1
|
Chen X, Baker D, Dolzhenko E, Devaney JM, Noya J, Berlyoung AS, Brandon R, Hruska KS, Lochovsky L, Kruszka P, Newman S, Farrow E, Thiffault I, Pastinen T, Kasperaviciute D, Gilissen C, Vissers L, Hoischen A, Berger S, Vilain E, Délot E, Eberle MA. Genome-wide profiling of highly similar paralogous genes using HiFi sequencing. Nat Commun 2025; 16:2340. [PMID: 40057485 PMCID: PMC11890787 DOI: 10.1038/s41467-025-57505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Variant calling is hindered in segmental duplications by sequence homology. We developed Paraphase, a HiFi-based informatics method that resolves highly similar genes by phasing all haplotypes of paralogous genes together. We applied Paraphase to 160 long (>10 kb) segmental duplication regions across the human genome with high (>99%) sequence similarity, encoding 316 genes. Analysis across five ancestral populations revealed highly variable copy numbers of these regions. We identified 23 paralog groups with exceptionally low within-group diversity, where extensive gene conversion and unequal crossing over contribute to highly similar gene copies. Furthermore, our analysis of 36 trios identified 7 de novo SNVs and 4 de novo gene conversion events, 2 of which are non-allelic. Finally, we summarized extensive genetic diversity in 9 medically relevant genes previously considered challenging to genotype. Paraphase provides a framework for resolving gene paralogs, enabling accurate testing in medically relevant genes and population-wide studies of previously inaccessible genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Emily Farrow
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pediatrics, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy Kansas City, Kansas City, MO, USA
- UMKC School of Medicine, University of Missouri Kansas City, Kansas City, MO, USA
| | | | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases (RCI), Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Expertise Center for Immunodeficiency and Autoinflammation and Radboud Center for Infectious Disease (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Seth Berger
- Center for Genetics Medicine Research, Children's National Hospital, Washington, DC, USA
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | - Emmanuèle Délot
- Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
| | | |
Collapse
|
2
|
Bouras A, Lefol C, Ruano E, Grand-Masson C, Wang Q. PMS2 or PMS2CL? Characterization of variants detected in the 3' of the PMS2 gene. Genes Chromosomes Cancer 2024; 63:e23193. [PMID: 37534630 DOI: 10.1002/gcc.23193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
PMS2 germline pathogenic variants are one of the major causes for Lynch syndrome and constitutional mismatch repair deficiencies. Variant identification in the 3' region of this gene is complicated by the presence of the pseudogene PMS2CL which shares a high sequence homology with PMS2. Consequently, short-fragment screening strategies (NGS, Sanger) may fail to discriminate variant's gene localization. Using a comprehensive analysis strategy, we assessed 42 NGS-detected variants in 76 patients and found 32 localized on PMS2 while 6 on PMS2CL. Interestingly, four variants were detected in either of them in different patients. Clinical phenotype was well correlated to genotype, making it very helpful in variant assessment. Our findings emphasize the necessity of more specific complementary analyses to confirm the gene origin of each variant detected in different individuals in order to avoid variant misinterpretation. In addition, we characterized two PMS2 genomic alterations involving Alu-mediated tandem duplication and gene conversion. Those mechanisms seemed to be particularly favored in PMS2 which contribute to frequent genomic rearrangements in the 3' region of the gene.
Collapse
Affiliation(s)
- Ahmed Bouras
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
- Inserm U1052, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Cedrick Lefol
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Eric Ruano
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Chloé Grand-Masson
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| | - Qing Wang
- Centre Léon Bérard, Laboratory of Constitutional Genetics for Frequent Cancer HCL-CLB, Lyon, France
| |
Collapse
|
3
|
Schamschula E, Kinzel M, Wernstedt A, Oberhuber K, Gottschling H, Schnaiter S, Friedrichs N, Merkelbach-Bruse S, Zschocke J, Gallon R, Wimmer K. Teenage-Onset Colorectal Cancers in a Digenic Cancer Predisposition Syndrome Provide Clues for the Interaction between Mismatch Repair and Polymerase δ Proofreading Deficiency in Tumorigenesis. Biomolecules 2022; 12:biom12101350. [PMID: 36291559 PMCID: PMC9599501 DOI: 10.3390/biom12101350] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) in adolescents and young adults (AYA) is very rare. Known predisposition syndromes include Lynch syndrome (LS) due to highly penetrant MLH1 and MSH2 alleles, familial adenomatous polyposis (FAP), constitutional mismatch-repair deficiency (CMMRD), and polymerase proofreading-associated polyposis (PPAP). Yet, 60% of AYA-CRC cases remain unexplained. In two teenage siblings with multiple adenomas and CRC, we identified a maternally inherited heterozygous PMS2 exon 12 deletion, NM_000535.7:c.2007-786_2174+493del1447, and a paternally inherited POLD1 variant, NP_002682.2:p.Asp316Asn. Comprehensive molecular tumor analysis revealed ultra-mutation (>100 Mut/Mb) and a large contribution of COSMIC signature SBS20 in both siblings’ CRCs, confirming their predisposition to AYA-CRC results from a high propensity for somatic MMR deficiency (MMRd) compounded by a constitutional Pol δ proofreading defect. COSMIC signature SBS20 as well as SBS26 in the index patient’s CRC were associated with an early mutation burst, suggesting MMRd was an early event in tumorigenesis. The somatic second hits in PMS2 were through loss of heterozygosity (LOH) in both tumors, suggesting PPd-independent acquisition of MMRd. Taken together, these patients represent the first cases of cancer predisposition due to heterozygous variants in PMS2 and POLD1. Analysis of their CRCs supports that POLD1-mutated tumors acquire hypermutation only with concurrent MMRd.
Collapse
Affiliation(s)
- Esther Schamschula
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Kinzel
- Medicover Humangenetik—Berlin-Lichtenberg, 10315 Berlin, Germany
| | - Annekatrin Wernstedt
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Hendrik Gottschling
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Simon Schnaiter
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Johannes Zschocke
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
| | - Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katharina Wimmer
- Institute of Human Genetics, Medizinische Universität Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
4
|
Jansen AML, Tops CMJ, Ruano D, van Eijk R, Wijnen JT, Ten Broeke S, Nielsen M, Hes FJ, van Wezel T, Morreau H. The complexity of screening PMS2 in DNA isolated from formalin-fixed paraffin-embedded material. Eur J Hum Genet 2019; 28:333-338. [PMID: 31616036 DOI: 10.1038/s41431-019-0527-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/19/2019] [Accepted: 09/27/2019] [Indexed: 11/09/2022] Open
Abstract
Germline variants in the DNA mismatch repair (MMR) gene PMS2 cause 1-14% of all Lynch Syndrome cancers. Correct variant analysis of PMS2 is complex due to the presence of multiple pseudogenes and the occurrence of gene conversion. The analysis complexity increases in highly fragmented DNA from formalin-fixed paraffin-embedded (FFPE) tissue. Here we describe a reliable approach to detect true PMS2 variants in fragmented DNA. A custom NGS panel designed for FFPE tissue was used targeting four MMR genes, POLE and POLD1. Amplicon design for PMS2 was based on the position of paralogous sequence variants (PSVs) that distinguish PMS2 from its pseudogenes. PMS2 variants in exons 1-11 can be correctly curated based on this information. For exons 12-15 this is less reliable as these undergo gene conversion. Using this method, we screened PMS2 variants in 125 MMR-deficient tumors. Of the 125 tumors tested, six were unexplained MMR-deficient tumors with solitary PMS2 protein expression loss. In these six tumors two unclassified variants (class 3) and five variants likely affecting function (class 4/5) were detected in PMS2. One microsatellite unstable tumor with positive staining for all MMR proteins was found to carry a frameshift PMS2 variant (class 5). No class 4 or class 5 PMS2 variants were detected in tumors with other patterns of MMR protein expression loss.
Collapse
Affiliation(s)
- Anne M L Jansen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carli M J Tops
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ronald van Eijk
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Juul T Wijnen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanne Ten Broeke
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frederik J Hes
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Suerink M, Ripperger T, Messiaen L, Menko FH, Bourdeaut F, Colas C, Jongmans M, Goldberg Y, Nielsen M, Muleris M, van Kouwen M, Slavc I, Kratz C, Vasen HF, Brugiѐres L, Legius E, Wimmer K. Constitutional mismatch repair deficiency as a differential diagnosis of neurofibromatosis type 1: consensus guidelines for testing a child without malignancy. J Med Genet 2018; 56:53-62. [PMID: 30415209 DOI: 10.1136/jmedgenet-2018-105664] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare childhood cancer predisposition syndrome caused by biallelic germline mutations in one of four mismatch-repair genes. Besides very high tumour risks, CMMRD phenotypes are often characterised by the presence of signs reminiscent of neurofibromatosis type 1 (NF1). Because NF1 signs may be present prior to tumour onset, CMMRD is a legitimate differential diagnosis in an otherwise healthy child suspected to have NF1/Legius syndrome without a detectable underlying NF1/SPRED1 germline mutation. However, no guidelines indicate when to counsel and test for CMMRD in this setting. Assuming that CMMRD is rare in these patients and that expected benefits of identifying CMMRD prior to tumour onset should outweigh potential harms associated with CMMRD counselling and testing in this setting, we aimed at elaborating a strategy to preselect, among children suspected to have NF1/Legius syndrome without a causative NF1/SPRED1 mutation and no overt malignancy, those children who have a higher probability of having CMMRD. At an interdisciplinary workshop, we discussed estimations of the frequency of CMMRD as a differential diagnosis of NF1 and potential benefits and harms of CMMRD counselling and testing in a healthy child with no malignancy. Preselection criteria and strategies for counselling and testing were developed and reviewed in two rounds of critical revisions. Existing diagnostic CMMRD criteria were adapted to serve as a guideline as to when to consider CMMRD as differential diagnosis of NF1/Legius syndrome. In addition, counselling and testing strategies are suggested to minimise potential harms.
Collapse
Affiliation(s)
- Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Ludwine Messiaen
- Department of Genetics, University of Alabama, Birmingham, Alabama, USA
| | - Fred H Menko
- Family Cancer Clinic, Antoni van Leeuwenhoek Hospital and The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Franck Bourdeaut
- Département d'Oncologie Pédiatrique et d'Adolescents Jeunes Adultes, Institut Curie, Paris, France
| | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris Sciences Lettres Research University, Paris, France.,Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Marjolijn Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yael Goldberg
- Recanati Genetics Institute, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martine Muleris
- Centre de Recherche Saint-Antoine, Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Paris, France
| | - Mariëtte van Kouwen
- Department of Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Irene Slavc
- Department of Pediatrics, Medical University Vienna, Vienna, Austria
| | - Christian Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laurence Brugiѐres
- Children and Adolescent Oncology Department, Gustave Roussy Cancer Institute, Villejuif, France
| | - Eric Legius
- Department of Human Genetics, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Tesch VK, IJspeert H, Raicht A, Rueda D, Dominguez-Pinilla N, Allende LM, Colas C, Rosenbaum T, Ilencikova D, Baris HN, Nathrath MHM, Suerink M, Januszkiewicz-Lewandowska D, Ragab I, Azizi AA, Wenzel SS, Zschocke J, Schwinger W, Kloor M, Blattmann C, Brugieres L, van der Burg M, Wimmer K, Seidel MG. No Overt Clinical Immunodeficiency Despite Immune Biological Abnormalities in Patients With Constitutional Mismatch Repair Deficiency. Front Immunol 2018; 9:1506. [PMID: 30013564 PMCID: PMC6036136 DOI: 10.3389/fimmu.2018.01506] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin class-switch recombination (CSR) and somatic hypermutations (SHMs) are prerequisites for antibody and immunoglobulin receptor maturation and adaptive immune diversity. The mismatch repair (MMR) machinery, consisting of homologs of MutSα, MutLα, and MutSβ (MSH2/MSH6, MLH1/PMS2, and MSH2/MSH3, respectively) and other proteins, is involved in CSR, primarily acting as a backup for nonhomologous end-joining repair of activation-induced cytidine deaminase-induced DNA mismatches and, furthermore, in addition to error-prone polymerases, in the repair of SHM-induced DNA breaks. A varying degree of antibody formation defect, from IgA or selective IgG subclass deficiency to common variable immunodeficiency and hyper-IgM syndrome, has been detected in a small number of patients with constitutional mismatch repair deficiency (CMMRD) due to biallelic loss-of-function mutations in one of the MMR genes (PMS2, MSH6, MLH1, or MSH2). To elucidate the clinical relevance of a presumed primary immunodeficiency (PID) in CMMRD, we systematically collected clinical history and laboratory data of a cohort of 15 consecutive, unrelated patients (10 not previously reported) with homozygous/compound heterozygous mutations in PMS2 (n = 8), MSH6 (n = 5), and MLH1 (n = 2), most of whom manifested with typical malignancies during childhood. Detailed descriptions of their genotypes, phenotypes, and family histories are provided. Importantly, none of the patients showed any clinical warning signs of PID (infections, immune dysregulation, inflammation, failure to thrive, etc.). Furthermore, we could not detect uniform or specific patterns of laboratory abnormalities. The concentration of IgM was increased in 3 out of 12, reduced in 3 out of 12, and normal in 6 out of 12 patients, while concentrations of IgG and IgG subclasses, except IgG4, and of IgA, and specific antibody formation were normal in most. Class-switched B memory cells were reduced in 5 out of 12 patients, and in 9 out of 12 also the CD38hiIgM− plasmablasts were reduced. Furthermore, results of next generation sequencing-based analyses of antigen-selected B-cell receptor rearrangements showed a significantly reduced frequency of SHM and an increased number of rearranged immunoglobulin heavy chain (IGH) transcripts that use IGHG3, IGHG1, and IGHA1 subclasses. T cell subsets and receptor repertoires were unaffected. Together, neither clinical nor routine immunological laboratory parameters were consistently suggestive of PID in these CMMRD patients, but previously shown abnormalities in SHM and rearranged heavy chain transcripts were confirmed.
Collapse
Affiliation(s)
- Victoria K Tesch
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Andrea Raicht
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Daniel Rueda
- Hereditary Cancer Laboratory, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Department of Pediatric Hematology and Oncology, Virgen de la Salud Hospital, Toledo, Spain.,i+12 Research Institute, University Hospital Doce de Octubre, Madrid, Spain
| | - Luis M Allende
- Department of Immunology, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | | | | | - Denisa Ilencikova
- Department of Pediatrics, Comenius University Bratislava, Bratislava, Slovakia
| | - Hagit N Baris
- The Genetics Institute, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Michaela H M Nathrath
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany.,Pediatric Oncology Center, Department of Pediatrics, Technische Universität München, Munich, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Iman Ragab
- Pediatrics Department, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Soeren S Wenzel
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Wolfgang Schwinger
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, Medical University Heidelberg, Heidelberg, Germany
| | - Claudia Blattmann
- Department of Hematology, Oncology, and Immunology, Olgahospital Stuttgart, Stuttgart, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Mirjam van der Burg
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Markus G Seidel
- Research Unit Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
7
|
Sugano K, Nakajima T, Sekine S, Taniguchi H, Saito S, Takahashi M, Ushiama M, Sakamoto H, Yoshida T. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan. Cancer Sci 2017; 107:1677-1686. [PMID: 27589204 PMCID: PMC5132277 DOI: 10.1111/cas.13073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 11/29/2022] Open
Abstract
Germline PMS2 gene mutations were detected by RT‐PCR/direct sequencing of total RNA extracted from puromycin‐treated peripheral blood lymphocytes (PBL) and multiplex ligation‐dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin‐fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT‐PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2,MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT‐PCR from puromycin‐treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long‐range PCR/nested PCR validation using genomic DNA.
Collapse
Affiliation(s)
- Kokichi Sugano
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Japan
| | - Takeshi Nakajima
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Department of Endoscopy, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Molecular Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Hirokazu Taniguchi
- Division of Pathology and Clinical Laboratories, National Cancer Center Research Institute, Tokyo, Japan
| | - Shinya Saito
- Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Japan
| | - Masahiro Takahashi
- Oncogene Research Unit/Cancer Prevention Unit, Tochigi Cancer Center Research Institute, Utsunomiya, Japan
| | - Mineko Ushiama
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan.,Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
8
|
Wimmer K, Rosenbaum T, Messiaen L. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1. Clin Genet 2017; 91:507-519. [PMID: 27779754 DOI: 10.1111/cge.12904] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals.
Collapse
Affiliation(s)
- K Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - T Rosenbaum
- Department of Pediatrics, Sana Kliniken Duisburg, Wedau Kliniken, Duisburg, Germany
| | - L Messiaen
- Medical Genomics Laboratory, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
PMS2 inactivation by a complex rearrangement involving an HERV retroelement and the inverted 100-kb duplicon on 7p22.1. Eur J Hum Genet 2016; 24:1598-1604. [PMID: 27329736 DOI: 10.1038/ejhg.2016.75] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/12/2016] [Accepted: 05/26/2016] [Indexed: 11/08/2022] Open
Abstract
Biallelic PMS2 mutations are responsible for more than half of all cases of constitutional mismatch repair deficiency (CMMRD), a recessively inherited childhood cancer predisposition syndrome. The mismatch repair gene PMS2 is partly embedded within one copy of an inverted 100-kb low-copy repeat (LCR) on 7p22.1. In an individual with CMMRD syndrome, PMS2 was found to be homozygously inactivated by a complex chromosomal rearrangement, which separates the 5'-part from the 3'-part of the gene. The rearrangement involves sequences of the inverted 100-kb LCR and a human endogenous retrovirus element and may be associated with an inversion that is indistinguishable from the known inversion polymorphism affecting the ~0.7-Mb sequence intervening the LCR. Its formation is best explained by a replication-based mechanism (RBM) such as fork stalling and template switching/microhomology-mediated break-induced replication (FoSTeS/MMBIR). This finding supports the hypothesis that the inverted LCR can not only facilitate the formation of the non-allelic homologous recombination-mediated inversion polymorphism but it also promotes the occurrence of more complex rearrangements that can be associated with a large inversion, as well, but are mediated by a RBM. This further suggests that among the inversion polymorphism on 7p22.1, more complex rearrangements might be hidden. Furthermore, as the locus is embedded in a common fragile site (CFS) region, this rearrangement also supports the recently raised hypothesis that CFS sequence motifs may facilitate replication-based rearrangement mechanisms.
Collapse
|
10
|
Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, Guilloux A, Chalastanis A, Lafitte P, Coulet F, Buisine MP, Ilencikova D, Ruiz-Ponte C, Kinzel M, Grandjouan S, Brems H, Lejeune S, Blanché H, Wang Q, Caron O, Cabaret O, Svrcek M, Vidaud D, Parfait B, Verloes A, Knappe UJ, Soubrier F, Mortemousque I, Leis A, Auclair-Perrossier J, Frébourg T, Fléjou JF, Entz-Werle N, Leclerc J, Malka D, Cohen-Haguenauer O, Goldberg Y, Gerdes AM, Fedhila F, Mathieu-Dramard M, Hamelin R, Wafaa B, Gauthier-Villars M, Bourdeaut F, Sheridan E, Vasen H, Brugières L, Wimmer K, Muleris M, Duval A. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents. Gastroenterology 2015; 149:1017-29.e3. [PMID: 26116798 DOI: 10.1053/j.gastro.2015.06.013] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/21/2015] [Accepted: 06/13/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. METHODS We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. RESULTS In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. CONCLUSION The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.
Collapse
Affiliation(s)
- Sahra Bodo
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Chrystelle Colas
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Olivier Buhard
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Ada Collura
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Julie Tinat
- Département de génétique, Hôpital universitaire, Rouen, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Agathe Guilloux
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Alexandra Chalastanis
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Philippe Lafitte
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Florence Coulet
- UPMC Univ Paris, Paris, France; AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, Paris, France
| | - Marie-Pierre Buisine
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - Denisa Ilencikova
- 2nd Pediatric Department, Children's University Hospital, Comenius University, Bratislava, Slovakia
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | | | | | - Hilde Brems
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sophie Lejeune
- CHRU Lille, Service de génétique clinique, Lille, France
| | - Hélène Blanché
- CEPH, Fondation Jean Dausset, Institut de Génétique Moléculaire, Paris, France
| | - Qing Wang
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Odile Cabaret
- Service de Génétique, Département de Biologie et Pathologie Médicales, Institut Gustave Roussy, Villejuif, France
| | - Magali Svrcek
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Dominique Vidaud
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Béatrice Parfait
- INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Alain Verloes
- AP-HP, Département de Génétique and INSERM UMR 1141 PROTECT, Hôpital Robert Debré, Paris, France
| | - Ulrich J Knappe
- Department of Neurosurgery, Johannes Wesling Klinikum, Minden, Germany
| | - Florent Soubrier
- AP-HP, Département de génétique, GH Pitié-Salpêtrière, Paris, France
| | | | - Alexander Leis
- French Medical Institute for Children, Kabul, Afghanistan
| | - Jessie Auclair-Perrossier
- Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, Lyon, France
| | | | - Jean-François Fléjou
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France; AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie Pédiatrie CHRU Hautepierre UdS EA, Strasbourg, France
| | - Julie Leclerc
- Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, Lille, France; INSERM UMR837 et Université Lille, Lille, France
| | - David Malka
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Yael Goldberg
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Faten Fedhila
- Service de médecine infantile, hôpital d'enfants de Tunis, Tunis, Tunisia
| | | | - Richard Hamelin
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France
| | - Badre Wafaa
- Department of Hepato-Gastro-Enterology, Ibn Rochd, Hospital University Center, Casablanca, Morocco
| | | | - Franck Bourdeaut
- Department of Pediatric Oncology and INSERM U830, Institut Curie, Paris, France
| | - Eamonn Sheridan
- Department of Molecular Medicine, University of Leeds, Leeds, United Kingdom
| | - Hans Vasen
- Department of Gastroenterology and Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Laurence Brugières
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Martine Muleris
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | - Alex Duval
- INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, équipe labellisée par la Ligue Nationle contre le Cancer, Paris, France; UPMC Univ Paris, Paris, France.
| | | |
Collapse
|
11
|
Wimmer K, Kratz CP, Vasen HFA, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD). J Med Genet 2014; 51:355-65. [PMID: 24737826 DOI: 10.1136/jmedgenet-2014-102284] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family.
Collapse
Affiliation(s)
- Katharina Wimmer
- Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Christian P Kratz
- Department of Pediatric Hematology & Oncology, Hannover Medical School, Hannover, Germany
| | - Hans F A Vasen
- Department of Gastroenterology & Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Olivier Caron
- Department of Medical Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Chrystelle Colas
- Department of Genetics, Pitié Salpêtrière Hospital, AP-HP, Paris, France INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Natacha Entz-Werle
- Pédiatrie Onco-Hématologie-Pédiatrie III-CHRU Hautepierre UdS-EA 3430, Strasbourg, France
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
| | - Yael Goldberg
- Department of Oncology, Sharret Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Denisa Ilencikova
- 2nd Pediatric Department of Children University Hospital, Comenius University, Bratislava, Slovakia
| | - Martine Muleris
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Alex Duval
- INSERM, UMR_S 938, CDR Saint-Antoine, Paris, France Sorbonne Universités, UPMC Univ Paris 06, UMR_S 938, CDR Saint-Antoine, Paris, France
| | - Noémie Lavoine
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | - Clara Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
| | - Irene Slavc
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Brigit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital, Münster, Germany
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | | |
Collapse
|
12
|
Abstract
BACKGROUND Lynch syndrome (LS) is the most common form of the hereditary colon cancer syndromes. Because of its high prevalence, a nationwide campaign has begun to screen all colorectal cancers for the genetic abnormalities associated with LS. CONTENT Next to colorectal cancer, endometrial cancer is the most common form of malignancy found in women with LS. Identifying individuals who harbor the well-characterized mismatch-repair gene mutations via immunohistochemistry, microsatellite instability analysis, or direct gene sequencing is critical to managing the LS patient and to surveillance for the development of other associated tumor types. SUMMARY Although many institutions have begun screening all colorectal tumors for LS, the evidence is sufficient to warrant the testing of all endometrial cancers for LS as well. Various testing algorithms, along with genetic-counseling efforts, can lead to a cost-efficient and beneficial screening program.
Collapse
|
13
|
Brea-Fernández A, Cameselle-Teijeiro J, Alenda C, Fernández-Rozadilla C, Cubiella J, Clofent J, Reñé J, Anido U, Milá M, Balaguer F, Castells A, Castellvi-Bel S, Jover R, Carracedo A, Ruiz-Ponte C. High incidence of large deletions in thePMS2gene in Spanish Lynch syndrome families. Clin Genet 2013; 85:583-8. [DOI: 10.1111/cge.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 12/24/2022]
Affiliation(s)
- A.J. Brea-Fernández
- Grupo de Medicina Xenómica-USC; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
- Unidad de Investigación; Hospital General Universitario; Alicante Spain
| | - J.M. Cameselle-Teijeiro
- Servicio de Anatomía Patológica, Hospital Clínico Universitario, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS); Universidad de Santiago de Compostela; Santiago de Compostela Spain
| | - C. Alenda
- Servicio de Anatomía Patológica; Hospital General Universitario; Alicante Spain
| | - C. Fernández-Rozadilla
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| | - J. Cubiella
- Servicio de Gastroenterología; Complexo Hospitalario Universitario de Ourense; Ourense Spain
| | - J. Clofent
- Sección Aparato Digestivo, Servicio de Medicina Interna; Hospital de Sagunto; Sagunto Spain
- Servicio de Gastroenterología; Complexo Hospitalario Universitario de Vigo; Spain
| | - J.M. Reñé
- Servicio de Gastroenterología; Hospital Arnau de Vilanova; Lleida Spain
| | - U. Anido
- Servicio de Oncología Clínica; Complexo Hospitalario Universitario de Santiago; Santiago de Compostela Spain
| | - M. Milá
- Servicio de Bioquímica y Genética Molecular, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Barcelona Spain
| | - F. Balaguer
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - A. Castells
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - S. Castellvi-Bel
- Servicio de Gastroenterología, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, IDIBAPS; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universitat de Barcelona; Barcelona Spain
| | - R. Jover
- Unidad de Investigación; Hospital General Universitario; Alicante Spain
| | - A. Carracedo
- Grupo de Medicina Xenómica-USC; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| | - C. Ruiz-Ponte
- Fundación Pública Galega de Medicina Xenómica (FPGMX)-SERGAS, Grupo de Medicina Xenómica; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Santiago de Compostela Spain
| |
Collapse
|
14
|
Ingham D, Diggle CP, Berry I, Bristow CA, Hayward BE, Rahman N, Markham AF, Sheridan EG, Bonthron DT, Carr IM. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome. Hum Mutat 2013; 34:847-52. [PMID: 23483711 DOI: 10.1002/humu.22311] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/28/2013] [Indexed: 11/10/2022]
Abstract
Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation.
Collapse
Affiliation(s)
- Danielle Ingham
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Borràs E, Pineda M, Cadiñanos J, Del Valle J, Brieger A, Hinrichsen I, Cabanillas R, Navarro M, Brunet J, Sanjuan X, Musulen E, van der Klift H, Lázaro C, Plotz G, Blanco I, Capellá G. Refining the role of PMS2 in Lynch syndrome: germline mutational analysis improved by comprehensive assessment of variants. J Med Genet 2013; 50:552-63. [PMID: 23709753 DOI: 10.1136/jmedgenet-2012-101511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM The majority of mismatch repair (MMR) gene mutations causing Lynch syndrome (LS) occur either in MLH1 or MSH2. However, the relative contribution of PMS2 is less well defined. The aim of this study was to evaluate the role of PMS2 in LS by assessing the pathogenicity of variants of unknown significance (VUS) detected in the mutational analysis of PMS2 in a series of Spanish patients. METHODS From a cohort of 202 LS suspected patients, 13 patients showing loss of PMS2 expression in tumours were screened for germline mutations in PMS2, using a long range PCR based strategy and multiplex ligation dependent probe amplification (MLPA). Pathogenicity assessment of PMS2 VUS was performed evaluating clinicopathological data, frequency in control population and in silico and in vitro analyses at the RNA and protein level. RESULTS Overall 25 different PMS2 DNA variants were detected. Fourteen were classified as polymorphisms. Nine variants were classified as pathogenic: seven alterations based on their molecular nature and two after demonstrating a functional defect (c.538-3C>G affected mRNA processing and c.137G>T impaired MMR activity). The c.1569C>G variant was classified as likely neutral while the c.384G>A remained as a VUS. We have also shown that the polymorphic variant c.59G>A is MMR proficient. CONCLUSIONS Pathogenic PMS2 mutations were detected in 69% of patients harbouring LS associated tumours with loss of PMS2 expression. In all, PMS2 mutations account for 6% of the LS cases identified. The comprehensive functional analysis shown here has been useful in the classification of PMS2 VUS and contributes to refining the role of PMS2 in LS.
Collapse
Affiliation(s)
- Ester Borràs
- Hereditary Cancer Program, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chmara M, Wernstedt A, Wasag B, Peeters H, Renard M, Beert E, Brems H, Giner T, Bieber I, Hamm H, Sciot R, Wimmer K, Legius E. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. Genes Chromosomes Cancer 2013; 52:656-64. [PMID: 23629955 DOI: 10.1002/gcc.22061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 11/09/2022] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) due to biallelic germline mutations in one of four mismatch repair genes causes a childhood cancer syndrome characterized by a broad tumor spectrum including hematological malignancies, and brain and Lynch syndrome-associated tumors. Herein, we report three children who had in addition to CMMR-D-associated malignancies multiple pilomatricomas. These are benign skin tumors of hair matrical differentiation frequently associated with somatic activating mutations in the ß-catenin gene CTNNB1. In two of the children, the diagnosis of CMMR-D was confirmed by the identification of biallelic germline PMS2 mutations. In the third individual, we only found a heterozygous germline PMS2 mutation. In all nine pilomatricomas with basophilic cells, we detected CTNNB1 mutations. Our findings indicate that CTNNB1 is a target for mutations when mismatch repair is impaired due to biallelic PMS2 mutations. An elevated number of activating CTNNB1 alterations in hair matrix cells may explain the development of multiple pilomatricomas in CMMR-D patients. Of note, two of the children presented with multiple pilomatricomas and other nonmalignant features of CMMR-D before they developed malignancies. To offer surveillance programs to CMMR-D patients, it may be justified to suspect CMMR-D syndrome in individuals fulfilling multiple nonmalignant features of CMMR-D (including multiple pilomatricomas) and offer molecular testing in combination with interdisciplinary counseling.
Collapse
Affiliation(s)
- Magdalena Chmara
- Department of Human Genetics, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome. Eur J Hum Genet 2012; 21:55-61. [PMID: 22692065 DOI: 10.1038/ejhg.2012.117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.
Collapse
|
18
|
Vasovcak P, Krepelova A, Menigatti M, Puchmajerova A, Skapa P, Augustinakova A, Amann G, Wernstedt A, Jiricny J, Marra G, Wimmer K. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency. DNA Repair (Amst) 2012; 11:616-23. [PMID: 22608206 PMCID: PMC3387372 DOI: 10.1016/j.dnarep.2012.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/21/2012] [Accepted: 04/24/2012] [Indexed: 12/14/2022]
Abstract
Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G → T:A or G:C → A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination.
Collapse
Affiliation(s)
- P Vasovcak
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, V Uvalu 84, 15006 Prague 5, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|