicking the GoldenGate genotyping format. Methylated templates were systematically over-scored, suggesting that the observed patterns of V-LOH may represent extensive epigenetic DNA modifications across the tumor genomes. As most of the SNPs queried do not contain standard (CpG) methylation targets, we propose that widespread, non-canonical DNA modifications occur during Her2/neuT-driven tumorigenesis.
Collapse
Affiliation(s)
- Sara J Felts
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | - Michael J Hansen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Michael P Bell
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kathleen Allen
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alem A Belachew
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Richard G Vile
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - V Shane Pankratz
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
3
|
Quan L, Dittmar A, Zhou Y, Hutson A, Stassen APM, Demant P. Susceptibility loci affecting ERBB2/neu-induced mammary tumorigenesis in mice. Genes Chromosomes Cancer 2012; 51:631-43. [PMID: 22419448 DOI: 10.1002/gcc.21949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/19/2012] [Accepted: 01/25/2012] [Indexed: 02/05/2023] Open
Abstract
Twenty percent of breast cancers exhibit amplification or overexpression of ERBB2/neu and a poor prognosis. As the susceptibility genes controlling ERBB2 tumorgenesis are unknown, in a genetic mapping project we crossed transgenic mice expressing the neu oncogene under control of MMTV promoter with recombinant congenic (RC) strains, which provided a high mapping power. RC strains differed considerably in tumor latency (P = 0.0002), suggesting a strong genetic control of tumor development. Linkage analysis in neu-transgene carrying F2 hybrids between the most susceptible and most resistant RC strain revealed three mammary tumor susceptibility (Mts) loci with main effects, Mts1 (chr. 4), Mts2 (chr. 10), Mts3 (chr. 19), and two interacting loci Mts4 (chr.6) and Mts5 (chr. 8), significantly affecting mammary tumor latency. Suggestive significance levels indicated control of tumor numbers by Mts1 alone and in interaction with Mts5, and by two additional interacting loci on chromosomes 1 and 8. These loci combined explain to a large extent the tumor latency and number in individual F2 mouse. We also identified a suggestive locus on chromosome 17 controls metastasis to the lung. The loci Mts1, Mts1b, and Mts3 are located in the Naad4-4,5 and Naad19-2 LOH-regions of neu-induced mammary tumors, corresponding to the frequent human breast cancer LOH-regions 1p34/1p36, and 10q25, respectively. These results expand the knowledge of ERBB2 tumorigenesis and point to a combined control of specific tumor phenotypes by germ-line polymorphisms and somatic alterations.
Collapse
Affiliation(s)
- Lei Quan
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | | | |
Collapse
|
4
|
Loci controlling lymphocyte production of interferon c after alloantigen stimulation in vitro and their co-localization with genes controlling lymphocyte infiltration of tumors and tumor susceptibility. Cancer Immunol Immunother 2011; 59:203-13. [PMID: 19655140 PMCID: PMC2776939 DOI: 10.1007/s00262-009-0739-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 07/02/2009] [Indexed: 12/11/2022]
Abstract
Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2pz) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2b) or BALB/cHeA (H2d) mice, or by ConA. IFNγ production in MLCs of individual (O20 × OcB-9)F2 mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.
Collapse
|
5
|
Benson JD, Chen YNP, Cornell-Kennon SA, Dorsch M, Kim S, Leszczyniecka M, Sellers WR, Lengauer C. Validating cancer drug targets. Nature 2006; 441:451-6. [PMID: 16724057 DOI: 10.1038/nature04873] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A cancer drug target is only truly validated by demonstrating that a given therapeutic agent is clinically effective and acts through the target against which it was designed. Nevertheless, it is desirable to declare an early-stage drug target as 'validated' before investing in a full-scale drug discovery programme dedicated to it. Although the outcome of validation studies can guide cancer research programmes, strictly defined universal validation criteria have not been established.
Collapse
Affiliation(s)
- John D Benson
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|