1
|
Dai Y, Kawaguchi T, Nishio M, Otani J, Tashiro H, Terai Y, Sasaki R, Maehama T, Suzuki A. The TIGD5 gene located in 8q24 and frequently amplified in ovarian cancers is a tumor suppressor. Genes Cells 2022; 27:633-642. [PMID: 36054307 DOI: 10.1111/gtc.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 01/27/2023]
Abstract
Ovarian cancer (OC) is the fifth most common cancer of female cancer death and leading cause of lethal gynecological cancers. High-grade serous ovarian carcinoma (HGSOC) is an aggressive malignancy that is rapidly fatal. Many cases of OC show amplification of the 8q24 chromosomal region, which contains the well-known oncogene MYC. Although MYC amplification is more frequently observed in OCs than in other tumor types, due to the large size of the 8q24 amplicon, the functions of the vast majority of the genes it contains are still unknown. The TIGD5 gene is located at 8q24.3 and encodes a nuclear protein with a DNA-binding motif, but its precise role is obscure. We show here that TIGD5 often co-amplifies with MYC in OCs, and that OC patients with high TIGD5 mRNA expression have a poor prognosis. However, we also found that TIGD5 overexpression in ovarian cancer cell lines unexpectedly suppressed their growth, adhesion, and invasion in vitro, and also reduced tumor growth in xenografted nude mice in vivo. Thus, our work suggests that TIGD5 may in fact operate as a tumor suppressor in OCs rather than as an oncogene.
Collapse
Affiliation(s)
- Yuntao Dai
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tetsuya Kawaguchi
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Nishio
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Junji Otani
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hironori Tashiro
- Department of Health Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Akira Suzuki
- Division of Molecular and Cellular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Liu CL, Yuan RH, Mao TL. The Molecular Landscape Influencing Prognoses of Epithelial Ovarian Cancer. Biomolecules 2021; 11:998. [PMID: 34356623 PMCID: PMC8301761 DOI: 10.3390/biom11070998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the major increasing lethal malignancies of the gynecological tract, mostly due to delayed diagnosis and chemoresistance, as well as its very heterogeneous genetic makeup. Application of high-throughput molecular technologies, gene expression microarrays, and powerful preclinical models has provided a deeper understanding of the molecular characteristics of EOC. Therefore, molecular markers have become a potent tool in EOC management, including prediction of aggressiveness, prognosis, and recurrence, and identification of novel therapeutic targets. In addition, biomarkers derived from genomic/epigenomic alterations (e.g., gene mutations, copy number aberrations, and DNA methylation) enable targeted treatment of affected signaling pathways in advanced EOC, thereby improving the effectiveness of traditional treatments. This review outlines the molecular landscape and discusses the impacts of biomarkers on the detection, diagnosis, surveillance, and therapeutic targets of EOC. These findings focus on the necessity to translate these potential biomarkers into clinical practice.
Collapse
Affiliation(s)
- Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ray-Hwang Yuan
- Department of Surgery, National Taiwan University Hospital, Taipei 10002, Taiwan;
- Department of Surgery, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Tsui-Lien Mao
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei 10002, Taiwan
| |
Collapse
|
3
|
Li BB, Wang B, Zhu CM, Tang D, Pang J, Zhao J, Sun CH, Qiu MJ, Qian ZR. Cyclin-dependent kinase 7 inhibitor THZ1 in cancer therapy. Chronic Dis Transl Med 2019; 5:155-169. [PMID: 31891127 PMCID: PMC6926117 DOI: 10.1016/j.cdtm.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Indexed: 12/11/2022] Open
Abstract
Current cancer therapies have encountered adverse response due to poor therapeutic efficiency, severe side effects and acquired resistance to multiple drugs. Thus, there are urgent needs for finding new cancer-targeted pharmacological strategies. In this review, we summarized the current understanding with THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), which demonstrated promising anti-tumor activity against different cancer types. By introducing the anti-tumor behaviors and the potential targets for different cancers, this review aims to provide more effective approaches to CDK7 inhibitor-based therapeutic agents and deeper insight into the diverse tumor proliferation mechanisms.
Collapse
Affiliation(s)
- Bin-Bin Li
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bo Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Di Tang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jun Pang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chun-Hui Sun
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), College de France, Paris 75005, France
| | - Miao-Juan Qiu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
4
|
Zeng M, Kwiatkowski NP, Zhang T, Nabet B, Xu M, Liang Y, Quan C, Wang J, Hao M, Palakurthi S, Zhou S, Zeng Q, Kirschmeier PT, Meghani K, Leggett AL, Qi J, Shapiro GI, Liu JF, Matulonis UA, Lin CY, Konstantinopoulos PA, Gray NS. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. eLife 2018; 7:39030. [PMID: 30422115 PMCID: PMC6251623 DOI: 10.7554/elife.39030] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/11/2018] [Indexed: 12/19/2022] Open
Abstract
High-grade serous ovarian cancer is characterized by extensive copy number alterations, among which the amplification of MYC oncogene occurs in nearly half of tumors. We demonstrate that ovarian cancer cells highly depend on MYC for maintaining their oncogenic growth, indicating MYC as a therapeutic target for this difficult-to-treat malignancy. However, targeting MYC directly has proven difficult. We screen small molecules targeting transcriptional and epigenetic regulation, and find that THZ1 - a chemical inhibiting CDK7, CDK12, and CDK13 - markedly downregulates MYC. Notably, abolishing MYC expression cannot be achieved by targeting CDK7 alone, but requires the combined inhibition of CDK7, CDK12, and CDK13. In 11 patient-derived xenografts models derived from heavily pre-treated ovarian cancer patients, administration of THZ1 induces significant tumor growth inhibition with concurrent abrogation of MYC expression. Our study indicates that targeting these transcriptional CDKs with agents such as THZ1 may be an effective approach for MYC-dependent ovarian malignancies.
Collapse
Affiliation(s)
- Mei Zeng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Nicholas P Kwiatkowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Behnam Nabet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Mousheng Xu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Yanke Liang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Chunshan Quan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Sangeetha Palakurthi
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
| | - Shan Zhou
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
| | - Qing Zeng
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
| | - Paul T Kirschmeier
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, United States
| | - Khyati Meghani
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Alan L Leggett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Jun Qi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Medicine, Harvard Medical School, Boston, United States
| | - Geoffrey I Shapiro
- Early Drug Development Center, Dana-Farber Cancer Institute, Boston, United States
| | - Joyce F Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Charles Y Lin
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | | | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| |
Collapse
|
5
|
Abstract
Long non-coding RNAs (lncRNAs) refer to functional cellular RNAs molecules longer than 200 nucleotides in length. Unlike microRNAs, which have been widely studied, little is known about the enigmatic role of lncRNAs. However, lncRNAs have motivated extensively attention in the past few years and are emerging as potentially important regulators in pathological processes, including in cancer. We now understand that lncRNAs play role in cancer through their interactions with DNA, protein, and RNA in many instances. Moreover, accumulating evidence has recognized that large classes of lncRNAs are functional for ovarian cancer. Nevertheless, the biological phenomena and molecular mechanisms of lncRNAs in ovarian cancer remain to be better identified. In this review, we outline the dysregulated expression of lncRNAs and their potential clinical implications in ovarian cancer, with a particular emphasis on discussing the well characterized mechanisms underlying lncRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Lei Zhan
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| | - Jun Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, 230032 China
| | - Bing Wei
- Department of gynecology and obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601 China
| |
Collapse
|
6
|
Dong A, Lu Y, Lu B. Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice. J Cancer 2016; 7:1441-51. [PMID: 27471560 PMCID: PMC4964128 DOI: 10.7150/jca.15556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
Ovarian carcinoma is the most lethal gynecological malignancy worldwide. Recent advance in genomic/epigenomic researches will impact on our prevention, detection and intervention on ovarian carcinoma. Detection of germline mutations in BRCA1/BRCA2, mismatch repair genes, and other genes in the homologous recombination/DNA repair pathway propelled the genetic surveillance of most hereditary ovarian carcinomas. Germline or somatic mutations in SMARCA4 in familial and sporadic small cell carcinoma of the ovary, hypercalcemia type, lead to our recognition on this rare aggressive tumor as a new entity of the atypical teratoma/rhaboid tumor family. Genome-wide association studies have identified many genetic variants that will contribute to the evaluation of ovarian carcinoma risk and prognostic prediction. Whole exome sequencing and whole genome sequencing discovered rare mutations in other drive mutations except p53, but demonstrated the presence of high genomic heterogeneity and adaptability in the genetic evolution of high grade ovarian serous carcinomas that occurs in cancer progression and chemotherapy. Gene mutations, copy number aberrations and DNA methylations provided promising biomarkers for the detection, diagnosis, prognosis, therapy response and targets of ovarian cancer. These findings underscore the necessity to translate these potential biomarkers into clinical practice.
Collapse
Affiliation(s)
- Anliang Dong
- 1. Women's Hospital & Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yan Lu
- 1. Women's Hospital & Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Bingjian Lu
- 2. Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, China
| |
Collapse
|
7
|
Miyamoto I, Kasamatsu A, Yamatoji M, Nakashima D, Saito K, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. Kinesin family member 14 in human oral cancer: A potential biomarker for tumoral growth. Biochem Biophys Rep 2015; 3:26-31. [PMID: 29124166 PMCID: PMC5668670 DOI: 10.1016/j.bbrep.2015.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/10/2015] [Accepted: 07/14/2015] [Indexed: 12/13/2022] Open
Abstract
Kinesin family member 14 (KIF14), a microtubule-based motor protein, plays an important role in chromosomal segregation, congression, and alignment. Considerable evidence indicates that KIF14 is involved in cytokinesis, although little is known about its role in oral squamous cell carcinomas (OSCCs). In the current study, we functionally and clinically investigated KIF14 expression in patients with OSCC. Quantitative reverse transcriptase–polymerase chain reaction and immunoblotting analyses were used to assess the KIF14 regulatory mechanism in OSCC. Immunohistochemistry (IHC) was performed to analyze the correlation between KIF14 expression and clinical behavior in 104 patients with OSCC. A KIF14 knockdown model of OSCC cells (shKIF14 cells) was used for functional experiments. KIF14 expression was up-regulated significantly (P<0.05) in OSCCs compared with normal counterparts in vitro and in vivo. In addition, shKIF14 cells inhibited cellular proliferation compared with control cells by cell-cycle arrest at the G2/M phase through up-regulation of G2 arrest-related proteins (p-Cdc2 and cyclin B1). As expected, IHC data from primary OSCCs showed that KIF14-positive patients exhibited significantly (P<0.05) more larger tumors compared with KIF14-negative patients. The current results suggest for the first time that KIF14 is an indicator of tumoral size in OSCCs and that KIF14 might be a potential therapeutic target for development of new treatments for OSCCs.
Collapse
Affiliation(s)
- Isao Miyamoto
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masanobu Yamatoji
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Morihiro Higo
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Masashi Shiiba
- Department of Clinical Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.,Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| |
Collapse
|
8
|
Thériault BL, Cybulska P, Shaw PA, Gallie BL, Bernardini MQ. The role of KIF14 in patient-derived primary cultures of high-grade serous ovarian cancer cells. J Ovarian Res 2014; 7:123. [PMID: 25528264 PMCID: PMC4302703 DOI: 10.1186/s13048-014-0123-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/12/2014] [Indexed: 02/07/2023] Open
Abstract
Objective Previously, it has been shown that KIF14 mRNA is overexpressed in ovarian cancer (OvCa), regardless of histological subtype. KIF14 levels are independently predictive of poor outcome and increased rates of recurrence in serous OvCa patients. Furthermore, it has been shown that KIF14 also controls the in vivo tumorigenicity of OvCa cell lines. In this study, we evaluate the potential of KIF14 as a therapeutic target through selective inhibition of KIF14 in primary high-grade serous patient-derived OvCa cells. Methods To assess the dependence of primary serous OvCa cultures on KIF14, protein levels in 11 prospective high grade serous ovarian cancer samples were increased (KIF14 overexpression by transfection) or decreased (anti-KIF14 shRNA) in vitro, and proliferative capacity, anchorage independence and xenograft growth were assessed. Results Seven of eleven samples demonstrated increased/decreased in vitro proliferation in response to KIF14 overexpression/knockdown, respectively. When examining in vitro tumorigenicity (colony formation) and in vivo growth (subcutaneous xenografts) in response to KIF14 manipulation, none of the samples demonstrated growth in soft agar (11 samples), or xenograft growth (4 samples). Conclusions Although primary high-grade serous OvCa cells may depend on KIF14 for in vitro proliferation we were unable to demonstrate a role for KIF14 on tumorigenicity or develop an in vivo model for assessment. We have, however developed an effective in vitro method to evaluate the effect of target gene manipulation on the proliferative capacity of primary OvCa cultures. Electronic supplementary material The online version of this article (doi:10.1186/s13048-014-0123-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
| | - Paulina Cybulska
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada. .,Division of Gynecological Oncology, University Health Network, Toronto, ON, Canada.
| | - Patricia A Shaw
- Department of Pathology, University Health Network, Toronto, ON, Canada. .,Princess Margaret Hospital, University Health Network Tissue Bank, Toronto, ON, Canada.
| | - Brenda L Gallie
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Division of Visual Science, Toronto Western Hospital Research Institute, Toronto, ON, Canada. .,Departments of Medical Biophysics, Molecular Genetics, and Ophthalmology, University of Toronto, Toronto, ON, Canada.
| | - Marcus Q Bernardini
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada. .,Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada. .,Division of Gynecological Oncology, University Health Network, Toronto, ON, Canada. .,Princess Margaret Cancer Centre, Rm M700, 610 University Ave, Toronto, Ontario, M5G 2M9, Canada.
| |
Collapse
|
9
|
Malhas AN, Vaux DJ. Nuclear envelope invaginations and cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:523-35. [PMID: 24563364 DOI: 10.1007/978-1-4899-8032-8_24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The nuclear envelope (NE) surrounds the nucleus and separates it from the cytoplasm. The NE is not a passive structural component, but rather contributes to various cellular processes such as genome organization, transcription, signaling, and stress responses. Although the NE is mostly a smooth surface, it also forms invaginations that can reach deep into the nucleoplasm and may even traverse the nucleus completely. Cancer cells are generally characterized by irregularities and invaginations of the NE that are of diagnostic and prognostic significance. In the current chapter, we describe the link between nuclear invaginations and irregularities with cancer and explore possible mechanistic roles they might have in tumorigenesis.
Collapse
Affiliation(s)
- Ashraf N Malhas
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK,
| | | |
Collapse
|
10
|
A distinctive ovarian cancer molecular subgroup characterized by poor prognosis and somatic focal copy number amplifications at chromosome 19. Gynecol Oncol 2013; 132:343-50. [PMID: 24321399 DOI: 10.1016/j.ygyno.2013.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/23/2013] [Accepted: 11/30/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVE High-grade serous ovarian cancer (HGS-OvCa), the most common epithelial ovarian cancer, is very complex and heterogeneous at the molecular level. The identification of intrinsic HGS-OvCa subgroups characterized by specific molecular alterations and aggressive behavior could improve patient treatment. METHODS High-resolution copy number data for 560 HGS-OvCa patients and gene expression data obtained from the TCGA database were analyzed to identify distinct molecular subgroups based on significant focal somatic copy number alterations (SCNAs). RESULTS Using unsupervised consensus clustering, a subgroup accounting for 26.8% of the patients (150/560 patients) characterized by focal somatic copy number amplification at chromosome 19 was identified. The subgroup was independently associated by multivariate Cox regression analysis with poor overall (HR, 1.61; P = 0.001) and progression-free survival (HR, 1.36; P = 0.036). The specific focal SCNA locations were 19p13.2, 19p13.12, 19p13.11, 19q12, 19q13.12, and 19q13.2. The differential gene expression signature of the subgroup compared with that of the remaining patients also suggested that chromosome 19 was the mainly amplified region. The clinical significances of subgroup 2 were validated in independent data sets using the gene expression signature characteristics. In addition, the subgroup had a tendency toward mutual exclusivity with patients with BRCA1/2 mutations. The most significantly altered pathway of the subgroup was the cyclin and cell cycle regulation pathway. CONCLUSION A unique molecular subgroup associated with poor survival was identified based on focal SCNAs and could aid the further molecular classification of ovarian cancers.
Collapse
|
11
|
Buffart TE, Carvalho B, van Grieken NCT, van Wieringen WN, Tijssen M, Kranenbarg EMK, Verheul HMW, Grabsch HI, Ylstra B, van de Velde CJH, Meijer GA. Losses of chromosome 5q and 14q are associated with favorable clinical outcome of patients with gastric cancer. Oncologist 2012; 17:653-62. [PMID: 22531355 DOI: 10.1634/theoncologist.2010-0379] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To improve the clinical outcome of patients with gastric cancer, intensified combination strategies are currently in clinical development, including combinations of more extensive surgery, (neo)adjuvant chemotherapy, and radiotherapy. The present study used DNA copy number profiling to identify subgroups of patients with different clinical outcomes. We hypothesize that, by identification of subgroups, individual treatment strategies can be selected to improve clinical outcome and to reduce unnecessary treatment toxicity for patients with gastric cancer. EXPERIMENTAL DESIGN DNA from 206 gastric cancer patients was isolated and analyzed by genomewide array comparative genomic hybridization. DNA copy number profiles were correlated with lymph node status and patient survival. In addition, heat shock protein 90 (HSP90) expression was analyzed and correlated with survival in 230 gastric cancer patients. RESULTS Frequent (>20%) DNA copy number gains and losses were observed on several chromosomal regions. Losses on 5q11.2-q31.3 and 14q32.11-q32.33 (14% of patients) were correlated with good clinical outcome in univariate and multivariate analyses, with a median disease-free survival interval of 9.2 years. In addition, loss of expression of HSP90, located on chromosome 14q32.2, was correlated with better patient survival. CONCLUSION Genomewide DNA copy number profiling allowed the identification of a subgroup of gastric cancer patients, marked by losses on chromosomes 5q11.2-q31.3 and 14q32.11-q32.33 or low HSP90 protein expression, with an excellent clinical outcome after surgery alone. We hypothesize that this subgroup of patients most likely will not benefit from (neo)adjuvant systemic treatment and/or radiotherapy, whereas anti-HSP90 therapy may have clinical potential in patients with HSP90-expressing gastric cancer, pending validation in an independent dataset.
Collapse
Affiliation(s)
- Tineke E Buffart
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Molecular requirements for transformation of fallopian tube epithelial cells into serous carcinoma. Neoplasia 2012; 13:899-911. [PMID: 22028616 DOI: 10.1593/neo.11138] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 12/13/2022] Open
Abstract
Although controversial, recent studies suggest that serous ovarian carcinomas may arise from fallopian tube fimbria rather than ovarian surface epithelium. We developed an in vitro model for serous carcinogenesis in which primary human fallopian tube epithelial cells (FTECs) were exposed to potentially oncogenic molecular alterations delivered by retroviral vectors. To more closely mirror in vivo conditions, transformation of FTECs was driven by the positive selection of growth-promoting alterations rather antibiotic selection. Injection of the transformed FTEC lines in SCID mice resulted in xenografts with histologic and immunohistochemical features indistinguishable from poorly differentiated serous carcinomas. Transcriptional profiling revealed high similarity among the transformed and control FTEC lines and patient-derived serous ovarian carcinoma cells and was used to define a malignancy-related transcriptional signature. Oncogene-treated FTEC lines were serially analyzed using quantitative reverse transcription-polymerase chain reaction and immunoblot analysis to identify oncogenes whose expression was subject to positive selection. The combination of p53 and Rb inactivation (mediated by SV40 T antigen), hTERT expression, and oncogenic C-MYC and HRAS accumulation showed positive selection during transformation. Knockdown of each of these selected components resulted in significant growth inhibition of the transformed cell lines that correlated with p27 accumulation. The combination of SV40 T antigen and hTERT expression resulted in immortalized cells that were nontumorigenic in mice, whereas forced expression of a dominant-negative p53 isoform (p53DD) and hTERT resulted in senescence. Thus, our investigation supports the tubal origin of serous carcinoma and provides a dynamic model for studying early molecular alterations in serous carcinogenesis.
Collapse
|
13
|
Helfand BT, Wang Y, Pfleghaar K, Shimi T, Taimen P, Shumaker DK. Chromosomal regions associated with prostate cancer risk localize to lamin B-deficient microdomains and exhibit reduced gene transcription. J Pathol 2012; 226:735-45. [PMID: 22025297 DOI: 10.1002/path.3033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/06/2011] [Accepted: 10/17/2011] [Indexed: 12/20/2022]
Abstract
The lamins are major determinants of nuclear shape and chromatin organization and these features are frequently altered in prostate cancer (CaP). Human CaP cell lines frequently have nuclear lobulations, which are enriched in A-type lamins but lack B-type lamins and have been defined as lamin B-deficient microdomains (LDMDs). LDMD frequency is correlated with CaP cell line aggressiveness and increased cell motility. In addition, LNCaP cells grown in the presence of dihydrotestosterone (DHT) show an increased frequency of LDMDs. The LDMDs are enriched in activated RNA polymerase II (Pol IIo) and androgen receptor (AR) and A-type lamins form an enlarged meshwork that appears to co-align with chromatin fibres and AR. Furthermore, fluorescence in situ hybridization and comparative genomic hybridization demonstrated that chromosomal regions associated with CaP susceptibility are preferentially localized to LDMDs. Surprisingly, these regions lack histone marks for transcript elongation and exhibit reduced BrU incorporation, suggesting that Pol II is stalled within LDMDs. Real-time PCR of genes near androgen response elements (AREs) was used to compare transcription between cells containing LDMDs and controls. Genes preferentially localized to LDMDs showed significantly decreased expression, while genes in the main nuclear body were largely unaffected. Furthermore, LDMDs were observed in human CaP tissue and the frequency was correlated with increased Gleason grade. These results imply that lamins are involved in chromatin organization and Pol II transcription, and provide insights into the development and progression of CaP.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | |
Collapse
|
14
|
Thériault BL, Pajovic S, Bernardini MQ, Shaw PA, Gallie BL. Kinesin family member 14: an independent prognostic marker and potential therapeutic target for ovarian cancer. Int J Cancer 2011; 130:1844-54. [PMID: 21618518 DOI: 10.1002/ijc.26189] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 05/02/2011] [Indexed: 02/06/2023]
Abstract
The novel oncogene KIF14 (kinesin family member 14) shows genomic gain and overexpression in many cancers including OvCa (ovarian cancer). We discovered that expression of the mitotic kinesin KIF14 is predictive of poor outcome in breast and lung cancers. We now determine the prognostic significance of KIF14 expression in primary OvCa tumors, and evaluate KIF14 action on OvCa cell tumorigenicity in vitro. Gene-specific multiplex PCR and real-time QPCR were used to measure KIF14 genomic (109 samples) and mRNA levels (122 samples) in OvCa tumors. Association of KIF14 with clinical variables was studied using Kaplan-Meier survival and Cox regression analyses. Cellular effects of KIF14 overexpression (stable transfection) and inhibition (stable shRNA knockdown) were studied by proliferation (cell counts), survival (Annexin V immunocytochemistry) and colony formation (soft-agar growth). KIF14 genomic gain (>2.6 copies) was present in 30% of serous OvCas, and KIF14 mRNA was elevated in 91% of tumors versus normal epithelium. High KIF14 in tumors independently predicted for worse outcome (p = 0.03) with loss of correlation with proliferation marker expression and increased rates of recurrence. Overexpression of KIF14 in OvCa cell lines increased proliferation and colony formation (p < 0.01), whereas KIF14 knockdown induced apoptosis and dramatically reduced colony formation (p < 0.05). Our findings indicate that KIF14 mRNA is an independent prognostic marker in serous OvCa. Dependence of OvCa cells on KIF14 for maintenance of in vitro colony formation suggests a role of KIF14 in promoting a tumorigenic phenotype, beyond its known role in proliferation.
Collapse
Affiliation(s)
- Brigitte L Thériault
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
15
|
Recognition of potential predictive markers for diagnosis in Korean serous ovarian cancer patients at stage IIIc using array comparative genomic hybridization with high resolution. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
This content presents a review of molecular pathology of ovarian cancer. The authors present key molecular features for high-grade and low-grade serous carcinomas, endometrioid carcinomas, clear cell carcinomas, and mucinous carcinomas. Cell lineage, mutation and gene expression, pathway alterations, risk factors, prognostic markers, and treatment targets are discussed.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology, University of Calgary and Calgary Laboratory Services, Foothills Medical Centre, 1403 29 ST NW, Calgary, Alberta, Canada T2N 2T9.
| | - David Huntsman
- Faculty of Medicine, Department of Pathology and Laboratory Medicine, University of British Columbia, BC Cancer Agency, #3427-600 West 10th Avenue, Vancouver, British Columbia V5Z 4E6, Canada
| |
Collapse
|
17
|
Bapat SA, Krishnan A, Ghanate AD, Kusumbe AP, Kalra RS. Gene expression: protein interaction systems network modeling identifies transformation-associated molecules and pathways in ovarian cancer. Cancer Res 2010; 70:4809-19. [PMID: 20530682 DOI: 10.1158/0008-5472.can-10-0447] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multiple, dissimilar genetic defects in cancers of the same origin contribute to heterogeneity in tumor phenotypes and therapeutic responses of patients, yet the associated molecular mechanisms remain elusive. Here, we show at the systems level that serous ovarian carcinoma is marked by the activation of interconnected modules associated with a specific gene set that was derived from three independent tumor-specific gene expression data sets. Network prediction algorithms combined with preestablished protein interaction networks and known functionalities affirmed the importance of genes associated with ovarian cancer as predictive biomarkers, besides "discovering" novel ones purely on the basis of interconnectivity, whose precise involvement remains to be investigated. Copy number alterations and aberrant epigenetic regulation were identified and validated as significant influences on gene expression. More importantly, three functional modules centering on c-Myc activation, altered retinoblastoma signaling, and p53/cell cycle/DNA damage repair pathways have been identified for their involvement in transformation-associated events. Further studies will assign significance to and aid the design of a panel of specific markers predictive of individual- and tumor-specific pathways. In the parlance of this emerging field, such networks of gene-hub interactions may define personalized therapeutic decisions.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex and Institute of Bioinformatics & Biotechnology, Pune University, Pune, India.
| | | | | | | | | |
Collapse
|
18
|
Thomassen M, Jochumsen KM, Mogensen O, Tan Q, Kruse TA. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival. Genes Chromosomes Cancer 2009; 48:711-24. [PMID: 19441089 DOI: 10.1002/gcc.20676] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ovarian cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth, whereas others are causal for metastasis and recurrence. By using publicly available data sets, we have investigated the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1-4 consecutive cytogenetic bands identified regions with increased expression for chromosome 5q12-14, and a very large region of chromosome 7 with the strongest signal at 7p15-13 among tumors from short-living patients. Reduced gene expression was identified at 4q26-32, 6p12-q15, 9p21-q32, and 11p14-11. We summarized mutation load in these regions by a combined mutation score that is statistical significantly associated to survival by analysis in the data sets used for identification of the regions. Furthermore, the prognostic value of the combined mutation score was validated in an independent large data set using death (P = 0.015) and recurrence (P = 0.002) as outcome. The combined mutation score is strongly associated to upregulation of several growth factor pathways.
Collapse
Affiliation(s)
- Mads Thomassen
- Department of Biochemistry, Pharmacology, and Genetics, Odense University Hospital, Odense, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G, Tothill R, Okamoto A, Raeder MB, Harnett P, Lade S, Akslen LA, Tinker AV, Locandro B, Alsop K, Chiew YE, Traficante N, Fereday S, Johnson D, Fox S, Sellers W, Urashima M, Salvesen HB, Meyerson M, Bowtell D. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009. [PMID: 19193619 DOI: 10.1158/1078-0432.ccr-08-1564] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. EXPERIMENTAL DESIGN Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. RESULTS Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. CONCLUSIONS We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.
Collapse
|
20
|
Etemadmoghadam D, deFazio A, Beroukhim R, Mermel C, George J, Getz G, Tothill R, Okamoto A, Raeder MB, AOCS Study Group, Harnett P, Lade S, Akslen LA, Tinker A, Locandro B, Alsop K, Chiew YE, Traficante N, Fereday S, Johnson D, Fox S, Sellers W, Urashima M, Salvesen HB, Meyerson M, Bowtell D. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res 2009; 15:1417-27. [PMID: 19193619 PMCID: PMC2670486 DOI: 10.1158/1078-0432.ccr-08-1564] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. EXPERIMENTAL DESIGN Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. RESULTS Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. CONCLUSIONS We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.
Collapse
Affiliation(s)
- Dariush Etemadmoghadam
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anna deFazio
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, New South Wales 2145, Australia
| | - Rameen Beroukhim
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Craig Mermel
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Joshy George
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Gaddy Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Richard Tothill
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Aikou Okamoto
- Jikei University School of Medicine 3-25-8, Nishi-Shimbashi, Minatoku, Tokyo, 105-8461 Japan
| | - Maria B Raeder
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
| | - AOCS Study Group
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, New South Wales 2145, Australia
- Queensland Institute of Medical Research, Brisbane, Queensland 4006, Australia
| | - Paul Harnett
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, New South Wales 2145, Australia
| | - Stephen Lade
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Lars A Akslen
- The Gade Institute, The University of Bergen, N-5021 Bergen, Norway
| | - Anna Tinker
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Bianca Locandro
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Yoke-Eng Chiew
- Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, New South Wales 2145, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Daryl Johnson
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - Stephen Fox
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
| | - William Sellers
- Novartis Institutes for Biomedical Research, 250 Mass Ave, Cambridge, MA 02139, USA
| | - Mitsuyoshi Urashima
- Jikei University School of Medicine 3-25-8, Nishi-Shimbashi, Minatoku, Tokyo, 105-8461 Japan
| | - Helga B Salvesen
- Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway
- Institute of Clinical Medicine, The University of Bergen, N-5021 Bergen, Norway
| | - Matthew Meyerson
- Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David Bowtell
- Peter MacCallum Cancer Centre, Locked Bag 1, A’Beckett St, Melbourne, Victoria 8006, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
Collaborators
D Bowtell, G Chenevix-Trench, A Green, P Webb, A deFazio, D Gertig,
Collapse
|
21
|
Abstract
Ovarian carcinomas show more morphological heterogeneity than adenocarcinomas of any other body site. It has recently become clear that the morphologically defined subtypes of ovarian carcinoma are distinct diseases, with different risk factors, molecular events during oncogenesis, likelihood of spread, responses to chemotherapy, and outcomes. This review focuses on molecular abnormalities (in genes expressing BRCA1/2, TP53 and RB1/CCND1/CDKN2A/E2F) found in high-grade serous carcinomas of the ovary, which account for most ovarian cancer deaths. These highly aggressive but chemosensitive tumours are associated with perturbation of molecular pathways leading to genomic instability and extreme mutability and present unique challenges in oncological research and practice.
Collapse
|
22
|
Abstract
Despite the fact that ovarian carcinomas are phenotypically heterogeneous, they can be divided into two main groups with common pathogenetic mechanisms. Based on clinical, pathological and molecular parameters, a relatively large group of tumors can be distinguished with stepwise development from benign precursors and borderline tumors to invasive carcinomas (type I). Depending on the morphological phenotype, characteristic genetic changes can be observed, such as mutations in KRAS and BRAF in serous borderline tumors and low-grade serous carcinomas. Mutations in KRAS are also frequently detected in mucinous borderline tumors and mucinous carcinomas. The group of endometrioid tumors is characterized by mutations in components of the Wnt-signal transduction pathway and PTEN or microsatellite instability. The second large group of tumors (type II) includes tumors with "de novo" development of highly malignant carcinomas such as the conventional (moderately to poorly differentiated) high-grade serous carcinomas, undifferentiated carcinomas and malignant mixed mesodermal tumors. These tumors are associated with frequent mutations in p53 and complex chromosomal alterations. In the future, the combined analysis of morphological parameters, genetic changes, gene-expression profiling and protein data will reveal possible diagnostic and therapeutic targets for ovarian carcinomas.
Collapse
Affiliation(s)
- A Staebler
- Institut für Pathologie, Westfälische Wilhelms-Universität, Domagkstrasse 17, 48149 Münster, Germany.
| | | |
Collapse
|
23
|
Pärssinen J, Kuukasjärvi T, Karhu R, Kallioniemi A. High-level amplification at 17q23 leads to coordinated overexpression of multiple adjacent genes in breast cancer. Br J Cancer 2007; 96:1258-64. [PMID: 17353917 PMCID: PMC2360139 DOI: 10.1038/sj.bjc.6603692] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Increased copy numbers of 17q23 chromosomal region have been shown to occur in different tumour types and to be associated with tumour progression and with poor prognosis. Several genes have earlier been proposed as potential oncogenes at this region largely on the grounds of cell lines studies. In this study, we performed a systematic gene expression survey on 26 primary breast tumours with known 17q23 amplification status by quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The 17q23 amplicon is restricted to an approximately 5 MB region in breast cancer and contains 29 known genes. Our survey revealed a statistically significant (P<0.01) difference between the high level and no amplification groups in a set of eleven genes whereas no difference between the moderate and the non-amplified tumour groups were observed. Interestingly, these 11 genes were located adjacent to one another within a 1.56 Mb core region in which all except one of the genes were overexpressed. These data suggest that only high-level amplification at the 17q23 amplicon core leads to elevated gene expression in breast cancer. Moreover, our results highlight the fact that 17q23 amplicon carries multiple candidate genes and that this may be a more common event in gene amplification than previously thought.
Collapse
Affiliation(s)
- J Pärssinen
- Laboratory of Cancer Genetics, Institute of Medical Technology, Tampere University Hospital and University of Tampere, University of Tampere, Tampere, FIN-33014, Finland
| | - T Kuukasjärvi
- Department of Pathology, Tampere University Hospital, Tampere, FIN-33520, Finland
| | - R Karhu
- Laboratory of Cancer Genetics, Institute of Medical Technology, Tampere University Hospital and University of Tampere, University of Tampere, Tampere, FIN-33014, Finland
| | - A Kallioniemi
- Laboratory of Cancer Genetics, Institute of Medical Technology, Tampere University Hospital and University of Tampere, University of Tampere, Tampere, FIN-33014, Finland
- E-mail:
| |
Collapse
|
24
|
MacKenzie F, Bullock DG, Ratcliffe JG. UK external quality assessment scheme for immunoassays in endocrinology. DER PATHOLOGE 1992; 32 Suppl 2:265-70. [PMID: 1809064 DOI: 10.1007/s00292-011-1488-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UK EQAS provide the UK with a comprehensive system for EQA in endocrinology, as well as in other aspects of clinical chemistry and laboratory medicine. UK EQAS in endocrinology are scientifically designed to yield an objective assessment of participants' performance and stimulate improvements in between-laboratory agreement. The design uses appropriate specimens, based on liquid human serum and prepared with minimal processing and additives in the organising centres to enable detailed study of recovery and other important factors. Target values are validated by reproducibility on repeated distribution and by recovery and parallelism studies. Reports are presented informatively, and emphasise the cumulative scoring system (bias and variance) for performance assessment. Computerised data processing and data presentation form an integral part of these schemes, and a common core computing system is in use throughout these UK EQAS. Participants receive advice and assistance in the interpretation of performance data and, when appropriate, in the resolution of problems.
Collapse
Affiliation(s)
- F MacKenzie
- UK EQAS for Thyroid-related Hormones, Wolfson Research Laboratories, Queen Elizabeth Hospital, Birmingham, UK
| | | | | |
Collapse
|