1
|
Zhou X, Wu H. scHiClassifier: a deep learning framework for cell type prediction by fusing multiple feature sets from single-cell Hi-C data. Brief Bioinform 2024; 26:bbaf009. [PMID: 39831891 PMCID: PMC11744636 DOI: 10.1093/bib/bbaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Single-cell high-throughput chromosome conformation capture (Hi-C) technology enables capturing chromosomal spatial structure information at the cellular level. However, to effectively investigate changes in chromosomal structure across different cell types, there is a requisite for methods that can identify cell types utilizing single-cell Hi-C data. Current frameworks for cell type prediction based on single-cell Hi-C data are limited, often struggling with features interpretability and biological significance, and lacking convincing and robust classification performance validation. In this study, we propose four new feature sets based on the contact matrix with clear interpretability and biological significance. Furthermore, we develop a novel deep learning framework named scHiClassifier based on multi-head self-attention encoder, 1D convolution and feature fusion, which integrates information from these four feature sets to predict cell types accurately. Through comprehensive comparison experiments with benchmark frameworks on six datasets, we demonstrate the superior classification performance and the universality of the scHiClassifier framework. We further assess the robustness of scHiClassifier through data perturbation experiments and data dropout experiments. Moreover, we demonstrate that using all feature sets in the scHiClassifier framework yields optimal performance, supported by comparisons of different feature set combinations. The effectiveness and the superiority of the multiple feature set extraction are proven by comparison with four unsupervised dimensionality reduction methods. Additionally, we analyze the importance of different feature sets and chromosomes using the "SHapley Additive exPlanations" method. Furthermore, the accuracy and reliability of the scHiClassifier framework in cell classification for single-cell Hi-C data are supported through enrichment analysis. The source code of scHiClassifier is freely available at https://github.com/HaoWuLab-Bioinformatics/scHiClassifier.
Collapse
Affiliation(s)
- Xiangfei Zhou
- School of Software, Shandong University, No. 1500, Shunhua Road, Hi-Tech Industrial Development Zone, Jinan 250100, Shandong, China
| | - Hao Wu
- School of Software, Shandong University, No. 1500, Shunhua Road, Hi-Tech Industrial Development Zone, Jinan 250100, Shandong, China
- Shenzhen Research Institute of Shandong University, Shandong University, No. 19, Gaoxin South 4th Road, Nanshan District, Shenzhen 518063, Guangdong, China
| |
Collapse
|
2
|
Boni C, Bonifacio M, Vezzalini M, Scaffidi L, Tomasello L, Parker LL, Boscarino D, Paladin D, Krampera M, Sorio C. Successful Preservation of Native BCR::ABL1 in Chronic Myeloid Leukemia Primary Leukocytes Reveals a Reduced Kinase Activity. Front Oncol 2022; 12:904510. [PMID: 35756686 PMCID: PMC9216732 DOI: 10.3389/fonc.2022.904510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease caused by the acquisition of t(9;22) generating the fusion tyrosine kinase BCR::ABL1. However, despite the crucial role of this protein in the dysregulation of numerous signal transduction pathways, a direct measure of BCR::ABL1 kinase activity in chronic phase (CP) CML was never accomplished due to intense degradative activity present in mature leukocytes. Therefore, we developed a procedure suitable to preserve BCR::ABL1 protein under non-denaturing, neutral pH conditions in primary, chronic phase (CP)-CML samples. As a result, specific kinase activity was detected utilizing a biotinylated peptide substrate highly selective for c-ABL1. Furthermore, through this approach, BCR::ABL1 kinase activity was barely detectable in CP-CML compared to Ph+ acute lymphoblastic leukemia primary samples, where kinase activity is comparable to those measured in Ph+ cell lines. These in vitro findings provide the first direct measure of BCR::ABL1 kinase activity in primary CP-CML and reveal the presence of a still uncharacterized inhibitory mechanism that maintains BCR::ABL1 in a low activity state in CP-CML despite its overexpression.
Collapse
Affiliation(s)
- Christian Boni
- Department of Medicine, General Pathology Section, University of Verona, Verona, Italy
| | | | - Marzia Vezzalini
- Department of Medicine, General Pathology Section, University of Verona, Verona, Italy
| | - Luigi Scaffidi
- Department of Medicine, Hematology Section, University of Verona, Verona, Italy
| | - Luisa Tomasello
- Department of Medicine, General Pathology Section, University of Verona, Verona, Italy
| | - Laurie L Parker
- Department of Biochemistry, Molecular Biology and Biophysics, Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | | | | | - Mauro Krampera
- Department of Medicine, Hematology Section, University of Verona, Verona, Italy
| | - Claudio Sorio
- Department of Medicine, General Pathology Section, University of Verona, Verona, Italy
| |
Collapse
|
3
|
Yu J, Oh K, Moorthi S, Li L, Strey HH, Schuster M, Luberto C, Quan PL, Brouzes E. Enzymatic-based cytometry, a sensitive single-cell cytometric method to assess BCR-ABL1 activity in CML. LAB ON A CHIP 2020; 20:942-948. [PMID: 32031548 PMCID: PMC7439560 DOI: 10.1039/c9lc01213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a simple, rapid and cost-effective enzymatic-based cytometry platform to measure intracellular signaling pathway activity. Our single-cell microwell array platform quantifies protein phosphorylation using enzymatic signal amplification and exploiting Michaelis-Menten kinetics. Our method provides a two-fold increase in resolution compared to conventional flow cytometry.
Collapse
Affiliation(s)
- Jinzhu Yu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Ki Oh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| | - Ling Li
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Helmut H Strey
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael Schuster
- Hematology Department, Stony Brook Cancer Center, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Renaissance School of Medicine, Stony Brook University, NY 11794, USA
| | - Phenix-Lan Quan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Eric Brouzes
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA. and Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA and Cancer Center, Stony Brook School of Medicine, Stony Brook, NY 11794, USA and Institute for Engineering Driven Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Fernandes Q. MicroRNA: Defining a new niche in Leukemia. Blood Rev 2016; 31:129-138. [PMID: 28087197 DOI: 10.1016/j.blre.2016.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/10/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs found to play key roles in the pathogenesis of leukemia. Apart from being traditionally identified as modulators of oncogenes, the potential roles of miRNAs seems to be growing with novel and recent findings among different subtypes of hematological malignancies. Leukemia is one of the earliest malignancies to be linked to abnormal expression of miRNAs. However, a clear understanding of the involvement of miRNAs in intricate mechanisms of leukemogenesis is still a necessity. This review summarizes the multiple roles of miRNAs in the pathogenesis of leukemia and highlights major research findings contributing to these aspects.
Collapse
|
5
|
Simplifying procedure for prediction of resistance risk in CML patients - Test of sensitivity to TKI ex vivo. Blood Cells Mol Dis 2016; 58:67-75. [PMID: 27067491 DOI: 10.1016/j.bcmd.2016.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) targeting BCR-ABL have dramatically improved chronic myeloid leukemia therapy. While imatinib remains to be the first line therapy, about 30% of patients develop resistance or intolerance to this drug and are recommended to switch to other TKIs. Nilotinib and dasatinib are currently implemented into the first line therapy and other inhibitors have already entered the clinical practice. This opens further questions on how to select the best TKI for each patient not only during the therapy but also at diagnosis. The individualized therapy concept requires a reliable establishment of prognosis and prediction of response to the available TKIs. We tested the ex vivo sensitivity of patient primary leukocytes to imatinib, nilotinib and dasatinib - two concentrations of each inhibitor for 48h incubation - and we evaluated the usefulness of such tests for the clinical practice. Besides reflecting the actual sensitivity to the therapy, our optimized simple tests were able to predict the outcome in 90/87% of patients, for the next 12/24months, respectively. According to these results, the presented ex vivo testing could help clinicians to select the appropriate drug for each patient at diagnosis and also at any time of the therapy.
Collapse
|
6
|
Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med 2014; 3:405-15. [PMID: 24598782 DOI: 10.5966/sctm.2012-0159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl's scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Christine Victoria Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Discipline of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Simara P, Stejskal S, Koutna I, Potesil D, Tesarova L, Potesilova M, Zdrahal Z, Mayer J. Apoptosis in chronic myeloid leukemia cells transiently treated with imatinib or dasatinib is caused by residual BCR-ABL kinase inhibition. Am J Hematol 2013; 88:385-93. [PMID: 23420553 DOI: 10.1002/ajh.23419] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 02/13/2013] [Indexed: 11/07/2022]
Abstract
Transient, potent BCR-ABL inhibition with tyrosine kinase inhibitors (TKIs) was recently demonstrated to be sufficient to commit chronic myeloid leukemia (CML) cells to apoptosis irreversibly. This mechanism explains the clinical efficacy of once-daily dasatinib treatment, despite the rapid clearance of the drug from the plasma. However, our in vitro data suggest that apoptosis induction after transient TKI treatment, observed in the BCR-ABL-positive cell lines K562, KYO-1, and LAMA-84 and progenitor cells from chronic phase CML patients, is instead caused by a residual kinase inhibition that persists in the cells as a consequence of intracellular drug retention. High intracellular concentrations of imatinib and dasatinib residues were measured in transiently treated cells. Furthermore, the apoptosis induced by residual imatinib or dasatinib from transient treatment could be rescued by washing out the intracellularly retained drugs. The residual kinase inhibition was also undetectable by the phospho-CRKL assay. These findings confirm that continuous target inhibition is required for the optimal efficacy of kinase inhibitors.
Collapse
Affiliation(s)
- Pavel Simara
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Stanislav Stejskal
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Irena Koutna
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - David Potesil
- Core Facility-Proteomics; CEITEC-Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Lenka Tesarova
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Michaela Potesilova
- CBIA-Centre for Biomedical Image Analysis; Faculty of Informatics, Masaryk University; Brno; Czech Republic
| | - Zbynek Zdrahal
- Core Facility-Proteomics; CEITEC-Central European Institute of Technology; Masaryk University; Brno; Czech Republic
| | - Jiri Mayer
- Central European Institute of Technology (CEITEC); Masaryk University; Brno; Czech Republic
| |
Collapse
|
8
|
Downregulation of miR-31, miR-155, and miR-564 in chronic myeloid leukemia cells. PLoS One 2012; 7:e35501. [PMID: 22511990 PMCID: PMC3325224 DOI: 10.1371/journal.pone.0035501] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 03/20/2012] [Indexed: 01/06/2023] Open
Abstract
Background/Aims MicroRNAs (miRNAs) are short non-coding regulatory RNAs that control gene expression and play an important role in cancer development and progression. However, little is known about the role of miRNAs in chronic myeloid leukemia (CML). Our objective is to decipher a miRNA expression signature associated with CML and to determine potential target genes and signaling pathways affected by these signature miRNAs. Results Using miRNA microarrays and miRNA real-time PCR we characterized the miRNAs expression profile of CML cell lines and patients in reference to non-CML cell lines and healthy blood. Of all miRNAs tested, miR-31, miR-155, and miR-564 were down-regulated in CML cells. Down-regulation of these miRNAs was dependent on BCR-ABL activity. We next analyzed predicted targets and affected pathways of the deregulated miRNAs. As expected, in K562 cells, the expression of several of these targets was inverted to that of the miRNA putatively regulating them. Reassuringly, the analysis identified CML as the main disease associated with these miRNAs. MAPK, ErbB, mammalian target of rapamycin (mTOR) and vascular endothelial growth factor (VEGF) were the main molecular pathways related with these expression patterns. Utilizing Venn diagrams we found appreciable overlap between the CML-related miRNAs and the signaling pathways-related miRNAs. Conclusions The miRNAs identified in this study might offer a pivotal role in CML. Nevertheless, while these data point to a central disease, the precise molecular pathway/s targeted by these miRNAs is variable implying a high level of complexity of miRNA target selection and regulation. These deregulated miRNAs highlight new candidate gene targets allowing for a better understanding of the molecular mechanism underlying the development of CML, and propose possible new avenues for therapeutic treatment.
Collapse
|
9
|
Simara P, Peterkova M, Stejskal S, Potesilova M, Koutna I, Racil Z, Razga F, Jurcek T, Dvorakova D, Mayer J. BCR-ABL activity measured by 50% inhibitory concentration for imatinib, p-CrkL/CrkL ratio or p-CrkL ratio in CD34+ cells of patients with chronic myeloid leukemia does not predict treatment response. Leuk Lymphoma 2012; 53:1627-9. [PMID: 22233112 DOI: 10.3109/10428194.2012.656104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
MESH Headings
- Adaptor Proteins, Signal Transducing/biosynthesis
- Antigens, CD34/biosynthesis
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Benzamides
- Flow Cytometry/methods
- Fusion Proteins, bcr-abl/biosynthesis
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic
- Humans
- Imatinib Mesylate
- Inhibitory Concentration 50
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Models, Biological
- Nuclear Proteins/biosynthesis
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Signal Transduction
- Treatment Outcome
Collapse
|
10
|
Patel H, Nteliopoulos G, Nikolakopoulou Z, Jackson A, Gordon MY. Antibody arrays identify protein-protein interactions in chronic myeloid leukaemia. Br J Haematol 2011; 152:611-4. [DOI: 10.1111/j.1365-2141.2010.08450.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Mizutani T, Kondo T, Darmanin S, Tsuda M, Tanaka S, Tobiume M, Asaka M, Ohba Y. A novel FRET-based biosensor for the measurement of BCR-ABL activity and its response to drugs in living cells. Clin Cancer Res 2010; 16:3964-75. [PMID: 20670950 DOI: 10.1158/1078-0432.ccr-10-0548] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To develop a novel diagnostic method for the assessment of drug efficacy in chronic myeloid leukemia (CML) patients individually, we generated a biosensor that enables the evaluation of BCR-ABL kinase activity in living cells using the principle of fluorescence resonance energy transfer (FRET). EXPERIMENTAL DESIGN To develop FRET-based biosensors, we used CrkL, the most characteristic substrate of BCR-ABL, and designed a protein in which CrkL is sandwiched between Venus, a variant of YFP, and enhanced cyan fluorescent protein, so that CrkL intramolecular binding of the SH2 domain to phosphorylated tyrosine (Y207) increases FRET efficiency. After evaluation of the properties of this biosensor by comparison with established methods including Western blotting and flow cytometry, BCR-ABL activity and its response to drugs were examined in CML patient cells. RESULTS After optimization, we obtained a biosensor that possesses higher sensitivity than that of established techniques with respect to measuring BCR-ABL activity and its suppression by imatinib. Thanks to its high sensitivity, this biosensor accurately gauges BCR-ABL activity in relatively small cell numbers and can also detect <1% minor drug-resistant populations within heterogeneous ones. We also noticed that this method enabled us to predict future onset of drug resistance as well as to monitor the disease status during imatinib therapy, using patient cells. CONCLUSION In consideration of its quick and practical nature, this method is potentially a promising tool for the prediction of both current and future therapeutic responses in individual CML patients, which will be surely beneficial for both patients and clinicians.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/therapeutic use
- Benzamides
- Biosensing Techniques/methods
- Blotting, Western
- Cell Separation
- Drug Resistance, Neoplasm/drug effects
- Flow Cytometry
- Fluorescence Resonance Energy Transfer/methods
- Fusion Proteins, bcr-abl/analysis
- Fusion Proteins, bcr-abl/metabolism
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Luminescent Agents
- Nuclear Proteins/metabolism
- Phosphorylation
- Piperazines/therapeutic use
- Pyrimidines/therapeutic use
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Tatsuaki Mizutani
- Laboratory of Pathophysiology and Signal Transduction, Hokkaido University Graduate School of Medicine, Kira-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Abnormal numbers, structures and functions of centrosomes in chronic myeloid leukaemia (CML) may influence cell proliferation and genomic instability, which are features of the disease. Centrosomes are regulators of mitotic spindle orientation and can act as scaffolds for centrosome-associated regulators of the cell cycle. This study showed, for the first time, that p210(BCR-ABL1) and p145(ABL1) are both centrosome-associated proteins, as demonstrated by co-immunoprecipitation with the pericentriolar protein, pericentrin. Furthermore, when CML cells were treated with imatinib there was a 55% and 20% reduction of p210(BCR-ABL1) and p145(ABL1) binding to pericentrin, respectively. Cell lines expressing p210(BCR-ABL1) and primary CD34(+) cells from CML patients exhibited more numerical and structural centrosomal abnormalities than p210(BCR-ABL1) negative cells. Primary cells from CML blast crisis (BC) patients exhibited a distinctive amorphous staining pattern of pericentrin compared to normal and CML chronic phase (CP) patients, suggesting a possible defect in pericentrin localisation at the centrosomes. Proteins, such as aurora kinases, pericentrin, survivin and separase, regulate centrosome structure and function, cell cycle and mitotic spindle formation. Levels of the protease, separase are abnormally high in CML CP and BC cells in comparison to normal CD34(+) cells. The data imply that expression of p210(BCR-ABL1) is associated with abnormalities in the centrosome-centriole cycle and increased separase expression.
Collapse
Affiliation(s)
- Hetal Patel
- Faculty of Medicine, Department of Haematology, Imperial College, Hammersmith Campus, London, UK.
| | | |
Collapse
|
13
|
Jin L, Xiao CL, Lu CH, Xia M, Xing GW, Xiong S, Liu QY, Liu H, Li YC, Ge F, Wang QD, He QY, Wang YF. Transcriptomic and proteomic approach to studying SNX-2112-induced K562 cells apoptosis and anti-leukemia activity in K562-NOD/SCID mice. FEBS Lett 2009; 583:1859-66. [DOI: 10.1016/j.febslet.2009.04.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/17/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
|
14
|
Khorashad JS, Wagner S, Greener L, Marin D, Reid A, Milojkovic D, Patel H, Willimott S, Rezvani K, Gerrard G, Loaiza S, Davis J, Goldman J, Melo J, Apperley J, Foroni L. The level of BCR-ABL1 kinase activity before treatment does not identify chronic myeloid leukemia patients who fail to achieve a complete cytogenetic response on imatinib. Haematologica 2009; 94:861-4. [PMID: 19377081 DOI: 10.3324/haematol.2008.003715] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imatinib is currently the first line therapy for newly diagnosed patients with chronic myeloid leukemia. However, 20-25% of patients do not achieve durable complete cytogenetic responses. The mechanism underlying this primary resistance is unknown, but variations in BCR-ABL1 kinase activity may play a role and can be investigated by measuring the autophosphorylation levels of BCR-ABL1 or of a surrogate target such as Crkl. In this study we used flow cytometry to investigate the in vitro inhibition of Crkl phosphorylation by imatinib in CD34(+) cells in diagnostic samples from two groups of patients distinguished by their cytogenetic response. No difference in inhibition of Crkl phosphorylation was observed in the two groups. The observation that increasing the dose of imatinib in vivo did not increase the level of cytogenetic response in some non-responders suggests that in at least a proportion of patients imatinib resistance may be due to activation of BCR-ABL1-independent pathway.
Collapse
|
15
|
Hamilton A, Alhashimi F, Myssina S, Jorgensen HG, Holyoake TL. Optimization of methods for the detection of BCR-ABL activity in Philadelphia-positive cells. Exp Hematol 2009; 37:395-401. [DOI: 10.1016/j.exphem.2008.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/05/2008] [Accepted: 11/10/2008] [Indexed: 10/21/2022]
|
16
|
Wu J, Meng F, Kong LY, Peng Z, Ying Y, Bornmann WG, Darnay BG, Lamothe B, Sun H, Talpaz M, Donato NJ. Association between imatinib-resistant BCR-ABL mutation-negative leukemia and persistent activation of LYN kinase. J Natl Cancer Inst 2008; 100:926-39. [PMID: 18577747 DOI: 10.1093/jnci/djn188] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Imatinib is a tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). BCR-ABL mutations are associated with failure of imatinib treatment in many CML patients. LYN kinase regulates survival and responsiveness of CML cells to inhibition of BCR-ABL kinase, and differences in LYN regulation have been found between imatinib-sensitive and -resistant CML cell lines. METHODS We evaluated cells from 12 imatinib-resistant CML patients with mutation-negative BCR-ABL and from six imatinib-sensitive patients who discontinued therapy because of imatinib intolerance. Phosphorylation of BCR-ABL and LYN was assessed in patient cells and cell lines by immunoblotting with activation state-specific antibodies, co-immunoprecipitation studies, and mass spectroscopy analysis of phosphopeptides. Cell viability, caspase activation, and apoptosis were also measured. Mutations were analyzed by sequencing. The effect of silencing LYN with short interfering RNAs (siRNAs) or reducing activation by treatment with tyrosine kinase inhibitors was evaluated in cell lines and patient cells. RESULTS Imatinib treatment suppressed LYN phosphorylation in cells from imatinib-sensitive CML patients and imatinib-sensitive cell lines. Imatinib treatment blocked BCR-ABL signaling but did not suppress LYN phosphorylation in cells from imatinib-resistant patients, and persistent activation of LYN kinase was not associated with mutations in LYN kinase or its carboxyl-terminal regulatory domains. Unique LYN phosphorylation sites (tyrosine-193 and tyrosine-459) and associated proteins (c-Cbl and p80) were identified in cells from imatinib-resistant patients. Reducing LYN expression (siRNA) or activation (dasatinib) was associated with loss of cell survival and cytogenetic or complete hematologic responses in imatinib-resistant disease. CONCLUSIONS LYN activation was independent of BCR-ABL in cells from imatinib-resistant patients. Thus, LYN kinase may be involved in imatinib resistance in CML patients with mutation-negative BCR-ABL and its direct inhibition is consistent with clinical responses in these patients.
Collapse
Affiliation(s)
- Ji Wu
- Departments of Experimental Therapeutics, The M. D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Patel H, Marley SB, Greener L, Gordon MY. Subcellular distribution of p210BCR-ABL in CML cell lines and primary CD34+ CML cells. Leukemia 2007; 22:559-71. [DOI: 10.1038/sj.leu.2405057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Giehl M, Fabarius A, Frank O, Erben P, Zheng C, Hafner M, Hochhaus A, Hehlmann R, Seifarth W. Expression of the p210BCR-ABL oncoprotein drives centrosomal hypertrophy and clonal evolution in human U937 cells. Leukemia 2007; 21:1971-6. [PMID: 17597804 DOI: 10.1038/sj.leu.2404834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Centrosomes play fundamental roles in mitotic spindle organization, chromosome segregation and maintenance of genetic stability. Recently, we have shown that centrosome aberrations occur early in chronic myeloid leukemia (CML) and are induced by imatinib in normal fibroblasts in vitro. To investigate the influence of BCR-ABL on centrosomes, we performed long-term in vitro experiments employing the conditionally p210BCR-ABL-expressing (tetracycline-inducible promoter) human monocytic cell line U937p210BCR-ABL/c6 as a model of CML chronic phase. Centrosome hypertrophy was detectable after 4 weeks of transgene expression onset, increasing up to a rate of 25.7% aberrant cells within 13 weeks of propagation. This concurred with clonal expansion of aneuploid cells displaying a hyperdiploid phenotype with 57 chromosomes. Partial reversibility of centrosome aberrations (26-8%) was achieved under prolonged propagation (14 weeks) after abortion of induction and bcr-abl silencing using small interfering RNA. Therapeutic doses of imatinib did not revert the aberrant phenotype, but counteracted the observed reverting effect of bcr-abl gene expression switch off. Suggesting a mechanistic model that features distinct abl-related tyrosine kinase activity levels as essential determinants of centrosomal integrity, this is the first report mechanistically linking p210BCR-ABL oncoprotein activity to centrosomal hypertrophy.
Collapse
Affiliation(s)
- M Giehl
- III. Medizinische Universitätsklinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Patel H, Marley SB, Gordon MY. Conventional Western blotting techniques will not reliably quantify p210BCR-ABL1 levels in CML mononuclear cells. Blood 2007; 109:1335; author reply 1336. [PMID: 17244689 DOI: 10.1182/blood-2006-10-050799] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
|