1
|
Guo Q, Cheng ZM, Gonzalez-Cantú H, Rotondi M, Huelgas-Morales G, Ethiraj P, Qiu Z, Lefkowitz J, Song W, Landry BN, Lopez H, Estrada-Zuniga CM, Goyal S, Khan MA, Walker TJ, Wang E, Li F, Ding Y, Mulligan LM, Aguiar RCT, Dahia PLM. TMEM127 suppresses tumor development by promoting RET ubiquitination, positioning, and degradation. Cell Rep 2023; 42:113070. [PMID: 37659079 PMCID: PMC10637630 DOI: 10.1016/j.celrep.2023.113070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/06/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023] Open
Abstract
The TMEM127 gene encodes a transmembrane protein of poorly known function that is mutated in pheochromocytomas, neural crest-derived tumors of adrenomedullary cells. Here, we report that, at single-nucleus resolution, TMEM127-mutant tumors share precursor cells and transcription regulatory elements with pheochromocytomas carrying mutations of the tyrosine kinase receptor RET. Additionally, TMEM127-mutant pheochromocytomas, human cells, and mouse knockout models of TMEM127 accumulate RET and increase its signaling. TMEM127 contributes to RET cellular positioning, trafficking, and lysosome-mediated degradation. Mechanistically, TMEM127 binds to RET and recruits the NEDD4 E3 ubiquitin ligase for RET ubiquitination and degradation via TMEM127 C-terminal PxxY motifs. Lastly, increased cell proliferation and tumor burden after TMEM127 loss can be reversed by selective RET inhibitors in vitro and in vivo. Our results define TMEM127 as a component of the ubiquitin system and identify aberrant RET stabilization as a likely mechanism through which TMEM127 loss-of-function mutations cause pheochromocytoma.
Collapse
Affiliation(s)
- Qianjin Guo
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zi-Ming Cheng
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Gonzalez-Cantú
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Matthew Rotondi
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Gabriela Huelgas-Morales
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Purushoth Ethiraj
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Zhijun Qiu
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Jonathan Lefkowitz
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Wan Song
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Bethany N Landry
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Hector Lopez
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Cynthia M Estrada-Zuniga
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Shivi Goyal
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Mohammad Aasif Khan
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA
| | - Timothy J Walker
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Exing Wang
- Department Cell Structure and Anatomy, UTHSCSA, San Antonio, TX, USA
| | - Faqian Li
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Yanli Ding
- Department of Pathology, UTHSCSA, San Antonio, TX, USA
| | - Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - Ricardo C T Aguiar
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA; South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX 78229, USA
| | - Patricia L M Dahia
- Division of Hematology/Medical Oncology, Department of Medicine, University of Texas Health San Science Center at Antonio (UTHSCSA), San Antonio, TX, USA; Mays Cancer Center, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|
2
|
Natarajan D, McCann C, Dattani J, Pachnis V, Thapar N. Multiple Roles of Ret Signalling During Enteric Neurogenesis. Front Mol Neurosci 2022; 15:832317. [PMID: 35694443 PMCID: PMC9186293 DOI: 10.3389/fnmol.2022.832317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/15/2022] [Indexed: 12/03/2022] Open
Abstract
The majority of the enteric nervous system is formed by vagal neural crest cells which enter the foregut and migrate rostrocaudally to colonise the entire length of the gastrointestinal tract. Absence of enteric ganglia from the distal colon are the hallmark of Hirschsprung disease, a congenital disorder characterised by severe intestinal dysmotility. Mutations in the receptor tyrosine kinase RET have been identified in approximately 50% of familial cases of Hirschsprung disease but the cellular processes misregulated in this condition remain unclear. By lineage tracing neural crest cells in mice homozygous for a knock-in allele of Ret (Ret51/51), we demonstrate that normal activity of this receptor is required in vivo for the migration of enteric nervous system progenitors throughout the gut. In mutant mice, progenitors of enteric neurons fail to colonise the distal colon, indicating that failure of colonisation of the distal intestine is a major contributing factor for the pathogenesis of Hirschsprung disease. Enteric nervous system progenitors in the ganglionic proximal guts of mutant mice are also characterised by reduced proliferation and differentiation. These findings suggest that the functional abnormalities in Hirschsprung disease result from a combination of colonic aganglionosis and deficits in neuronal circuitry of more proximal gut segments. The reduced neurogenesis in the gut of Ret51/51 mutants was reproduced in the multilineage enteric nervous system progenitors isolated from these animals. Correction of the molecular defects of such progenitors fully restored their neurogenic potential in culture. These observations enhance our understanding of the pathogenesis of Hirschsprung disease and highlight potential approaches for its treatment.
Collapse
Affiliation(s)
- Dipa Natarajan
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- *Correspondence: Dipa Natarajan,
| | - Conor McCann
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Justine Dattani
- Department of Mathematical Sciences, University of Bath, Bath, United Kingdom
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Vassilis Pachnis,
| | - Nikhil Thapar
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
- Birth Defects Research Centre, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Gastroenterology, Hepatology and Liver Transplant, Queensland Children’s Hospital, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Nikhil Thapar,
| |
Collapse
|
3
|
RET isoforms contribute differentially to invasive processes in pancreatic ductal adenocarcinoma. Oncogene 2020; 39:6493-6510. [PMID: 32884116 DOI: 10.1038/s41388-020-01448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapeutically challenging disease with poor survival rates, owing to late diagnosis and early dissemination. These tumors frequently undergo perineural invasion, spreading along nerves regionally and to distant sites. The RET receptor tyrosine kinase is implicated in increased aggressiveness, local invasion, and metastasis in multiple cancers, including PDAC. RET mediates directional motility and invasion towards sources of its neurotrophic factor ligands, suggesting that it may enhance perineural invasion of tumor cells towards nerves. RET is expressed as two main isoforms, RET9 and RET51, which differ in their protein interactions and oncogenic potentials, however, the contributions of RET isoforms to neural invasion have not been investigated. In this study, we generated total RET and isoform-specific knockdown PDAC cell lines and assessed the contributions of RET isoforms to PDAC invasive spread. Our data show that RET activity induces cell polarization and actin remodeling through activation of CDC42 and RHOA GTPases to promote directional motility in PDAC cells. Further, we show that RET interacts with the adaptor protein TKS5 to induce invadopodia formation, enhance matrix degradation and promote tumor cell invasion through a SRC and GRB2-dependent mechanism. Finally, we show that RET51 is the predominant isoform contributing to these RET-mediated invasive processes in PDAC. Together, our work suggests that RET expression in pancreatic cancers may enhance tumor aggressiveness by promoting perineural invasion, and that RET expression may be a valuable marker of invasiveness, and a potential therapeutic target in the treatment of these cancers.
Collapse
|
4
|
Lian EY, Moodley S, Mulligan LM. Exploiting RET isoforms in managing medullary and papillary thyroid cancer. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2018. [DOI: 10.2217/ije-2017-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eric Y Lian
- Division of Cancer Biology & Genetics, Cancer Research Institute, & Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Serisha Moodley
- Division of Cancer Biology & Genetics, Cancer Research Institute, & Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Lois M Mulligan
- Division of Cancer Biology & Genetics, Cancer Research Institute, & Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
5
|
Lian EY, Maritan SM, Cockburn JG, Kasaian K, Crupi MJF, Hurlbut D, Jones SJM, Wiseman SM, Mulligan LM. Differential roles of RET isoforms in medullary and papillary thyroid carcinomas. Endocr Relat Cancer 2017; 24:53-69. [PMID: 27872141 DOI: 10.1530/erc-16-0393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/25/2022]
Abstract
The RET receptor tyrosine kinase mediates cell proliferation, survival and migration in embryogenesis and is implicated in the transformation and tumour progression in multiple cancers. RET is frequently mutated and constitutively activated in familial and sporadic thyroid carcinomas. As a result of alternative splicing, RET is expressed as two protein isoforms, RET9 and RET51, which differ in their unique C-terminal amino acids. These isoforms have distinct intracellular trafficking and associated signalling complexes, but functional differences are not well defined. We used shRNA-mediated knockdown (KD) of individual RET isoforms or of total RET to evaluate their functional contributions in thyroid carcinoma cells. We showed that RET is required for cell survival in medullary (MTC) but not papillary thyroid carcinoma (PTC) cells. In PTC cells, RET depletion reduced cell migration and induced a flattened epithelial-like morphology. RET KD decreased the expression of mesenchymal markers and matrix metalloproteinases and reduced anoikis resistance and invasive potential. Further, we showed that RET51 depletion had significantly greater effects on each of these processes than RET9 depletion in both MTC and PTC cells. Finally, we showed that expression of RET, particularly RET51, was correlated with malignancy in a panel of human thyroid tumour tissues. Together, our data show that RET expression promotes a more mesenchymal phenotype with reduced cell-cell adhesion and increased invasiveness in PTC cell models, but is more important for tumour cell survival, proliferation and anoikis resistance in MTC models. Our data suggest that the RET51 isoform plays a more prominent role in mediating these processes compared to RET9.
Collapse
Affiliation(s)
- Eric Y Lian
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Sarah M Maritan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Jessica G Cockburn
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Katayoon Kasaian
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Mathieu J F Crupi
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - David Hurlbut
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Medical GeneticsUniversity of British Columbia, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Sam M Wiseman
- Department of SurgerySt Paul's Hospital & University of British Columbia, Vancouver, British Columbia, Canada
| | - Lois M Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
- Department of Pathology & Molecular MedicineQueen's University, Kingston, Ontario, Canada
| |
Collapse
|
6
|
Griseri P, Garrone O, Lo Sardo A, Monteverde M, Rusmini M, Tonissi F, Merlano M, Bruzzi P, Lo Nigro C, Ceccherini I. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients. Oncotarget 2016; 7:26465-79. [PMID: 27034161 PMCID: PMC5041993 DOI: 10.18632/oncotarget.8417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/04/2016] [Indexed: 12/14/2022] Open
Abstract
Germline and somatic mutations play a crucial role in breast cancer (BC), driving the initiation, progression, response to therapy and outcome of the disease. Hormonal therapy is limited to patients with tumors expressing steroid hormone receptors, such as estrogen receptor (ER), nevertheless resistance often limits its success.The RET gene is known to be involved in neurocristopathies such as Hirschsprung disease and Multiple Endocrine Neoplasia type 2, in the presence of loss-of-function and gain-of-function mutations, respectively. More recently, RET over-expression has emerged as a new player in ER-positive (ER+) BC, and as a potential target to enhance sensitivity and avoid resistance to tamoxifen therapy.Therefore, targeting the RET pathway may lead to new therapies in ER+ BC. To this end, we have investigated the molecular mechanisms which underlie RET overexpression and its possible modulation in two BC cell lines, MCF7 and T47D, showing different RET expression levels. Moreover, we have carried out a pilot association study in 93 ER+ BC patients. Consistent with the adverse role of RET over-expression in BC, increased overall survival was observed in carriers of the variant allele of SNP rs2435357, a RET polymorphism already known to be associated with reduced RET expression.
Collapse
Affiliation(s)
- Paola Griseri
- UOC Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Ornella Garrone
- Unit of Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | | | - Martino Monteverde
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marta Rusmini
- UOC Medical Genetics, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Federica Tonissi
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marco Merlano
- Unit of Medical Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Paolo Bruzzi
- Clinical Epidemiology, IRCCS AUO San Martino IST, Genoa, Italy
| | - Cristiana Lo Nigro
- Laboratory of Cancer Genetics and Translational Oncology, Department of Oncology, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | | |
Collapse
|
7
|
Yeganeh MZ, Sheikholeslami S, Hedayati M. RET Proto Oncogene Mutation Detection and Medullary Thyroid Carcinoma Prevention. Asian Pac J Cancer Prev 2015; 16:2107-17. [DOI: 10.7314/apjcp.2015.16.6.2107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Hyndman BD, Gujral TS, Krieger JR, Cockburn JG, Mulligan LM. Multiple functional effects of RET kinase domain sequence variants in Hirschsprung disease. Hum Mutat 2012; 34:132-42. [PMID: 22837065 DOI: 10.1002/humu.22170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 07/16/2012] [Indexed: 01/08/2023]
Abstract
The REarranged during Transfection (RET) gene encodes a receptor tyrosine kinase required for maturation of the enteric nervous system. RET sequence variants occur in the congenital abnormality Hirschsprung disease (HSCR), characterized by absence of ganglia in the intestinal tract. Although HSCR-RET variants are predicted to inactivate RET, the molecular mechanisms of these events are not well characterized. Using structure-based models of RET, we predicted the molecular consequences of 23 HSCR-associated missense variants and how they lead to receptor dysfunction. We validated our predictions in biochemical and cell-based assays to explore mutational effects on RET protein functions. We found a minority of HSCR-RET variants abrogated RET kinase function, while the remaining mutants were phosphorylated and transduced intracellular signals. HSCR-RET sequence variants also impacted on maturation, stability, and degradation of RET proteins. We showed that each variant conferred a unique combination of effects that together impaired RET protein activity. However, all tested variants impaired RET-mediated cellular functions, including cell transformation and migration. Our data indicate that the molecular mechanisms of impaired RET function in HSCR are highly variable. Although a subset of variants cause loss of RET kinase activity and downstream signaling, enzymatic inactivation is not the sole mechanism at play in HSCR.
Collapse
Affiliation(s)
- Brandy D Hyndman
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
9
|
Richardson DS, Rodrigues DM, Hyndman BD, Crupi MJF, Nicolescu AC, Mulligan LM. Alternative splicing results in RET isoforms with distinct trafficking properties. Mol Biol Cell 2012; 23:3838-50. [PMID: 22875993 PMCID: PMC3459860 DOI: 10.1091/mbc.e12-02-0114] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The RET gene encodes a receptor tyrosine kinase that is alternatively spliced to two protein isoforms that differ in their C-terminal peptide sequences (RET9, RET51). These unique C-terminal tails produce distinct subcellular localizations and intracellular trafficking properties, which affect downstream signaling. RET encodes a receptor tyrosine kinase that is essential for spermatogenesis, development of the sensory, sympathetic, parasympathetic, and enteric nervous systems and the kidneys, as well as for maintenance of adult midbrain dopaminergic neurons. RET is alternatively spliced to encode multiple isoforms that differ in their C-terminal amino acids. The RET9 and RET51 isoforms display unique levels of autophosphorylation and have differential interactions with adaptor proteins. They induce distinct gene expression patterns, promote different levels of cell differentiation and transformation, and play unique roles in development. Here we present a comprehensive study of the subcellular localization and trafficking of RET isoforms. We show that immature RET9 accumulates intracellularly in the Golgi, whereas RET51 is efficiently matured and present in relatively higher amounts on the plasma membrane. RET51 is internalized faster after ligand binding and undergoes recycling back to the plasma membrane. This differential trafficking of RET isoforms produces a more rapid and longer duration of signaling through the extracellular-signal regulated kinase/mitogen-activated protein kinase pathway downstream of RET51 relative to RET9. Together these differences in trafficking properties contribute to some of the functional differences previously observed between RET9 and RET51 and establish the important role of intracellular trafficking in modulating and maintaining RET signaling.
Collapse
Affiliation(s)
- Douglas S Richardson
- Department of Pathology and Molecular Medicine and Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Wagner SM, Zhu S, Nicolescu AC, Mulligan LM. Molecular mechanisms of RET receptor-mediated oncogenesis in multiple endocrine neoplasia 2. Clinics (Sao Paulo) 2012; 67 Suppl 1:77-84. [PMID: 22584710 PMCID: PMC3328826 DOI: 10.6061/clinics/2012(sup01)14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple endocrine neoplasia type 2 is an inherited cancer syndrome characterized by tumors of thyroid and adrenal tissues. Germline mutations of the REarranged during Transfection (RET) proto-oncogene, leading to its unregulated activation, are the underlying cause of this disease. Multiple endocrine neoplasia type 2 has been a model in clinical cancer genetics, demonstrating how knowledge of the genetic basis can shape the diagnosis and treatment of the disease. Here, we discuss the nature and effects of the most common recurrent mutations of RET found in multiple endocrine neoplasia type 2. Current understanding of the molecular mechanisms of RET mutations and how they alter the structure and function of the RET protein leading to its aberrant activation, and the effects on RET localization and signaling are described.
Collapse
Affiliation(s)
- Simona M Wagner
- Division of Cancer Biology and Genetics, Cancer Research Institute, Department of Pathology & Molecular Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
11
|
Rodrigues DM, Li AY, Nair DG, Blennerhassett MG. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011; 23:e44-56. [PMID: 21087354 DOI: 10.1111/j.1365-2982.2010.01626.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) continues its structural and functional growth after birth, with formation of ganglia and the innervation of growing smooth muscle. However, little is known about factors in the postnatal intestine that influence these processes. METHODS We examined the presence and potential role of glial cell line-derived nerve growth factor (GDNF) in the rat postnatal ENS using neonatal tissue, primary co-cultures of the myenteric plexus, smooth muscle, and glial cells as well as cell lines of smooth muscle or glial cells. KEY RESULTS Western blot analysis showed that GDNF and its co-receptors rearranged during transfection (RET) and GDNF family receptor alpha-1 were expressed in the muscle layer of the neonatal and adult rat intestine. Immunohistochemistry localized the receptors for GDNF to myenteric neurons, while GDNF was localized to smooth muscle cells. In a co-culture model, GDNF but not nerve growth factor, brain derived neurotrophic factor or neurotrophin-3 significantly increased neuronal survival and more than doubled the numbers of neurites in vitro. RT-PCR, qPCR, Western blotting, ELISA, and immunocytochemistry as well as bioassays of neuronal survival and of RET phosphorylation all identified intestinal smooth muscle as the source of GDNF in vitro. GDNF also induced morphological changes in the structure and organization of neurons and axons, causing marked aggregation of neuronal cell bodies and collinear development of axons. As well, GDNF (50-150 ng mL(-1)) significantly increased [(3)H]-choline uptake and stimulated [(3)H]-acetylcholine release. CONCLUSIONS & INFERENCES We conclude that GDNF derived from intestinal smooth muscle cells is a key factor influencing the structural and functional development of postnatal myenteric neurons.
Collapse
Affiliation(s)
- D M Rodrigues
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
12
|
Abstract
After ligand binding induces dimerization, the RET receptor tyrosine kinase activates multiple signal transduction pathways. Constitutively activating mutations and chromosomal rearrangements are the primary oncogenic event in a significant number of medullary thyroid cancers (MTC) and papillary thyroid cancers (PTC), respectively. When specific germline mutations in RET are identified early, prophylactic thyroidectomy can be timed to remove at-risk tissue in patients with multiple endocrine neoplasia 2 (MEN2) syndromes who would otherwise develop MTC. Conventional therapy for progressive metastatic MTC is limited. Small-molecule tyrosine kinase inhibitors can target multiple kinases at nanomolar concentrations, including RET, and have shown efficacy against a variety of malignancies. Initial clinical evidence suggests that several of these inhibitors, including sorafenib, vandetanib, motesanib, sunitinib, and XL-184, may have some benefit in treating progressive MTC. Although initial success seen in these trials seems to be modest, it represents a major breakthrough in the treatment of patients with widespread metastatic MTC.
Collapse
Affiliation(s)
- John E Phay
- Department of Surgery, Division of Surgical Oncology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
13
|
Abstract
BACKGROUND Multiple endocrine neoplasia type II (MEN2) is a rare but aggressive cancer for which no effective treatment currently exists. A Drosophila model was developed to identify novel genetic modifier loci of oncogenic RET, as well as to provide a whole animal system to rapidly identify compounds that suppressed RET-dependent MEN2. ZD6474 (Vandetanib), currently in phase III trials, suppressed tumorigenesis in MEN2 model flies, demonstrating for the first time the effectiveness of a Drosophila-based whole animal model for identifying therapeutically useful compounds. SUMMARY Clinical data suggest that drug mono-therapy for MEN2 and other cancers typically yield only moderate benefits as patients develop drug resistance and suffer from drug-induced pathway feedback. Combinations of drugs that target different nodes of the oncogenic pathway are an effective way to prevent resistance as well as feedback. Identifying the optimal drug-dose combinations for therapy poses a significant challenge in existing mouse models. Fly models offer a means to quickly and effectively identify drug combinations that are well tolerated and potently suppress the MEN2 phenotype. This approach may also identify differences in therapeutic responses between the two subtypes of MEN2--MEN2A and MEN2B--providing additional therapeutic insights. CONCLUSIONS Fly models have proven useful for identifying known drugs as well as novel compounds that, as single agents or in combinations, effectively suppress the MEN2 syndrome. These findings validate the use of fly models for both drug discovery as well as identification of useful drug combinations. In the future, rapid pairing of new genomic information with increasingly complex fly models will aid us in efforts to further tailor drug treatments toward personalized medicine.
Collapse
Affiliation(s)
- Tirtha Das
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
14
|
Toledo RA, Wagner SM, Coutinho FL, Lourenço DM, Azevedo JA, Longuini VC, Reis MTA, Siqueira SAC, Lucon AM, Tavares MR, Fragoso MCBV, Pereira AA, Dahia PLM, Mulligan LM, Toledo SPA. High penetrance of pheochromocytoma associated with the novel C634Y/Y791F double germline mutation in the RET protooncogene. J Clin Endocrinol Metab 2010; 95:1318-27. [PMID: 20080836 DOI: 10.1210/jc.2009-1355] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Previous studies have shown that double RET mutations may be associated with unusual multiple endocrine neoplasia type 2 (MEN 2) phenotypes. OBJECTIVE Our objective was to report the clinical features of patients harboring a previously unreported double mutation of the RET gene and to characterize this mutation in vitro. PATIENTS Sixteen patients from four unrelated families and harboring the C634Y/Y791F double RET germline mutation were included in the study. RESULTS Large pheochromocytomas measuring 6.0-14 cm and weighing up to 640 g were identified in the four index cases. Three of the four tumors were bilateral. High penetrance of pheochromocytoma was also seen in the C634Y/Y791F-mutation-positive relatives (seven of nine, 77.7%). Of these, two cases had bilateral tumors, one presented with multifocal tumors, two cases had large tumors (>5 cm), and one case, which was diagnosed with a large (5.5 x 4.5 x 4.0 cm) pheochromocytoma, reported early onset of symptoms of the disease (14 yr old). The overall penetrance of pheochromocytoma was 84.6% (11 of 13). Development of medullary thyroid carcinoma in our patients seemed similar to that observed in patients with codon 634 mutations. Haplotype analysis demonstrated that the mutation did not arise from a common ancestor. In vitro studies showed the double C634Y/Y791F RET receptor was significantly more phosphorylated than either activated wild-type receptor or single C634Y and Y791F RET mutants. CONCLUSIONS Our data suggest that the natural history of the novel C634Y/Y791F double mutation carries a codon 634-like pattern of medullary thyroid carcinoma development, is associated with increased susceptibility to unusually large bilateral pheochromocytomas, and is likely more biologically active than each individual mutation.
Collapse
Affiliation(s)
- Rodrigo A Toledo
- Faculdade de Medicina da Universidade de São Paulo, Avenida Dr. Arnaldo, 455, 5 degrees andar, Cerqueira César, 012406-903, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Richardson DS, Gujral TS, Peng S, Asa SL, Mulligan LM. Transcript level modulates the inherent oncogenicity of RET/PTC oncoproteins. Cancer Res 2009; 69:4861-9. [PMID: 19487296 DOI: 10.1158/0008-5472.can-08-4425] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations to the RET proto-oncogene occur in as many as one in three cases of thyroid cancer and have been detected in both the medullary (MTC) and the papillary (PTC) forms of the disease. Of the nearly 400 chromosomal rearrangements resulting in oncogenic fusion proteins that have been identified to date, the rearrangements that give rise to RET fusion oncogenes in PTC remain the paradigm for chimeric oncoprotein involvement in solid tumors. RET-associated PTC tumors are phenotypically indolent and relatively less aggressive than RET-related MTCs. The mechanism(s) contributing to the differences in oncogenicity of RET-related MTC and PTC remains unexplained. Here, through cellular and molecular characterization of the two most common RET/PTC rearrangements (PTC1 and PTC3), we show that RET/PTC oncoproteins are highly oncogenic when overexpressed, with the ability to increase cell proliferation and transformation. Further, RET/PTCs activate similar downstream signaling cascades to wild-type RET, although at different levels, and are relatively more stable as they avoid lysosomal degradation. Absolute quantitation of transcript levels of RET, CCDC6, and NCOA4 (the 5' fusion genes involved in PTC1 and PTC3, respectively) suggest that these rearrangements result in lower RET expression in PTCs relative to MTCs. Together, our findings suggest PTC1 and PTC3 are highly oncogenic proteins when overexpressed, but result in indolent disease compared with RET-related MTCs due to their relatively low expression from the NCOA4 and CCDC6 promoters in vivo.
Collapse
Affiliation(s)
- Douglas S Richardson
- Department of Pathology and Molecular Medicine, Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|