1
|
Gray ZH, Chakraborty D, Duttweiler RR, Alekbaeva GD, Murphy SE, Chetal K, Ji F, Ferman BI, Honer MA, Wang Z, Myers C, Sun R, Kaniskan HÜ, Toma MM, Bondarenko EA, Santoro JN, Miranda C, Dillingham ME, Tang R, Gozani O, Jin J, Skorski T, Duy C, Lee H, Sadreyev RI, Whetstine JR. Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement. Cell 2023; 186:4528-4545.e18. [PMID: 37788669 PMCID: PMC10591855 DOI: 10.1016/j.cell.2023.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/01/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Damayanti Chakraborty
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Reuben R Duttweiler
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gulnaz D Alekbaeva
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sedona E Murphy
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zhentian Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Cynthia Myers
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monika Maria Toma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - John N Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Christopher Miranda
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Megan E Dillingham
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ran Tang
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; School of Life Science and Technology, Harbin Institute of Technology, 150000 Harbin, China
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomasz Skorski
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Cihangir Duy
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hayan Lee
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
2
|
Angelakis A, Soulioti I, Filippakis M. Diagnosis of acute myeloid leukaemia on microarray gene expression data using categorical gradient boosted trees. Heliyon 2023; 9:e20530. [PMID: 37860531 PMCID: PMC10582309 DOI: 10.1016/j.heliyon.2023.e20530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
We define an iterative method for dimensionality reduction using categorical gradient boosted trees and Shapley values and created four machine learning models which potentially could be used as diagnostic tests for acute myeloid leukaemia (AML). For the final Catboost model we use a dataset of 2177 individuals using as features 16 probe sets and the age in order to classify if someone has AML or is healthy. The dataset is multicentric and consists of data from 27 organizations, 25 cities, 15 countries and 4 continents. The performance of our last model is specificity: 0.9909, sensitivity: 0.9985, F1-score: 0.9976 and its ROC-AUC: 0.9962 using ten fold cross validation. On an inference dataset the perormance is: specificity: 0.9909, sensitivity: 0.9969, F1-score: 0.9969 and its ROC-AUC: 0.9939. To the best of our knowledge the performance of our model is the best one in the literature, as regards the diagnosis of AML using similar or not data. Moreover, there has not been any bibliographic reference which associates AML or any other type of cancer with the 16 probe sets we used as features in our final model.
Collapse
Affiliation(s)
- Athanasios Angelakis
- Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Amsterdam Public Health Research Institute, University of Amsterdam Data Science Center, Netherlands
| | - Ioanna Soulioti
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | |
Collapse
|
3
|
Immanuel T, Li J, Green TN, Bogdanova A, Kalev-Zylinska ML. Deregulated calcium signaling in blood cancer: Underlying mechanisms and therapeutic potential. Front Oncol 2022; 12:1010506. [PMID: 36330491 PMCID: PMC9623116 DOI: 10.3389/fonc.2022.1010506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Intracellular calcium signaling regulates diverse physiological and pathological processes. In solid tumors, changes to calcium channels and effectors via mutations or changes in expression affect all cancer hallmarks. Such changes often disrupt transport of calcium ions (Ca2+) in the endoplasmic reticulum (ER) or mitochondria, impacting apoptosis. Evidence rapidly accumulates that this is similar in blood cancer. Principles of intracellular Ca2+ signaling are outlined in the introduction. We describe different Ca2+-toolkit components and summarize the unique relationship between extracellular Ca2+ in the endosteal niche and hematopoietic stem cells. The foundational data on Ca2+ homeostasis in red blood cells is discussed, with the demonstration of changes in red blood cell disorders. This leads to the role of Ca2+ in neoplastic erythropoiesis. Then we expand onto the neoplastic impact of deregulated plasma membrane Ca2+ channels, ER Ca2+ channels, Ca2+ pumps and exchangers, as well as Ca2+ sensor and effector proteins across all types of hematologic neoplasms. This includes an overview of genetic variants in the Ca2+-toolkit encoding genes in lymphoid and myeloid cancers as recorded in publically available cancer databases. The data we compiled demonstrate that multiple Ca2+ homeostatic mechanisms and Ca2+ responsive pathways are altered in hematologic cancers. Some of these alterations may have genetic basis but this requires further investigation. Most changes in the Ca2+-toolkit do not appear to define/associate with specific disease entities but may influence disease grade, prognosis, treatment response, and certain complications. Further elucidation of the underlying mechanisms may lead to novel treatments, with the aim to tailor drugs to different patterns of deregulation. To our knowledge this is the first review of its type in the published literature. We hope that the evidence we compiled increases awareness of the calcium signaling deregulation in hematologic neoplasms and triggers more clinical studies to help advance this field.
Collapse
Affiliation(s)
- Tracey Immanuel
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan City, China
| | - Taryn N. Green
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Anna Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Maggie L. Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
FISH improves risk stratification in acute leukemia by identifying KMT2A abnormal copy number and rearrangements. Sci Rep 2022; 12:9585. [PMID: 35688861 PMCID: PMC9187764 DOI: 10.1038/s41598-022-13545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/25/2022] [Indexed: 11/26/2022] Open
Abstract
Most cases of acute leukemia (AL) with KMT2A rearrangement (KMT2A-r) have a dismal prognosis. Detection of this aberration in Chinese adult patients relies on reverse transcription polymerase chain reaction (RT-PCR) and chromosome banding analysis (CBA). The fluorescence in situ hybridization (FISH) probe for KMT2A detects KMT2A-r and copy number variation (CNV) but is not routinely used as a detection technique. This study investigated the potential value of FISH in the treatment of AL by performing FISH along with CBA and RT-PCR in 269 de novo cases of AL. The three detection techniques were compared in identification of KMT2A-r, and the applicability of FISH for detecting KMT2A CNV was evaluated. Twenty-three samples were identified as positive for KMT2A-r (20 using FISH, 15 using RT-PCR, 16 using CBA, and eight according to all three). FISH also identified 17 KMT2A CNV, 15 with gains and two with deletions. Ten patients with acute myeloid leukemia (AML) harboring KMT2A CNV had a complex karyotype, a negative prognostic factor in AML. Adding FISH of KMT2A to routine detection leads to more accurate detection of KMT2A-r and improved identification of KMT2A CNV, which would benefit patients by improving the risk stratification in AL.
Collapse
|
5
|
Takeda R, Yokoyama K, Fukuyama T, Kawamata T, Ito M, Yusa N, Kasajima R, Shimizu E, Ohno N, Uchimaru K, Yamaguchi R, Imoto S, Miyano S, Tojo A. Repeated Lineage Switches in an Elderly Case of Refractory B-Cell Acute Lymphoblastic Leukemia With MLL Gene Amplification: A Case Report and Literature Review. Front Oncol 2022; 12:799982. [PMID: 35402256 PMCID: PMC8983914 DOI: 10.3389/fonc.2022.799982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Lineage switches in acute leukemia occur rarely, and the underlying mechanisms are poorly understood. Herein, we report the case of an elderly patient with leukemia in which the leukemia started as B-cell acute lymphoblastic leukemia (B-ALL) and later changed to B- and T-cell mixed phenotype acute leukemia (MPAL) and acute myeloid leukemia (AML) during consecutive induction chemotherapy treatments. A 65-year-old woman was initially diagnosed with Philadelphia chromosome-negative B-ALL primarily expressing TdT/CD34/HLA-DR; more than 20% of the blasts were positive for CD19/CD20/cytoplasmic CD79a/cytoplasmic CD22/CD13/CD71.The blasts were negative for T-lineage markers and myeloperoxidase (MPO). Induction chemotherapy with the standard regimen for B-ALL resulted in primary induction failure. After the second induction chemotherapy regimen, the blasts were found to be B/T bi-phenotypic with additional expression of cytoplasmic CD3. A single course of clofarabine (the fourth induction chemotherapy regimen) dramatically reduced lymphoid marker levels. However, the myeloid markers (e.g., MPO) eventually showed positivity and the leukemia completely changed its lineage to AML. Despite subsequent intensive chemotherapy regimens designed for AML, the patient’s leukemia was uncontrollable and a new monoblastic population emerged. The patient died approximately 8 months after the initial diagnosis without experiencing stable remission. Several cytogenetic and genetic features were commonly identified in the initial diagnostic B-ALL and in the following AML, suggesting that this case should be classified as lineage switching leukemia rather than multiple simultaneous cancers (i.e., de novo B-ALL and de novo AML, or primary B-ALL and therapy-related myeloid neoplasm). A complex karyotype was persistently observed with a hemi-allelic loss of chromosome 17 (the location of the TP53 tumor suppressor gene). As the leukemia progressed, the karyotype became more complex, with the additional abnormalities. Sequential target sequencing revealed an increased variant allele frequency of TP53 mutation. Fluorescent in situ hybridization (FISH) revealed an increased number of mixed-lineage leukemia (MLL) genes, both before and after lineage conversion. In contrast, FISH revealed negativity for MLL rearrangements, which are well-known abnormalities associated with lineage switching leukemia and MPAL. To our best knowledge, this is the first reported case of acute leukemia presenting with lineage ambiguity and MLL gene amplification.
Collapse
Affiliation(s)
- Reina Takeda
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazuaki Yokoyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuaki Yokoyama, ; Arinobu Tojo,
| | - Tomofusa Fukuyama
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Cellular Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toyotaka Kawamata
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Mika Ito
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nozomi Yusa
- Department of Applied Genomics, Research Hospital, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Rika Kasajima
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Eigo Shimizu
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Nobuhiro Ohno
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Hematology, Kanto Rosai Hospital, Kanagawa, Japan
| | - Kaoru Uchimaru
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Science, Graduate School of the Frontier Science, The University of Tokyo, Tokyo, Japan
| | - Rui Yamaguchi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Data Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Arinobu Tojo
- Department of Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Therapy, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
- *Correspondence: Kazuaki Yokoyama, ; Arinobu Tojo,
| |
Collapse
|
6
|
Bianchi JJ, Murigneux V, Bedora-Faure M, Lescale C, Deriano L. Breakage-Fusion-Bridge Events Trigger Complex Genome Rearrangements and Amplifications in Developmentally Arrested T Cell Lymphomas. Cell Rep 2020; 27:2847-2858.e4. [PMID: 31167132 PMCID: PMC6581794 DOI: 10.1016/j.celrep.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 02/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022] Open
Abstract
To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53−/− lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2−/−p53−/− T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development. Lymphomas from RAG2/p53- and p53-deficient mice bear distinct genome architectures Block in T cell development leads to 9qA4-5.3 rearrangements and amplifications Breakage-fusion-bridge events trigger 9qA4-5.3 aberrations in early T cell lymphomas The syntenic region 11q23 is amplified in some human hematological cancers
Collapse
Affiliation(s)
- Joy J Bianchi
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France; Cellule Pasteur, University of Paris René Descartes, Sorbonne Paris Cité, 75015 Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Marie Bedora-Faure
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Chloé Lescale
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, Equipe Labellisée Ligue Contre le Cancer, Department of Immunology, Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
7
|
Multi-study reanalysis of 2,213 acute myeloid leukemia patients reveals age- and sex-dependent gene expression signatures. Sci Rep 2019; 9:12413. [PMID: 31455838 PMCID: PMC6712049 DOI: 10.1038/s41598-019-48872-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
In 2019 it is estimated that more than 21,000 new acute myeloid leukemia (AML) patients will be diagnosed in the United States, and nearly 11,000 are expected to die from the disease. AML is primarily diagnosed among the elderly (median 68 years old at diagnosis). Prognoses have significantly improved for younger patients, but as much as 70% of patients over 60 years old will die within a year of diagnosis. In this study, we conducted a reanalysis of 2,213 acute myeloid leukemia patients compared to 548 healthy individuals, using curated publicly available microarray gene expression data. We carried out an analysis of normalized batch corrected data, using a linear model that included considerations for disease, age, sex, and tissue. We identified 974 differentially expressed probe sets and 4 significant pathways associated with AML. Additionally, we identified 375 age- and 70 sex-related probe set expression signatures relevant to AML. Finally, we trained a k nearest neighbors model to classify AML and healthy subjects with 90.9% accuracy. Our findings provide a new reanalysis of public datasets, that enabled the identification of new gene sets relevant to AML that can potentially be used in future experiments and possible stratified disease diagnostics.
Collapse
|
8
|
Koduru P, Chen W, Haley B, Ho K, Oliver D, Wilson K. Cytogenomic characterization of double minute heterogeneity in therapy related acute myeloid leukemia. Cancer Genet 2019; 238:69-75. [PMID: 31425928 DOI: 10.1016/j.cancergen.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/24/2019] [Accepted: 08/06/2019] [Indexed: 01/04/2023]
Abstract
Breast cancer patients treated with adjuvant chemotherapy regimens containing alkylating agents and anthracyclines are at an increased risk for secondary myeloid malignancies, either acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Complex genomic changes (karyotypes and/or gene amplification) accompany the development of the secondary neoplasms. Here we present a unique case of a breast cancer patient who developed secondary AML within 18 months of treatment with trastuzumab, pertuzumab, docetaxel, carboplatin (TCHP) and radiation. Leukemia cells had catastrophic alterations in chromosomes 8, 11, and 17. Genetic abnormalities in the leukemia cells included amplification of MYC and KMT2A as double minutes, and deletion and mutational inactivation of TP53 Concurrent amplification of different genes at different levels and on different double minutes, we have named "double minute heterogeneity." Clinically, this case highlights the need to identify genes amplified in secondary myeloid malignancies by cytogenomic microarray (CMA) analysis since these may have therapeutic implications.
Collapse
Affiliation(s)
- Prasad Koduru
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA.
| | - Weina Chen
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Barbara Haley
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Kevin Ho
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Dwight Oliver
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| | - Kathleen Wilson
- Department of Pathology, and Division of Hematology and Oncology, Department of Medicine, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
9
|
Sakhdari A, Tang Z, Ok CY, Bueso-Ramos CE, Medeiros LJ, Huh YO. Homogeneously staining region (hsr) on chromosome 11 is highly specific for KMT2A amplification in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Cancer Genet 2019; 238:18-22. [PMID: 31425921 DOI: 10.1016/j.cancergen.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/24/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
AML and MDS are most common myeloid neoplasms that affect mainly older patients. Overexpression of certain proto-oncogenes plays an indispensable role in tumorigenesis and overexpression can be a consequence of gene rearrangement, amplification and/or mutation. Rearrangement and amplification of KMT2A located at chromosome band 11q23 is a well-characterized genetic driver in a subset of AML/MDS cases and is associated with a poor prognosis. The presence of homogeneously staining regions (hsr) also has been correlated with amplification of specific proto-oncogenes. In this study, we correlated hsr(11)(q23) with KMT2A in a large cohort of AML/MDS (n = 54) patients. We identified 37 patients with hsr(11)(q23) in the setting of AML (n = 27) and MDS (n = 10). All patients showed a complex karyotype including 12 cases with monosomy 17. KMT2A FISH analysis was available for 35 patients which showed KMT2A amplification in all patients. Among control cases with hsr involving chromosomes other than 11q [non-11q hsr, n = 17], FISH analysis for KMT2A was available in 10 cases and none of these cases showed KMT2A amplification (p = 0.0001, Fisher's exact test, two-tailed). Mutational analysis was performed in 32 patients with hsr(11)(q23). The most common mutated gene was TP53 (n = 29), followed by DNMT3A (n = 4), NF1 (n = 4), and TET2 (n = 3). Thirty (83%) patients died over a median follow-up of 7.6 months (range, 0.4-33.4). In summary, hsr(11)(q23) in AML/MDS cases is associated with a complex karyotype, monosomy 17, KMT2A amplification, and TP53 mutation.
Collapse
Affiliation(s)
- Ali Sakhdari
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States.
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States
| | - Chi Young Ok
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States
| | - Yang O Huh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, United States
| |
Collapse
|
10
|
Shi M, Xu G. Development and validation of GMI signature based random survival forest prognosis model to predict clinical outcome in acute myeloid leukemia. BMC Med Genomics 2019; 12:90. [PMID: 31242922 PMCID: PMC6595612 DOI: 10.1186/s12920-019-0540-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a disease with marked molecular heterogeneity and a high early death rate. Our aim was to investigate an integrated Gene expression, Mirna and miRNA-mRNA Interactions (GMI) signature for improving risk stratification of AML. Methods We identified differentially expressed genes by pooling a large number of 861 human AML patients and 75 normal cases. We then used miRWalk to identify the functional miRNA-mRNA regulatory module. The GMI signature based random survival forest (RSF) prognosis model was developed from training data set and evaluated in independent patient cohorts from The Cancer Genome Atlas (TCGA) dataset (N = 147). Univariate and multivariate Cox proportional hazards regression analyses were applied to evaluate the prognostic value of GMI signature. Results We identified 139 differentially expressed genes between normal and abnormal AML samples. We discovered the functional miRNA-mRNA regulatory module which participate in the network of cancer progression. We named 23 differentially expressed genes and 16 validated target miRNAs as the GMI signature. The RSF model-based scores separated independent patient cohorts into two groups with significantly different overall survival (C-index = 0.59, hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.11–4.03; p = 0.019). Similar results were obtained with reversed training and testing datasets (C-index = 0.58, hazard ratio [HR], 2.08; 95% confidence interval [CI], 1.02–4.24; p = 0.038). The GMI signature score contributed more information about recurrence than standard clinical covariates. Conclusion The GMI signature based RSF prognosis model not only reflects regulatory relationships from identified miRNA-mRNA module but also informs patient prognosis. While in the TCGA data set the GMI signature score contributed additional information about recurrence in comparison to standard clinical covariates, further studies are needed to determine its clinical significance. Electronic supplementary material The online version of this article (10.1186/s12920-019-0540-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mingguang Shi
- School of Electric Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, China.
| | - Guofu Xu
- School of Electric Engineering and Automation, Hefei University of Technology, Hefei, 230009, Anhui, China
| |
Collapse
|
11
|
Hu G, Mallik DK, Yang W, Hou Y, Cheng Z, Chen P, Zhu W, Wang H, Shen L, Zhang H, Yang Z. Appropriate Clinical Strategies for Breast Cancer Coexisting with Acute Myeloid Leukemia in the Genomic-Molecular Era: A Case Report. Breast Care (Basel) 2016; 11:145-7. [PMID: 27239178 DOI: 10.1159/000443494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The coexistence of breast cancer (BC) and acute myeloid leukemia (AML) has rarely been reported. Considering the fatality of AML, the management of this condition is based on treating the AML immediately while putting BC treatment on hold. CASE REPORT Here, we report a synchronous occurrence of BC and AML. Prognostic factors for both BC and AML were determined by genomic and molecular evaluation. The evaluation for AML showed a relatively good prognosis, and we simultaneously conducted treatment for AML and BC. The patient has survived for more than 3 years, which makes this the case with the longest survival reported. CONCLUSION In patients with BC and AML, it is essential to determine the prognosis through a genomic and molecular evaluation. For a certain group of patients whose prognosis of AML is good, simultaneous or initial treatment of BC before treatment of AML may be appropriate.
Collapse
Affiliation(s)
- Guangfu Hu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dipendra K Mallik
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weige Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhixiang Cheng
- Hematological Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pu Chen
- Hematological Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Zhu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Shen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongwei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziang Yang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Tang G, DiNardo C, Zhang L, Ravandi F, Khoury JD, Huh YO, Muzzafar T, Medeiros LJ, Wang SA, Bueso-Ramos CE. MLL gene amplification in acute myeloid leukemia and myelodysplastic syndromes is associated with characteristic clinicopathological findings and TP53 gene mutation. Hum Pathol 2015; 46:65-73. [PMID: 25387813 DOI: 10.1016/j.humpath.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 02/03/2023]
Abstract
MLL gene rearrangements are well-recognized aberrations in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). In contrast, MLL gene amplification in AML/MDS remains poorly characterized. Here, we report a series of 21 patients with myeloid neoplasms associated with MLL gene amplification from 1 institution. This series included 13 men and 8 women, with a median age of 64 years. Eleven patients presented as AML with myelodysplasia-related changes, 6 as therapy-related AML, and 4 as therapy-related MDS. All patients had a highly complex karyotype, including frequent -5/del(5q), -18, and -17/del(17p) abnormalities; 16 patients were hypodiploid. TP53 mutations were detected in all 12 patients tested, and 3 patients showed TP53 mutation before MLL amplification. Morphologically, the leukemic cells frequently showed cytoplasmic vacuoles, bilobed nuclei, and were associated with background dyspoiesis. Immunophenotypically, 15 patients had a myeloid and 4 had myelomonocytic immunophenotype. Laboratory coagulopathies were common; 7 patients developed disseminated intravascular coagulopathy, and 3 died of intracranial bleeding. All patients were refractory to therapy; the median overall survival was 1 month, after MLL gene amplification was detected. We concluded that AML/MDS with MLL gene amplification is likely a subset of therapy-related AML/MDS or AML with myelodysplasia-related changes, associated with distinct clinicopathological features, frequent disseminated intravascular coagulopathy, a highly complex karyotype, TP53 deletion/mutation, and an aggressive clinical course.
Collapse
Affiliation(s)
- Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liping Zhang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yang O Huh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tariq Muzzafar
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos E Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
13
|
Liberati S, Morelli MB, Amantini C, Farfariello V, Santoni M, Conti A, Nabissi M, Cascinu S, Santoni G. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression. Cells 2014; 3:112-28. [PMID: 24709905 PMCID: PMC3980744 DOI: 10.3390/cells3010112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/22/2014] [Accepted: 02/08/2014] [Indexed: 12/31/2022] Open
Abstract
Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs), in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas), induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.
Collapse
Affiliation(s)
- Sonia Liberati
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| | - Consuelo Amantini
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| | - Valerio Farfariello
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| | - Matteo Santoni
- Medical Oncology, Polytechnic University of the Marche Region, Via Tronto 10, 60020, Ancona, Italy.
| | - Alessandro Conti
- Medical Oncology, Polytechnic University of the Marche Region, Via Tronto 10, 60020, Ancona, Italy.
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| | - Stefano Cascinu
- Medical Oncology, Polytechnic University of the Marche Region, Via Tronto 10, 60020, Ancona, Italy.
| | - Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, P.zza dei Costanti, 63032, Camerino, Macerata, Italy.
| |
Collapse
|
14
|
Tian X, Zhang S, Liu HM, Zhang YB, Blair CA, Mercola D, Sassone-Corsi P, Zi X. Histone lysine-specific methyltransferases and demethylases in carcinogenesis: new targets for cancer therapy and prevention. Curr Cancer Drug Targets 2014; 13:558-79. [PMID: 23713993 DOI: 10.2174/1568009611313050007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/27/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022]
Abstract
Aberrant histone lysine methylation that is controlled by histone lysine methyltransferases (KMTs) and demethylases (KDMs) plays significant roles in carcinogenesis. Infections by tumor viruses or parasites and exposures to chemical carcinogens can modify the process of histone lysine methylation. Many KMTs and KDMs contribute to malignant transformation by regulating the expression of human telomerase reverse transcriptase (hTERT), forming a fused gene, interacting with proto-oncogenes or being up-regulated in cancer cells. In addition, histone lysine methylation participates in tumor suppressor gene inactivation during the early stages of carcinogenesis by regulating DNA methylation and/or by other DNA methylation independent mechanisms. Furthermore, recent genetic discoveries of many mutations in KMTs and KDMs in various types of cancers highlight their numerous roles in carcinogenesis and provide rare opportunities for selective and tumor-specific targeting of these enzymes. The study on global histone lysine methylation levels may also offer specific biomarkers for cancer detection, diagnosis and prognosis, as well as for genotoxic and non-genotoxic carcinogenic exposures and risk assessment. This review summarizes the role of histone lysine methylation in the process of cellular transformation and carcinogenesis, genetic alterations of KMTs and KDMs in different cancers and recent progress in discovery of small molecule inhibitors of these enzymes.
Collapse
Affiliation(s)
- Xuejiao Tian
- Department of Urology, University of California, Irvine, Orange CA 92868, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sarova I, Brezinova J, Zemanova Z, Bystricka D, Krejcik Z, Soukup P, Vydra J, Cermak J, Jonasova A, Michalova K. Characterization of chromosome 11 breakpoints and the areas of deletion and amplification in patients with newly diagnosed acute myeloid leukemia. Genes Chromosomes Cancer 2013; 52:619-35. [PMID: 23580398 DOI: 10.1002/gcc.22058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/24/2013] [Indexed: 01/08/2023] Open
Abstract
Chromosome 11 abnormalities are found in many hematological malignancies. In acute myeloid leukemia (AML), a proto-oncogene MLL (11q23.3) is frequently altered. However, rearrangements involving other regions of chromosome 11 have been reported. Therefore, we have characterized the chromosome 11 breakpoints and common deleted and amplified areas in the bone marrow or peripheral blood cells of newly diagnosed patients with AML. Using molecular-cytogenetic methods (multicolor fluorescence in situ hybridization (mFISH), multicolor banding (mBAND), microarrays, and FISH with bacterial artificial chromosome (BAC) probes, chromosome 11 abnormalities were delineated in 54 out of 300 (18%) newly diagnosed AML patients. At least 36 different chromosome 11 breakpoints were identified; two were recurrent (11p15.4 in the NUP98 gene and 11q23.3 in the MLL gene), and three were possibly nonrandom: 11p13 (ch11:29.31-31.80 Mb), 11p12 (ch11:36.75-37.49 Mb) and 11q13.2 (68.31-68.52 Mb). One new MLL gene rearrangement is also described. No commonly deleted region of chromosome 11 was identified. However, some regions were affected more often: 11pter-11p15.5 (n = 4; ch11:0-3.52 Mb), 11p14.1-11p13 (n = 4; ch11:28.00-31.00 Mb) and 11p13 (n = 4; ch11:31.00-31.50 Mb). One commonly duplicated (3 copies) region was identified in chromosomal band 11q23.3-11q24 (n = 9; ch11:118.35-125.00 Mb). In all eight cases of 11q amplification (>3 copies), only the 5' part of the MLL gene was affected. This study highlights several chromosome 11 loci that might be important for the leukemogeneic process in AML.
Collapse
Affiliation(s)
- Iveta Sarova
- Cytogenetic Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Transcription factors critical for normal hematopoietic stem cell functions are frequently mutated in acute leukemia leading to an aberrant re-programming of normal hematopoietic progenitor/stem cells into leukemic stem cells. Among them, re-arrangements of the mixed lineage leukemia gene (MLL), including chimeric fusion, partial tandem duplication (PTD), amplification and internal exonic deletion, represent one of the most common recurring oncogenic events and associate with very poor prognosis in human leukemias. Extensive research on wild type MLL and MLL-fusions has significant advanced our knowledge about their functions in normal and malignant hematopoiesis, which also provides a framework for the underlying pathogenic role of MLL re-arrangements in human leukemias. In contrast, research progress on MLL-PTD, MLL amplification and internal exonic deletion remains stagnant, in particular for the last two abnormalities where mouse model is not yet available. In this article, we will review the key features of both wild-type and re-arranged MLL proteins with particular focuses on MLL-PTD and MLL amplification for their roles in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Bon Ham Yip
- Leukemia and Stem Cell Biology Lab, Department of Haematological Medicine, King's College London, Denmark Hill, London SE5 9NU, UK
| | | |
Collapse
|
17
|
TRPV channels in tumor growth and progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 704:947-67. [PMID: 21290335 DOI: 10.1007/978-94-007-0265-3_49] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential (TRP) channels affect several physiological and pathological processes. In particular, TRP channels have been recently involved in the triggering of enhanced proliferation, aberrant differentiation, and resistance to apoptotic cell death leading to the uncontrolled tumor invasion. About thirty TRPs have been identified to date, and are classified in seven different families: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin), TRPP (Polycystin), and TRPA (Ankyrin transmembrane protein) and TRPN (NomPC-like). Among these channel families, the TRPC, TRPM, and TRPV families have been mainly correlated with malignant growth and progression. The aim of this review is to summarize data reported so far on the expression and the functional role of TRPV channels during cancer growth and progression. TRPV channels have been found to regulate cancer cell proliferation, apoptosis, angiogenesis, migration and invasion during tumor progression, and depending on the stage of the cancer, up- and down-regulation of TRPV mRNA and protein expression have been reported. These changes may have cancer promoting effects by increasing the expression of constitutively active TRPV channels in the plasma membrane of cancer cells by enhancing Ca(2+)-dependent proliferative response; in addition, an altered expression of TRPV channels may also offer a survival advantage, such as resistance of cancer cells to apoptotic-induced cell death. However, recently, a role of TRPV gene mutations in cancer development, and a relationship between the expression of specific TRPV gene single nucleotide polymorphisms and increased cancer risk have been reported. We are only at the beginning, a more deep studies on the physiopathology role of TRPV channels are required to understand the functional activity of these channels in cancer, to assess which TRPV proteins are associated with the development and progression of cancer and to develop further knowledge of TRPV proteins as valuable diagnostic and/or prognostic markers, as well as targets for pharmaceutical intervention and targeting in cancer.
Collapse
|
18
|
Bajaj R, Xu F, Xiang B, Wilcox K, Diadamo AJ, Kumar R, Pietraszkiewicz A, Halene S, Li P. Evidence-based genomic diagnosis characterized chromosomal and cryptic imbalances in 30 elderly patients with myelodysplastic syndrome and acute myeloid leukemia. Mol Cytogenet 2011; 4:3. [PMID: 21251322 PMCID: PMC3031273 DOI: 10.1186/1755-8166-4-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 01/20/2011] [Indexed: 12/16/2022] Open
Abstract
Background To evaluate the clinical validity of genome-wide oligonucleotide array comparative genomic hybridization (aCGH) for detecting somatic abnormalities, we have applied this genomic analysis to 30 cases (13 MDS and 17 AML) with clonal chromosomal abnormalities detected in more than 50% of analyzed metaphase cells. Results The aCGH detected all numerical chromosomal gains and losses from the mainline clones and 113 copy number alterations (CNAs) ranging from 0.257 to 102.519 megabases (Mb). Clinically significant recurrent deletions of 5q (involving the RPS14 gene), 12p12.3 (ETV6 gene), 17p13 (TP53 gene), 17q11.2 (NF1 gene) and 20q, double minutes containing the MYC gene and segmental amplification involving the MLL gene were further characterized with defined breakpoints and gene contents. Genomic features of microdeletions at 17q11.2 were confirmed by FISH using targeted BAC clones. The aCGH also defined break points in a derivative chromosome 6, der(6)t(3;6)(q21.3;p22.2), and an isodicentric X chromosome. However, chromosomally observed sideline clonal abnormalities in five cases were not detected by aCGH. Conclusions Our data indicated that an integrated cytogenomic analysis will be a better diagnostic scheme to delineate genomic contents of chromosomal and cryptic abnormalities in patients with MDS and AML. An evidence-based approach to interpret somatic genomic findings was proposed.
Collapse
Affiliation(s)
- Renu Bajaj
- Molecular Cytogenetics Laboratory, Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Praulich I, Tauscher M, Göhring G, Glaser S, Hofmann W, Feurstein S, Flotho C, Lichter P, Niemeyer CM, Schlegelberger B, Steinemann D. Clonal heterogeneity in childhood myelodysplastic syndromes--challenge for the detection of chromosomal imbalances by array-CGH. Genes Chromosomes Cancer 2010; 49:885-900. [PMID: 20589934 DOI: 10.1002/gcc.20797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To evaluate whether copy number alterations (CNAs) are present that may contribute to disease development and/or progression of childhood myelodysplastic syndromes (MDS), 36 pediatric MDS patients were analyzed using array-based comparative genome hybridization (aCGH). In addition to monosomy 7, the most frequent chromosome aberration in childhood MDS, novel recurrent CNAs were detected. They included a loss of 3p14.3-p12.3, which contains the putative tumor suppressor gene FHIT, a loss of 7p21.3-p15.3, a loss of 9q33.3-q34.3 (D184) and microdeletions in 17p11.2, 6q23 containing MYB, and 17p13 containing TP53. In this small patient cohort, patients without CNA, patients with monosomy 7 only and patients with one CNA in addition to monosomy 7 did not differ in their survival. As expected, all patients with complex karyotypes, including two patients with deletions of TP53, died. A challenge inherent to aCGH analysis of MDS is the low percentage of tumor cells. We evaluated several approaches to overcome this limitation. Genomic profiles from isolated granulocytes were of higher quality than those from bone marrow mononuclear cells. Decreased breakpoint calling stringency increased recognition of CNAs present in small clonal populations. However, further analysis using a custom-designed array showed that these CNAs often did not confirm the findings from 244k arrays. In contrast, constitutional CNVs were reliably detected on both arrays. Moreover, aCGH on amplified DNA from distinct myeloid clusters is a new approach to determine CNAs in small subpopulations. Our results clearly emphasize the need to verify array-CGH results by independent methods like FISH or quantitative PCR.
Collapse
Affiliation(s)
- Inka Praulich
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
De Brouwer S, De Preter K, Kumps C, Zabrocki P, Porcu M, Westerhout EM, Lakeman A, Vandesompele J, Hoebeeck J, Van Maerken T, De Paepe A, Laureys G, Schulte JH, Schramm A, Van Den Broecke C, Vermeulen J, Van Roy N, Beiske K, Renard M, Noguera R, Delattre O, Janoueix-Lerosey I, Kogner P, Martinsson T, Nakagawara A, Ohira M, Caron H, Eggert A, Cools J, Versteeg R, Speleman F. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification. Clin Cancer Res 2010; 16:4353-62. [PMID: 20719933 DOI: 10.1158/1078-0432.ccr-09-2660] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. EXPERIMENTAL DESIGN The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. RESULTS ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. CONCLUSIONS ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.
Collapse
Affiliation(s)
- Sara De Brouwer
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Šárová I, Březinová J, Zemanová Z, Izáková S, Lizcová L, Malinová E, Berková A, Čermák J, Maaloufová J, Nováková L, Michalová K. Cytogenetic manifestation of chromosome 11 duplication/amplification in acute myeloid leukemia. ACTA ACUST UNITED AC 2010; 199:121-7. [DOI: 10.1016/j.cancergencyto.2010.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/12/2010] [Accepted: 02/08/2010] [Indexed: 01/19/2023]
|
22
|
Amakawa R, Hiramoto N, Kawano S, Hyo A, Nakamichi N, Tajima K, Ito T, Mori S, Kishimoto Y, Fukuhara S. Dic (17;20) (p11;q11) preceded MLL gene amplification in a patient with de novo mixed-lineage leukemia. J Clin Exp Hematop 2010; 50:51-8. [PMID: 20505276 DOI: 10.3960/jslrt.50.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We report a case of acute mixed-lineage leukemia, as seen in a 65 year-old female with MLL gene amplification and biallelic loss of wild type p53 gene. The diagnosis was based on the findings that her bone marrow (BM) blasts expressed cytoplasmic CD3 (cyCD3), B-lineage antigens and myeloid antigens accompanied by clonal rearrangements of IgH gene. The BM blasts consisted of small-sized peroxidase-negative blasts (97%) and large-sized peroxidase-positive blasts (3%). The BM blasts showed a complex "karyotype," including dic(17;20) (p11;q11), -5 and add (11q23). Add (11q23) abnormality was found in sideline karyotypes as well as the stemline abnormality of dic(17;20) (p11;q11). For the p53 gene, which is located at 17p13, fluorescence in situ hybridization analysis showed the loss of one of two p53 alleles. Furthermore, polymerase chain reaction-single-strand conformation polymorphism and following nucleotide sequencing showed that the p53 gene was mutated at codon 215, leading to an amino acid substitution from Ser to Arg. For the MLL gene, southern blot analysis showed that the MLL gene locus was amplified but not rearranged at its breakpoint cluster region, which is usually rearranged in balanced translocations with many partner genes. These findings suggest that MLL gene amplification may in this case be based on the genetic instability caused by the preceding biallelic loss of the wild type p53 gene.
Collapse
Affiliation(s)
- Ryuichi Amakawa
- First Department of Internal Medicine, Kansai Medical University.
| | | | | | | | | | | | | | | | | | | |
Collapse
|