1
|
Zhou L, Zheng H, Huang X, Zhu L, Wu S, Zeng C, Yang L, Chen S, Luo G, Du X, Li Y. Different genetic alteration of A20
in a Sézary syndrome case with Vα2-Jα22
T cell clone. Asia Pac J Clin Oncol 2017; 14:e116-e123. [PMID: 28296250 DOI: 10.1111/ajco.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Lingling Zhou
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Haitao Zheng
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Xin Huang
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Lihua Zhu
- Department of Rheumatism and Immunology; First Affiliated Hospital; Jinan University; Guangzhou China
| | - Suijing Wu
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Chengwu Zeng
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Lijian Yang
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Shaohua Chen
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
| | - Gengxin Luo
- Department of Hematology; First Affiliated Hospital; Jinan University; Guangzhou China
| | - Xin Du
- Department of Hematology; Guangdong General Hospital (Guangdong Academy of Medical Sciences); Guangzhou China
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education; Jinan University; Guangzhou China
- Institute of Hematology, School of Medicine; Jinan University; Guangzhou China
- Department of Hematology; First Affiliated Hospital; Jinan University; Guangzhou China
| |
Collapse
|
2
|
Huang X, Geng S, Weng J, Lu Z, Zeng L, Li M, Deng C, Wu X, Li Y, Du X. Analysis of the expression of PHTF1 and related genes in acute lymphoblastic leukemia. Cancer Cell Int 2015; 15:93. [PMID: 26448723 PMCID: PMC4595316 DOI: 10.1186/s12935-015-0242-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/08/2015] [Indexed: 11/18/2022] Open
Abstract
Background Previous study showed that downregulated BCL11B expression in T cell acute lymphoblastic leukemia (T-ALL) cell line Molt-4 inhibited cell proliferation and induce apoptosis, which may be related to PHTF1 gene overexpression. The objective of this study was to investigate the expression of PHTF1 and related genes in ALL and further explore its function in T-ALL cell lines. Methods Real-time PCR was used to determine the gene expression level of PHTF1 in hematologic malignancies. The PHTF1, BCL11B, FEM1B and Apaf-1 gene expression levels and correlations were analyzed in patients with primary ALL (including T-ALL and B-ALL) and healthy individuals (HIs). Inhibition and overexpression of PHTF1 by lentiviral transduction were performed using the Molt-4 and Jurkat cell lines. Cell growth and apoptosis were measured by the Cell Counting Kit-8 assay and flow cytometry, respectively. Upon PHTF1 overexpression, the BCL11B, FEM1B and Apaf-1 gene expression levels were determined by real-time PCR. Results PHTF1 overexpression was found in both T-ALL (p = 0.004) and B-ALL (p < 0.001) groups compared with HIs group. A trend toward a negative correlation between the PHTF1 and BCL11B genes was detected for the T-ALL group, while positively correlated expression was found for the PHTF1 and BCL11B genes in HIs (P = 0.001). FEM1b and Apaf-1 overexpression was found in recently diagnosed ALL patients compared with HIs (p < 0.05). Positively correlated expression was found for the PHTF1, FEM1b and Apaf-1 genes in patients with ALL (p < 0.05) and HIs (p < 0.05). Direct up-regulation of PHTF1 expression inhibited the proliferation of Jurkat and Molt-4 cells and effectively induced apoptosis in Molt-4 cells. Direct inhibition of PHTF1 expression had no significant effect on the proliferation or apoptosis of Jurkat and Molt-4 cells. FEM1b and Apaf-1 overexpression, which did not obviously alter the BCL11B expression level, was detected in PHTF1-transduced T-ALL cell lines. Conclusions PHTF1 overexpression is responsible for regulating cell proliferation and apoptosis in T-ALL cell lines. PHTF1 may be a tumor-suppressor like gene and a therapeutic target for triggering the PHTF1-FEM1b-Apaf-1 apoptosis pathway.
Collapse
Affiliation(s)
- Xin Huang
- Southern Medical University, 510515 Guangzhou, People's Republic of China ; Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Suxia Geng
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Jianyu Weng
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Zesheng Lu
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Lingji Zeng
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Minming Li
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Chengxin Deng
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| | - Xiuli Wu
- Institute of Hematology, Medical College, Jinan University, 510632 Guangzhou, People's Republic of China
| | - Yangqiu Li
- Institute of Hematology, Medical College, Jinan University, 510632 Guangzhou, People's Republic of China ; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 510632 Guangzhou, People's Republic of China
| | - Xin Du
- Department of Haematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 510080 Guangzhou, People's Republic of China
| |
Collapse
|
3
|
Ma Y, Liao Z, Xu Y, Zhong Z, Wang X, Zhang F, Chen S, Yang L, Luo G, Huang X, Huang S, Wu X, Li Y. Characteristics of CARMA1-BCL10-MALT1-A20-NF-κB expression in T cell-acute lymphocytic leukemia. Eur J Med Res 2014; 19:62. [PMID: 25384343 PMCID: PMC4228272 DOI: 10.1186/s40001-014-0062-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022] Open
Abstract
Background Knowledge of the oncogenic signaling pathways of T-cell acute lymphoblastic leukemia (T-ALL) remains limited. Constitutive aberrant activation of the nuclear factor kappa B (NF-κB) signaling pathway has been detected in various lymphoid malignancies and plays a key role in the development of these carcinomas. The zinc finger-containing protein, A20, is a central regulator of multiple NF-κB-activating signaling cascades. A20 is frequently inactivated by deletions and/or mutations in several B-and T-cell lymphoma subtypes. However, few A20 mutations and polymorphisms have been reported in T-ALL. Thus, it is of interest to analyze the expression characteristics of A20 and its regulating factors, including upstream regulators and the CBM complex, which includes CARMA1, BCL10, and MALT1. Methods The expression levels of CARMA1, BCL10, MALT1, A20, and NF-κB were detected in peripheral blood mononuclear cells (PBMCs) from 21 patients with newly diagnosed T-ALL using real-time PCR, and correlations between the aberrant expression of these genes in T-ALL was analyzed. Sixteen healthy individuals, including 10 males and 6 females, served as controls. Results Significantly lower A20 expression was found in T-ALL patients (median: 4.853) compared with healthy individuals (median: 8.748; P = 0.017), and significantly increased expression levels of CARMA1 (median: 2.916; P = 0.034), BCL10 (median: 0.285; P = 0.033), and MALT1 (median: 1.201; P = 0.010) were found in T-ALL compared with the healthy individuals (median: 1.379, 0.169, and 0.677, respectively). In contrast, overexpression of NF-κB (median: 0.714) was found in T-ALL compared with healthy individuals (median: 0.335; P = 0.001). A negative correlation between the MALT1 and A20 expression levels and a positive correlation between CARMA1 and BCL10 were found in T-ALL and healthy individuals. However, no negative correlation was found between A20 and NF-κB and the MALT1 and NF-κB expression level in the T-ALL group. Conclusions We characterized the expression of the CARMA-BCL10-MALT1-A20-NF-κB pathway genes in T-ALL. Overexpression of CARMA-BCL10-MALT in T-ALL may contribute to the constitutive cleavage and inactivation of A20, which enhances NF-κB signaling and may be related to T-ALL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiuli Wu
- Institute of Hematology, Jinan University, Guangzhou 510632, China.
| | | |
Collapse
|
4
|
Larmonie NSD, Dik WA, Meijerink JPP, Homminga I, van Dongen JJM, Langerak AW. Breakpoint sites disclose the role of the V(D)J recombination machinery in the formation of T-cell receptor (TCR) and non-TCR associated aberrations in T-cell acute lymphoblastic leukemia. Haematologica 2014; 98:1173-84. [PMID: 23904235 DOI: 10.3324/haematol.2012.082156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Nicole S D Larmonie
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Zhu L, Zhang F, Shen Q, Chen S, Wang X, Wang L, Yang L, Wu X, Huang S, Schmidt CA, Li Y. Characteristics of A20 gene polymorphisms in T-cell acute lymphocytic leukemia. Hematology 2014; 19:448-54. [PMID: 24611736 DOI: 10.1179/1607845414y.0000000160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Lihua Zhu
- Department of Rheumatism and ImmunologyFirst Hospital Affiliated, Jinan University, Guangzhou, China
- Institute of HematologyJinan University, Guangzhou, China
| | - Fan Zhang
- Institute of HematologyJinan University, Guangzhou, China
| | - Qi Shen
- Institute of HematologyJinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of HematologyJinan University, Guangzhou, China
| | - Xu Wang
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan University, Guangzhou, China
| | - Liang Wang
- Department of OncologyFirst Hospital Affiliated, Jinan University, Guangzhou, China
| | - Lijian Yang
- Institute of HematologyJinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of HematologyJinan University, Guangzhou, China
| | - Suming Huang
- Department of Biochemistry and Molecular BiologyCollege of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian A. Schmidt
- Department of Hematology and OncologyErnst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Yangqiu Li
- Institute of HematologyJinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan University, Guangzhou, China
| |
Collapse
|
6
|
Genetic and epigenetic determinants mediate proneness of oncogene breakpoint sites for involvement in TCR translocations. Genes Immun 2013; 15:72-81. [PMID: 24304972 DOI: 10.1038/gene.2013.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/30/2013] [Accepted: 10/22/2013] [Indexed: 01/03/2023]
Abstract
T-cell receptor (TCR) translocations are a genetic hallmark of T-cell acute lymphoblastic leukemia and lead to juxtaposition of oncogene and TCR loci. Oncogene loci become involved in translocations because they are accessible to the V(D)J recombination machinery. Such accessibility is predicted at cryptic recombination signal sequence (cRSS) sites ('Type 1') as well as other sites that are subject to DNA double-strand breaks (DSBs) ('Type 2') during early stages of thymocyte development. As chromatin accessibility markers have not been analyzed in the context of TCR-associated translocations, various genetic and epigenetic determinants of LMO2, TAL1 and TLX1 translocation breakpoint (BP) sites and BP cluster regions (BCRs) were examined in human thymocytes to establish DSB proneness and heterogeneity of BP site involvement in TCR translocations. Our data show that DSBs in BCRs are primarily induced in the presence of a genetic element of sequence vulnerability (cRSSs, transposable elements), whereas breaks at single BP sites lacking such elements are more likely induced by chance or perhaps because of patient-specific genetic vulnerability. Vulnerability to obtain DSBs is increased by features that determine chromatin organization, such as methylation status and nucleosome occupancy, although at different levels at different BP sites.
Collapse
|
7
|
Chen S, Huang X, Zheng H, Geng S, Wu X, Yang L, Weng J, Du X, Li Y. The evolution of malignant and reactive γδ + T cell clones in a relapse T-ALL case after allogeneic stem cell transplantation. Mol Cancer 2013; 12:73. [PMID: 23849082 PMCID: PMC3717050 DOI: 10.1186/1476-4598-12-73] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/10/2013] [Indexed: 01/20/2023] Open
Abstract
Background To improve the outcome of patients with T-cell acute lymphoblastic leukemia (T-ALL), characterization of the biological features of T-ALL blast cells and the immune status of patients with T-ALL is needed to identify specific therapeutic strategies. Findings Using a novel approach based on the combination of fine-tiling comparative genomic hybridization (FT-CGH) and ligation-mediated PCR (LM-PCR), we molecularly identified a malignant γδ + T cell clone with a Vδ5Dδ2Jδ1 rearrangement that was paired with a T cell receptor (TCR) VγI and comprised a Vγ1Vδ5 T cell clone in a relapse T-ALL patient. This malignant Vδ5 T cell clone disappeared after chemotherapy, but the clone was detected again when disease relapsed post allogeneic hematopoietic stem cell transplantation (allo-HSCT) at 100 weeks. Using PCR and GeneScan analyses, the distribution and clonality of the TCR Vγ and Vδ subfamilies were examined before and after allo-HSCT in the patient. A reactive T cell clone with a Vδ4Dδ3Jδ1 rearrangement was identified in all samples taken at different time points (i.e., 4, 8, 68, 100 and 108 weeks after allo-HSCT). The expression of this Vδ4+ T cell clone was higher in the patient during complete remission (CR) post allo-HSCT and at disease relapse. Conclusions This study established a sensitive methodology to detect T cell subclones, which may be used to monitor minimal residual disease and immune reconstitution.
Collapse
|
8
|
Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 2012; 120:3298-309. [DOI: 10.1182/blood-2012-04-425488] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abstract
Chromosomal translocations involving the TCR loci represent one of the most recurrent oncogenic hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) and are generally believed to result from illegitimate V(D)J recombination events. However, molecular characterization and evaluation of the extent of recombinase involvement at the TCR-oncogene junction has not been fully evaluated. In the present study, screening for TCRβ and TCRα/δ translocations by FISH and ligation-mediated PCR in 280 T-ALLs allowed the identification of 4 previously unreported TCR-translocated oncogene partners: GNAG, LEF1, NKX2-4, and IL2RB. Molecular mapping of genomic junctions from TCR translocations showed that the majority of oncogenic partner breakpoints are not recombinase mediated and that the regulatory elements predominantly used to drive oncogene expression differ markedly in TCRβ (which are exclusively enhancer driven) and TCRα/δ (which use an enhancer-independent cryptic internal promoter) translocations. Our data also imply that oncogene activation takes place at a very immature stage of thymic development, when Dδ2-Dδ3/Dδ3-Jδ1 and Dβ-Jβ rearrangements occur, whereas the bulk leukemic maturation arrest occurs at a much later (cortical) stage. These observations have implications for T-ALL therapy, because the preleukemic early thymic clonogenic population needs to be eradicated and its disappearance monitored.
Collapse
|
9
|
Lin C, Zheng H, Wang C, Yang L, Chen S, Li B, Zhou Y, Tan H, Li Y. Mutations increased overexpression of Notch1 in T-cell acute lymphoblastic leukemia. Cancer Cell Int 2012; 12:13. [PMID: 22480166 PMCID: PMC3347979 DOI: 10.1186/1475-2867-12-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/05/2012] [Indexed: 11/23/2022] Open
Abstract
Background The Notch signaling pathway is crucial in T-cell development, Notch1 mutations are frequently present in T-cell acute lymphoblastic leukemia (T-ALL). To investigate the feature of Notch1 mutation and its corresponding expression level in Chinese patients with T-ALL, detection of mutation and the expression level of Notch1 gene was preformed using RT-PCR, sequencing and real-time PCR respectively. Results Two Notch1 point mutations (V1578E and L1593P) located on HD-N domain were identified in three cases out of 13 T-ALL patients. The mutation on 4733 position (V1578E) found in two cases was a novel mutation. The overexpression of Notch1 was detected in all samples with T-ALL, moreover, significantly higher expression of Notch1 was detected in the T-ALL with Notch1 mutation group compared with T-ALL with WT Notch1 group (p = 0.0192). Conclusions Higher expression of Notch1 was associated with Notch1 mutation, more novel mutation of this gene might be identified in different populations and its contribution to the molecular pathogenesis of T-ALL is needed further research.
Collapse
Affiliation(s)
- Chunlan Lin
- Institute of Hematology, Medical College, Jinan University, Guangzhou 510632, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|