1
|
Sandnes M, Sefland Ø, Ktoridou-Valen I, Brendsdal Forthun R, Kollsete Gjelberg H, Dahl Hamnvik LH, Reikvam H, Andersson Tvedt TH. RUNX1::MECOM rearrangement in myeloid neoplasm post cytotoxic therapy following sarcoma treatment: a case presentation and review of the literature. Hematology 2025; 30:2483094. [PMID: 40204525 DOI: 10.1080/16078454.2025.2483094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
OBJECTIVES Myeloid neoplasms occurring after cytotoxic therapy (MN-pCT), previously termed therapy-related myelodysplastic neoplasia (MDS) or therapy-related acute myelogenous leukemia (AML), pose significant treatment challenges due to high resistance, poor chemotherapy tolerance, and relapse. METHODS We present a 73-year-old woman with therapy-related AML following treatment for myxofibrosarcoma, characterized by the rare RUNX1::MECOM fusion resulting from a t(3;21)(q26;q22) chromosomal translocation. We also review the current literature regarding cases of this rare translocation. RESULTS The patient, previously treated with chemotherapy and radiotherapy for sarcoma, was diagnosed with pancytopenia and hypoplastic bone marrow with increased blasts. Cytogenetic analysis confirmed RUNX1::MECOM fusion. Furthermore, we discuss the molecular mechanisms underlying MECOM rearrangements, specifically the role of the EVI1 oncogene. AML associated with MECOM rearrangements is associated with poor prognosis and resistance to conventional therapies. While allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only potential curative treatment, the high relapse rate limits its efficacy. Recent advancements in understanding the molecular drivers of MECOM-related AML suggest potential therapeutic strategies, including hypomethylating agents and novel combinations such as lenalidomide. CONCLUSION this case and literature review emphasizes the importance of long-term monitoring of cancer survivors treated with cytotoxic therapies, as well as awareness of rare translocations in MN-pCT.
Collapse
Affiliation(s)
- Miriam Sandnes
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Sefland
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Irini Ktoridou-Valen
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Rakel Brendsdal Forthun
- Department for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Lars Henrik Dahl Hamnvik
- Section for Hematology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Medicine, Drammen Hospital, Vestre Viken Trust, Drammen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
- K.G. Jebsen Center for Myeloid Malignancies, Institute of Clinical Science, University of Bergen, Bergen, Norway
| | - Tor Henrik Andersson Tvedt
- Section for Hematology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section for Hematology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Medicine, Drammen Hospital, Vestre Viken Trust, Drammen, Norway
| |
Collapse
|
2
|
Valkama A, Vorimo S, Tervasmäki A, Räsänen H, Savolainen ER, Pylkäs K, Mantere T. Structural Variant Analysis of Complex Karyotype Myelodysplastic Neoplasia Through Optical Genome Mapping. Genes Chromosomes Cancer 2025; 64:e70024. [PMID: 39865351 DOI: 10.1002/gcc.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/10/2025] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
Myelodysplastic neoplasia with complex karyotype (CK-MDS) poses significant clinical challenges and is associated with poor survival. Detection of structural variants (SVs) is crucial for diagnosis, prognostication, and treatment decision-making in MDS. However, the current standard-of-care (SOC) cytogenetic testing, relying on karyotyping, often yields ambiguous results in cases with CK. Here, SV detection by novel optical genome mapping (OGM) technique was explored in 15 CK-MDS cases, which collectively harbored 85 chromosomes with abnormalities reported by SOC. Additionally, OGM was utilized in the discovery of novel SVs. Altogether, OGM detected corresponding > 5 Mbp alterations for 73 out of 85 SOC reported abnormalities, resulting in an 86% concordance rate. OGM provided further specification of these abnormalities, revealing that 64% of the altered chromosomes were affected by multiple SVs or chromoanagenesis. Prominently, only 5% of missing chromosomes reported by SOC were true monosomies. In addition, OGM detected alterations in chromosomes not reported as abnormal by karyotyping in 93% of cases and provided clinically relevant gene-level information, such as SVs in TP53, MECOM, NUP98, IKZF1, and ETV6. Analysis of novel SVs revealed two previously unreported gene-fusions (SCFD1::ZNF592 and VPS8::LRBA), both confirmed by transcriptome sequencing. Furthermore, the repositioning of CCDC26 (8q24.21) was identified as a potential cause of inappropriate gene activation in two cases, affecting MECOM and SOX7, respectively. This study shows that OGM can significantly enhance the diagnostic analysis of SVs in CK-MDS and highlights the utility of OGM identifying novel SVs in complex cancer genomes.
Collapse
Affiliation(s)
- Andriana Valkama
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sandra Vorimo
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| | | | | | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
- Northern Finland Laboratory Centre Nordlab, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Translational Medicine Research Unit, Medical Research Center Oulu and Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Yeung CCS, Eacker SM, Sala-Torra O, Beppu L, Woolston DW, Liachko I, Malig M, Stirewalt D, Fang M, Radich J. Evaluation of Acute Myeloid Leukemia Genomes using Genomic Proximity Mapping. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.31.24308228. [PMID: 38853970 PMCID: PMC11160846 DOI: 10.1101/2024.05.31.24308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cytogenetic analysis encompasses a suite of standard-of-care diagnostic testing methods that is routinely applied in cases of acute myeloid leukemia (AML) to assess chromosomal changes that are clinically relevant for risk classification and treatment decisions. Objective In this study, we assess the use of Genomic Proximity Mapping (GPM) for cytogenomic analysis of AML diagnostic specimens for detection of cytogenetic risk variants included in the European Leukemia Network (ELN) risk stratification guidelines. Methods Archival patient samples (N=48) from the Fred Hutchinson Cancer Center leukemia bank with historical clinical cytogenetic data were processed for GPM and analyzed with the CytoTerra® cloud-based analysis platform. Results GPM showed 100% concordance for all specific variants that have associated impacts on risk stratification as defined by ELN 2022 criteria, and a 72% concordance rate when considering all variants reported by the FH cytogenetic lab. GPM identified 39 additional variants, including variants of known clinical impact, not observed by cytogenetics. Conclusions GPM is an effective solution for the evaluation of known AML-associated risk variants and a source for biomarker discovery.
Collapse
Affiliation(s)
- Cecilia CS Yeung
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Phase Genomics, Seattle, WA, USA
| | | | - Olga Sala-Torra
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lan Beppu
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David W. Woolston
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | | | - Derek Stirewalt
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| | - Min Fang
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Jerald Radich
- Translational Science and Transplantation Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA
| |
Collapse
|
5
|
Lux S, Milsom MD. EVI1-mediated Programming of Normal and Malignant Hematopoiesis. Hemasphere 2023; 7:e959. [PMID: 37810550 PMCID: PMC10553128 DOI: 10.1097/hs9.0000000000000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Ecotropic viral integration site 1 (EVI1), encoded at the MECOM locus, is an oncogenic zinc finger transcription factor with diverse roles in normal and malignant cells, most extensively studied in the context of hematopoiesis. EVI1 interacts with other transcription factors in a context-dependent manner and regulates transcription and chromatin remodeling, thereby influencing the proliferation, differentiation, and survival of cells. Interestingly, it can act both as a transcriptional activator as well as a transcriptional repressor. EVI1 is expressed, and fulfills important functions, during the development of different tissues, including the nervous system and hematopoiesis, demonstrating a rigid spatial and temporal expression pattern. However, EVI1 is regularly overexpressed in a variety of cancer entities, including epithelial cancers such as ovarian and pancreatic cancer, as well as in hematologic malignancies like myeloid leukemias. Importantly, EVI1 overexpression is generally associated with a very poor clinical outcome and therapy-resistance. Thus, EVI1 is an interesting candidate to study to improve the prognosis and treatment of high-risk patients with "EVI1high" hematopoietic malignancies.
Collapse
Affiliation(s)
- Susanne Lux
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael D. Milsom
- Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
6
|
Tang Z, Wang W, Yang S, El Achi H, Fang H, Nahmod KA, Toruner GA, Xu J, Thakral B, Ayoub E, Issa GC, Yin CC, You MJ, Miranda RN, Khoury JD, Medeiros LJ, Tang G. 3q26.2/ MECOM Rearrangements by Pericentric Inv(3): Diagnostic Challenges and Clinicopathologic Features. Cancers (Basel) 2023; 15:458. [PMID: 36672407 PMCID: PMC9856433 DOI: 10.3390/cancers15020458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
MECOM rearrangement (MECOM-R) resulting from 3q26.2 aberrations is often associated with myeloid neoplasms and inferior prognosis in affected patients. Uncommonly, certain 3q26.2/MECOM-R can be subtle/cryptic and consequently overlooked by karyotyping. We identified 17 acute myeloid leukemia (AML) patients (male/female: 13/4 with a median age of 67 years, range 42 to 85 years) with a pericentric inv(3) leading to MECOM-R, with breakpoints at 3p23 (n = 11), 3p25 (n = 3), 3p21 (n = 2) and 3p13 (n = 1) on 3p and 3q26.2 on 3q. These pericentric inv(3)s were overlooked by karyotyping initially in 16 of 17 cases and later detected by metaphase FISH analysis. Similar to the patients with classic/paracentric inv(3)(q21q26.2), patients with pericentric inv(3) exhibited frequent cytopenia, morphological dysplasia (especially megakaryocytes), -7/del(7q), frequent NRAS (n = 6), RUNX1 (n = 5) and FLT-3 (n = 4) mutations and dismal outcomes (median overall survival: 14 months). However, patients with pericentric inv(3) more frequently had AML with thrombocytopenia (n = 15, 88%), relative monocytosis in peripheral blood (n = 15, 88%), decreased megakaryocytes (n = 11, 65%), and lower SF3B1 mutation. We conclude that AML with pericentric inv(3) shares some similarities with AML associated with classic/paracentric inv(3)/GATA2::MECOM but also shows certain unique features. Pericentric inv(3)s are often subtle/cryptic by chromosomal analysis. A reflex FISH analysis for MECOM-R is recommended in myeloid neoplasms showing -7/del(7q).
Collapse
Affiliation(s)
- Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Su Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hanadi El Achi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Karen Amelia Nahmod
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edward Ayoub
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roberto N. Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Xie W, Raess PW, Dunlap J, Hoyos CM, Li H, Li P, Swords R, Olson SB, Yang F, Anekpuritanang T, Hu S, Wiszniewska J, Fan G, Press RD, Moore SR. Adult acute myeloid leukemia patients with NUP98 rearrangement have frequent cryptic translocations and unfavorable outcome. Leuk Lymphoma 2022; 63:1907-1916. [DOI: 10.1080/10428194.2022.2047672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wei Xie
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Philipp W. Raess
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jennifer Dunlap
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Cristina Magallanes Hoyos
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Hongmei Li
- Pathology and Laboratory, and North Shore Pathologists, Ascension Wisconsin Health Care, Milwaukee, WI, USA
| | - Peng Li
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ronan Swords
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Susan B. Olson
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Fei Yang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tauangtham Anekpuritanang
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shimin Hu
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Wiszniewska
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Guang Fan
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Richard D. Press
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephen R. Moore
- Knight Diagnostic Laboratories, Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Gao J, Gurbuxani S, Zak T, Kocherginsky M, Ji P, Wehbe F, Chen Q, Chen YH, Lu X, Jennings L, Frankfurt O, Altman J, Sukhanova M. Comparison of myeloid neoplasms with nonclassic 3q26.2/MECOM versus classic inv(3)/t(3;3) rearrangements reveals diverse clinicopathologic features, genetic profiles, and molecular mechanisms of MECOM activation. Genes Chromosomes Cancer 2022; 61:71-80. [PMID: 34668265 DOI: 10.1002/gcc.23004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/05/2022] Open
Abstract
MECOM rearrangements are recurrent in myeloid neoplasms and associated with poor prognosis. However, only inv(3)(q21q26.2) and t(3;3)(q21;q26.2), the classic MECOM rearrangements resulting in RPN1-MECOM rearrangement with Mecom overexpression and GATA2 haploinsufficiency, define the distinct subtype of acute myeloid leukemia (AML), and serve as presumptive evidence for myelodysplastic syndrome based on the current World Health Organization classification. Myeloid neoplasms with nonclassic 3q26.2/MECOM rearrangements have been found to be clinically aggressive, but comparative analysis of clinicopathologic and genomic features is limited. We retrospectively studied cohorts of myeloid neoplasms with classic and nonclassic MECOM rearrangements. Cases with classic rearrangements consisted predominantly of AML, often with inv(3) or t(3;3) as the sole chromosome abnormality, whereas the group of nonclassic rearrangements included a variety of myeloid neoplasms, often with complex karyotype without TP53 mutations and similarly dismal overall survival. Immunohistochemistry revealed Mecom protein overexpression in both groups, but overexpression in cases with nonclassic rearrangements was mediated through a mechanism other than GATA2 distal enhancer involvement typical for classic rearrangement. Our results demonstrated that myeloid neoplasms with nonclassic 3q26.2/MECOM rearrangements encompass a diverse group of diseases with poor clinical outcome, overexpression of Mecom protein as a result of the nonclassic mechanism of MECOM activation.
Collapse
Affiliation(s)
- Juehua Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sandeep Gurbuxani
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Taylor Zak
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Masha Kocherginsky
- Department of Preventive Medicine (Health and Biomedical Informatics), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peng Ji
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Firas Wehbe
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Preventive Medicine (Health and Biomedical Informatics), Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yi-Hua Chen
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xinyan Lu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lawrence Jennings
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Olga Frankfurt
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica Altman
- Department of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Madina Sukhanova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Newman S, Nakitandwe J, Kesserwan CA, Azzato EM, Wheeler DA, Rusch M, Shurtleff S, Hedges DJ, Hamilton KV, Foy SG, Edmonson MN, Thrasher A, Bahrami A, Orr BA, Klco JM, Gu J, Harrison LW, Wang L, Clay MR, Ouma A, Silkov A, Liu Y, Zhang Z, Liu Y, Brady SW, Zhou X, Chang TC, Pande M, Davis E, Becksfort J, Patel A, Wilkinson MR, Rahbarinia D, Kubal M, Maciaszek JL, Pastor V, Knight J, Gout AM, Wang J, Gu Z, Mullighan CG, McGee RB, Quinn EA, Nuccio R, Mostafavi R, Gerhardt EL, Taylor LM, Valdez JM, Hines-Dowell SJ, Pappo AS, Robinson G, Johnson LM, Pui CH, Ellison DW, Downing JR, Zhang J, Nichols KE. Genomes for Kids: The scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov 2021; 11:3008-3027. [PMID: 34301788 DOI: 10.1158/2159-8290.cd-20-1631] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Genomic studies of pediatric cancer have primarily focused on specific tumor types or high-risk disease. Here, we used a three-platform sequencing approach, including whole genome (WGS), exome, and RNA sequencing, to examine tumor and germline genomes from 309 prospectively identified children with newly diagnosed (85%) or relapsed/refractory (15%) cancers, unselected for tumor type. Eighty-six percent of patients harbored diagnostic (53%), prognostic (57%), therapeutically-relevant (25%), and/or cancer predisposing (18%) variants. Inclusion of WGS enabled detection of activating gene fusions and enhancer hijacks (36% and 8% of tumors, respectively), small intragenic deletions (15% of tumors) and mutational signatures revealing of pathogenic variant effects. Evaluation of paired tumor-normal data revealed relevance to tumor development for 55% of pathogenic germline variants. This study demonstrates the power of a three-platform approach that incorporates WGS to interrogate and interpret the full range of genomic variants across newly diagnosed as well as relapsed/refractory pediatric cancers.
Collapse
Affiliation(s)
- Scott Newman
- Computational Biology, St. Jude Children's Research Hospital
| | - Joy Nakitandwe
- Pathology and Laboratory Medicine Institute, Cleveland Clinic
| | | | | | | | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Dale J Hedges
- Computational Biology, St. Jude Children's Research Hospital
| | - Kayla V Hamilton
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Scott G Foy
- Computational Biology, St. Jude Children's Research Hospital
| | | | - Andrew Thrasher
- Computational Biology, St. Jude Children's Research Hospital
| | - Armita Bahrami
- Department of Pathology, St. Jude Children's Research Hospital
| | - Brent A Orr
- Pathology, St. Jude Children's Research Hospital
| | | | - Jiali Gu
- Department of Pathology, St. Jude Children's Research Hospital
| | - Lynn W Harrison
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Lu Wang
- Pathology, St. Jude Children's Research Hospital
| | | | - Annastasia Ouma
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Antonina Silkov
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Yu Liu
- Computational Biology, St. Jude Children's Research Hospital
| | - Samuel W Brady
- Computational Biology, St. Jude Children's Research Hospital
| | - Xin Zhou
- St. Jude Children's Research Hospital
| | - Ti-Cheng Chang
- Computational Biology, St. Jude Children's Research Hospital
| | - Manjusha Pande
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Eric Davis
- Department of Computational Biology, St. Jude Children's Research Hospital
| | - Jared Becksfort
- Computational Biology, St. Jude Children's Research Hospital
| | - Aman Patel
- Computational Biology, St. Jude Children's Research Hospital
| | | | | | - Manish Kubal
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | - Jay Knight
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | | | | | | - Emily A Quinn
- Pharmacy and Health Sciences, Keck Graduate Institute
| | - Regina Nuccio
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | - Elsie L Gerhardt
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | - Leslie M Taylor
- Division of Cancer Predisposition, St. Jude Children's Research Hospital
| | | | | | | | | | - Liza-Marie Johnson
- Division of Quality of Life and Palliative Care, St. Jude Children's Research Hospital
| | | | | | | | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital
| | | |
Collapse
|
10
|
High EVI1 Expression due to NRIP1/EVI1 Fusion in Therapy-related Acute Myeloid Leukemia: Description of the First Pediatric Case. Hemasphere 2020; 4:e471. [PMID: 33163906 PMCID: PMC7643912 DOI: 10.1097/hs9.0000000000000471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 12/20/2022] Open
|
11
|
Expression Pattern and Prognostic Significance of EVI1 Gene in Adult Acute Myeloid Leukemia Patients with Normal Karyotype. Indian J Hematol Blood Transfus 2019; 36:292-299. [PMID: 32425380 DOI: 10.1007/s12288-019-01227-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022] Open
Abstract
According to current criteria, patients with acute myeloid leukemia with normal karyotype (AML-NK) are classified as intermediate risk patients. There is a constant need for additional molecular markers that will help in substratification into more precise prognostic groups. One of the potential new markers is Ecotropic viral integration 1 site (EVI1) transcriptional factor, whose expression is dissregulated in abnormal hematopoietic process. The purpose of this study was to examine EVI1 gene expression in 104 adult AML-NK patients and on 10 healthy bone marrow donors using real-time polymerase chain reaction method, and to evaluate association between EVI1 expression level and other molecular and clinical features, and to examine its potential influence on the prognosis of the disease. Overexpression of EVI1 gene (EVI1 + status) was present in 17% of patients. Increased EVI1 expression was predominantly found in patients with lower WBC count (P = 0.003) and lower bone marrow blast percentage (P = 0.005). EVI1 + patients had lower WT1 expression level (P = 0.041), and were negative for FLT3-ITD and NPM1 mutations (P = 0.036 and P = 0.003). Patients with EVI1 + status had higher complete remission rate (P = 0.047), but EVI1 expression didn't influence overall and disease free survival. EVI1 expression status alone, cannot be used as a new marker for more precise substratification of AML-NK patients. Further investigations conducted on larger number of patients may indicate how EVI1 expression could influence the prognosis and outcome of AML-NK patients, by itself, or in the context of other molecular and clinical parameters.
Collapse
|
12
|
Vetro C, Haferlach T, Meggendorfer M, Stengel A, Jeromin S, Kern W, Haferlach C. Cytogenetic and molecular genetic characterization of KMT2A-PTD positive acute myeloid leukemia in comparison to KMT2A-Rearranged acute myeloid leukemia. Cancer Genet 2019; 240:15-22. [PMID: 31698332 DOI: 10.1016/j.cancergen.2019.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
To define the biological differences in acute myeloid leukaemia (AML) with KMT2A gene involvements and their prognostic impact, we compared 190 de novo AML patients at diagnosis, 95 harbouring KMT2A-rearrangement (KMT2Ar) and 95 KMT2A-PTD by performing cytogenetic and molecular genetic analyses. Both AML subtypes had an unfavourable outcome, particularly in patients > 60 years. Patients with KMT2Ar were younger compared to patients with KMT2A-PTD (mean 52 vs 65 years, p < 0.001) and had a higher rate of additional cytogenetic abnormalities (ACA) (46% vs 25% of cases). In both groups, occurrence of ACA did not influence the overall survival (OS). Regarding molecular genetics, 66% of patients with KMT2Ar and 99% of patients with KMT2A-PTD had additional gene mutations. In multivariate analysis, KRAS mutations and 10p12 rearrangement resulted as adverse prognostic factors in KMT2Ar subgroup. In the KMT2A-PTD group, apart from age, only the occurrence of DNMT3A non-R882 mutations correlated with shorter OS.
Collapse
|
13
|
Hartmann L, Haferlach C, Meggendorfer M, Kern W, Haferlach T, Stengel A. Myeloid malignancies with isolated 7q deletion can be further characterized by their accompanying molecular mutations. Genes Chromosomes Cancer 2019; 58:698-704. [PMID: 30994218 DOI: 10.1002/gcc.22761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/16/2019] [Indexed: 01/22/2023] Open
Abstract
Deletions in the long arm of chromosome 7 (del(7q)) are recurrent cytogenetic aberrations in myeloid neoplasms. They occur either isolated or as part of a complex karyotype and are associated with unfavorable prognosis in certain disease entities. We performed detailed cytogenetic analysis, molecular analysis, and array comparative genomic hybridization in a cohort of 81 patients with a variety of myeloid malignancies and del(7q) as sole chromosomal alteration. In 70% (57/81) of patients, we identified a commonly deleted region (size: 18 Mb) involving the genomic region 101 912.442 (7q22.1)-119 608.824 (7q31.31). Furthermore, in 80 patients, we analyzed 17 genes commonly mutated in myeloid neoplasms and identified high mutation frequencies in ASXL1 34% (27/80), TET2 33% (26/80), RUNX1 25% (20/80), DNMT3A 25% (20/80), while TP53 was rarely affected (5%, 4/80). ASXL1 and TET2 showed similar mutation frequencies across all analyzed entities while RUNX1, CBL, and JAK2 were specifically mutated in patients with acute myeloid leukemia (AML), chronic myelomonocytic leukemia, and myeloproliferative neoplasms, respectively. We detected a significantly higher frequency of RUNX1 (42% vs 13%, P = .0001) and ASXL1 (32% vs 14%, P = .008) mutations in AML patients with del(7q) compared to other AML patients in the Medical Research Council unfavorable risk group (n = 464), indicating a cooperative leukemogenic potential. Our data provide further insight into the pathomechanism of this cytogenetic subgroup.
Collapse
Affiliation(s)
- Luise Hartmann
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| | - Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, Munich, 81377, Germany
| |
Collapse
|
14
|
Tang Z, Tang G, Hu S, Patel KP, Yin CC, Wang W, Lin P, Toruner GA, Ok CY, Gu J, Lu X, Khoury JD, Medeiros LJ. Deciphering the complexities of MECOM rearrangement-driven chromosomal aberrations. Cancer Genet 2019; 233-234:21-31. [DOI: 10.1016/j.cancergen.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/13/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022]
|
15
|
Aypar U, Smoley SA, Pitel BA, Pearce KE, Zenka RM, Vasmatzis G, Johnson SH, Smadbeck JB, Peterson JF, Geiersbach KB, Van Dyke DL, Thorland EC, Jenkins RB, Ketterling RP, Greipp PT, Kearney HM, Hoppman NL, Baughn LB. Mate pair sequencing improves detection of genomic abnormalities in acute myeloid leukemia. Eur J Haematol 2018; 102:87-96. [PMID: 30270457 PMCID: PMC7379948 DOI: 10.1111/ejh.13179] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acute myeloid leukemia (AML) can be subtyped based on recurrent cytogenetic and molecular genetic abnormalities with diagnostic and prognostic significance. Although cytogenetic characterization classically involves conventional chromosome and/or fluorescence in situ hybridization (FISH) assays, limitations of these techniques include poor resolution and the inability to precisely identify breakpoints. METHOD We evaluated whether an NGS-based methodology that detects structural abnormalities and copy number changes using mate pair sequencing (MPseq) can enhance the diagnostic yield for patients with AML. RESULTS Using 68 known abnormal and 20 karyotypically normal AML samples, each recurrent primary AML-specific abnormality previously identified in the abnormal samples was confirmed using MPseq. Importantly, in eight cases with abnormalities that could not be resolved by conventional cytogenetic studies, MPseq was utilized to molecularly define eight recurrent AML-fusion events. In addition, MPseq uncovered two cryptic abnormalities that were missed by conventional cytogenetic studies. Thus, MPseq improved the diagnostic yield in the detection of AML-specific structural rearrangements in 10/88 (11%) of cases analyzed. CONCLUSION Utilization of MPseq represents a precise, molecular-based technique that can be used as an alternative to conventional cytogenetic studies for newly diagnosed AML patients with the potential to revolutionize the diagnosis of hematologic malignancies.
Collapse
Affiliation(s)
- Umut Aypar
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Stephanie A Smoley
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Beth A Pitel
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Kathryn E Pearce
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Roman M Zenka
- Bioinformatics Systems, Mayo Clinic, Rochester, Minnesota
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Sarah H Johnson
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota
| | - Jess F Peterson
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Katherine B Geiersbach
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Daniel L Van Dyke
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Erik C Thorland
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Hutton M Kearney
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Nicole L Hoppman
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| | - Linda B Baughn
- Department of Laboratory Medicine and Pathology, Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
16
|
Capela de Matos RR, Othman MAK, Ferreira GM, Costa ES, Melo JB, Carreira IM, de Souza MT, Lopes BA, Emerenciano M, Land MGP, Liehr T, Ribeiro RC, Silva MLM. Molecular approaches identify a cryptic MECOM rearrangement in a child with a rapidly progressive myeloid neoplasm. Cancer Genet 2018; 221:25-30. [PMID: 29405993 DOI: 10.1016/j.cancergen.2017.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 11/15/2022]
Abstract
Myeloid neoplasms are a heterogeneous group of hematologic disorders with divergent patterns of cell differentiation and proliferation, as well as divergent clinical courses. Rare recurrent genetic abnormalities related to this group of cancers are associated with poor outcomes. One such abnormality is the MECOM gene rearrangement that typically occurs in cases with chromosome 7 abnormalities. MECOM encodes a transcription factor that plays an essential role in cell proliferation and maintenance and also in epigenetic regulation. Aberrant expression of this gene is associated with reduced survival. Hence, its detailed characterization provides biological and clinical information relevant to the management of pediatric myeloid neoplasms. In this work, we describe a rare karyotype harboring three copies of MECOM with overexpression of the gene in a child with a very aggressive myeloid neoplasm. Cytogenetic studies defined the karyotype as 46,XX,der(7)t(3;7)(q26.2;q21.2). Array comparative genomic hybridization (aCGH) revealed a gain of 26.04 Mb in the 3q26.2-3qter region and a loss of 66.6 Mb in the 7q21.2-7qter region. RT-qPCR analysis detected elevated expression of the MECOM and CDK6 genes (458.5-fold and 35.2-fold, respectively). Overall, we show the importance of performing detailed molecular cytogenetic analysis of MECOM to enable appropriate management of high-risk pediatric myeloid neoplasms.
Collapse
Affiliation(s)
- Roberto R Capela de Matos
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Moneeb A K Othman
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Gerson M Ferreira
- Stem Cells Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Elaine S Costa
- Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Joana B Melo
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isabel M Carreira
- Laboratory of Cytogenetics and Genomics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Mariana T de Souza
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Bruno A Lopes
- Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Pediatric Hematology-Oncology Program, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Mariana Emerenciano
- Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Pediatric Hematology-Oncology Program, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil
| | - Marcelo G P Land
- Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Jena, Germany
| | - Raul C Ribeiro
- Departments of Oncology and Global Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Instituto Pelé Pequeno Príncipe, Postgraduate Program in Child Adolescent Health, Curitiba, Paraná, Brazil
| | - Maria Luiza M Silva
- Cytogenetics Department, Bone Marrow Transplantation Unit, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Post-Graduate Program in Oncology, Instituto Nacional de Câncer José de Alencar Gomes da Silva (INCA-RJ), Rio de Janeiro, Brazil; Internal Medicine post-graduation program of Faculty of Medicine, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Wang HY, Rashidi HH. The New Clinicopathologic and Molecular Findings in Myeloid Neoplasms With inv(3)(q21q26)/t(3;3)(q21;q26.2). Arch Pathol Lab Med 2016; 140:1404-1410. [DOI: 10.5858/arpa.2016-0059-ra] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Context.—
Inv(3)(q21q26)/t(3;3)(q21;q26.2) is the most common form of genetic abnormality of the so-called 3q21q26 syndrome. Myeloid neoplasms with 3q21q26 aberrancies include acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and blast crisis of myeloproliferative neoplasms. Recent advances on myeloid neoplasms with inv(3)/t(3;3) with regard to clinicopathologic features and novel molecular or genomic findings warrant a comprehensive review on this topic.
Objective.—
To review the clinicopathologic features and molecular as well as genomic alterations in myeloid neoplasms with inv(3)/t(3;3).
Data Sources.—
The data came from published articles in English-language literature.
Conclusions.—
At the clinicopathologic front, recent studies on MDS with inv(3)/t(3;3) have highlighted their overlapping clinicopathologic features with and similar overall survival to that of inv(3)/t(3;3)-harboring AML regardless of the percentage of myeloid blasts. On the molecular front, AML and MDS with inv(3)/t(3;3) exhibit gene mutations, which affect the RAS/receptor tyrosine kinase pathway. Furthermore, functional genomic studies using genomic editing and genome engineering have shown that the reallocation of the GATA2 distal hematopoietic enhancer to the proximity of the promoter of ectopic virus integration site 1 (EVI1) without the formation of a new oncogenic fusion transcript is the molecular mechanism underlying these inv(3)/t(3;3) myeloid neoplasms. Although the AML and MDS with inv(3)/t(3;3) are listed as a separate category of myeloid malignancies in the 2008 World Health Organization classification, the overlapping clinicopathologic features, similar overall survival, and identical patterns at the molecular and genomic levels between AML and MDS patients with inv(3)/t(3;3) may collectively favor a unification of AML and MDS with inv(3)/t(3;3) as AML or myeloid neoplasms with inv(3)/t(3;3) regardless of the blast count.
Collapse
Affiliation(s)
- Huan-You Wang
- From the Department of Pathology, University of California San Diego Health System, La Jolla (Dr Wang); and the Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento (Dr Rashidi)
| | | |
Collapse
|
18
|
Yu T, Xu G, Xu X, Yang J, Ding L. Myeloid sarcoma derived from the gastrointestinal tract: A case report and review of the literature. Oncol Lett 2016; 11:4155-4159. [PMID: 27313759 DOI: 10.3892/ol.2016.4517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/12/2016] [Indexed: 12/19/2022] Open
Abstract
Myeloid sarcoma is a type of malignant neoplasm composed of myeloblasts that locates extramedullary. The present study reports the case of a 31-year-old female who presented with upper abdominal pain, melena, vomiting and jaundice. The abdominal computed tomography revealed a mass in gastric antrum area and possible infiltration of the duodenum, gallbladder and head of the pancreas, with possible retroperitoneal lymph node metastasis. The tumor grew quickly and led to serious obstructive jaundice. New masses developed in the bilateral orbits and left breast within 2 months of admission. The pathological results of the gastroscopic biopsy and the fine-needle biopsy of the breast revealed myeloid sarcoma. Transhepatic cholangial drainage, radiotherapy and chemotherapy were administered, but the disease reoccurred and became resistant to chemotherapy, so salvage allogenetic peripheral blood stem cell transplantation was performed. The disease relapsed at 5 months post-transplantation, and chemotherapy and donor lymphocytes transfusions were then administered. The patient declined further treatment and succumbed to disease on May 19, 2015. The present study could improve the understanding of myeloid sarcoma and provide a reference for standardized and individualized treatments for this disease.
Collapse
Affiliation(s)
- Teng Yu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Genbo Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaohua Xu
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jing Yang
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Luyin Ding
- Department of Hematology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
19
|
Baldazzi C, Luatti S, Zuffa E, Papayannidis C, Ottaviani E, Marzocchi G, Ameli G, Bardi MA, Bonaldi L, Paolini R, Gurrieri C, Rigolin GM, Cuneo A, Martinelli G, Cavo M, Testoni N. Complex chromosomal rearrangements leading to MECOM overexpression are recurrent in myeloid malignancies with various 3q abnormalities. Genes Chromosomes Cancer 2016; 55:375-88. [PMID: 26815134 DOI: 10.1002/gcc.22341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/25/2015] [Accepted: 12/03/2015] [Indexed: 12/12/2022] Open
Abstract
Chromosomal rearrangements involving 3q26 are recurrent findings in myeloid malignancies leading to MECOM overexpression, which has been associated with a very poor prognosis. Other 3q abnormalities have been reported and cryptic MECOM rearrangements have been identified in some cases. By fluorescence in situ hybridization (FISH) analysis, we investigated 97 acute myeloid leukemia/myelodysplastic syndrome patients with various 3q abnormalities to determine the role and the frequency of the involvement of MECOM. We identified MECOM rearrangements in 51 patients, most of them showed 3q26 involvement by chromosome banding analysis (CBA): inv(3)/t(3;3) (n = 26) and other balanced 3q26 translocations (t(3q26)) (n = 15); the remaining cases (n = 10) showed various 3q abnormalities: five with balanced translocations involving 3q21 or 3q25; two with homogenously staining region (hsr) on 3q; and three with other various 3q abnormalities. Complex rearrangements with multiple breakpoints on 3q, masking 3q26 involvement, were identified in cases with 3q21/3q25 translocations. Furthermore, multiple breaks were observed in two cases with t(3q26), suggesting that complex rearrangement may also occur in apparently simple t(3q26). Intrachromosomal gene amplification was another mechanism leading to MECOM overexpression in two cases with hsr on 3q. In the last three cases, FISH analysis revealed 3q26 involvement that was missed by CBA because of metaphases' suboptimal quality. All cases with MECOM rearrangements showed overexpression by real-time quantitative PCR. Finally, MECOM rearrangements can occur in patients with 3q abnormalities even in the absence of specific 3q26 involvement, underlining that their frequency is underestimated. As MECOM rearrangement has been associated with very poor prognosis, its screening should be performed in patients with any 3q abnormalities.
Collapse
Affiliation(s)
- Carmen Baldazzi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Simona Luatti
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Elisa Zuffa
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Emanuela Ottaviani
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Giulia Marzocchi
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Gaia Ameli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Maria Antonella Bardi
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant'Anna, Ferrara, Italy
| | - Laura Bonaldi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Rossella Paolini
- Department of General Medicine, UOSD Hematology, Santa Maria Della Misericordia Hospital, Rovigo, Italy
| | - Carmela Gurrieri
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Gian Matteo Rigolin
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant'Anna, Ferrara, Italy
| | - Antonio Cuneo
- Department of Medical Sciences, University of Ferrara-Arcispedale Sant'Anna, Ferrara, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology and Medical Oncology "Seragnoli," Sant'Orsola-Malpighi Hospital-University, Bologna, Italy
| |
Collapse
|
20
|
Abstract
Deregulated expression of the ecotropic virus integration site 1 (EVI1) gene is the molecular hallmark of therapy-resistant myeloid malignancies bearing chromosomal inv(3)(q21q26·2) or t(3;3)(q21;q26·2) [hereafter referred to as inv(3)/t(3;3)] abnormalities. EVI1 is a haematopoietic stemness and transcription factor with chromatin remodelling activity. Interestingly, the EVI1 gene also shows overexpression in 6-11% of adult acute myeloid leukaemia (AML) cases that do not carry any 3q aberrations. Deregulated expression of EVI1 is strongly associated with monosomy 7 and 11q23 abnormalities, which are known to be associated with poor response to treatment. However, EVI1 overexpression has been revealed as an important independent adverse prognostic marker in adult AML and defines distinct risk categories in 11q23-rearranged AML. Recently, important progress has been made in the delineation of the mechanism by which EVI1 becomes deregulated in inv(3)/t(3;3) as well as the cooperating mutations in this specific subset of AML with dismal prognosis.
Collapse
Affiliation(s)
- Adil A Hinai
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Peter J M Valk
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Calderón-Cabrera C, Falantes JF, Bernal R, Pérez-Simón JA. [Myelodysplastic syndromes and acute myeloid leukemia with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) abnormality]. Med Clin (Barc) 2015; 145:224-6. [PMID: 25190583 DOI: 10.1016/j.medcli.2014.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Cristina Calderón-Cabrera
- Servicio de Hematología. Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Sevilla, España
| | - Jose F Falantes
- Servicio de Hematología. Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Sevilla, España.
| | - Ricardo Bernal
- Servicio de Hematología. Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Sevilla, España
| | - Jose A Pérez-Simón
- Servicio de Hematología. Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), CSIC, Universidad de Sevilla, Sevilla, España
| |
Collapse
|
22
|
De Braekeleer M, Le Bris MJ, De Braekeleer E, Basinko A, Morel F, Douet-Guilbert N. 3q26/EVI1 rearrangements in myeloid hemopathies: a cytogenetic review. Future Oncol 2015; 11:1675-86. [DOI: 10.2217/fon.15.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT The EVI1 gene, located in chromosomal band 3q26, is a transcription factor that has stem cell-specific expression pattern and is essential for the regulation of self-renewal of hematopoietic stem cells. It is now recognized as one of the dominant oncogenes associated with myeloid leukemia. EVI1 overexpression is associated with minimal to no response to chemotherapy and poor clinical outcome. Several chromosomal rearrangements involving band 3q26 are known to induce EVI1 overexpression. They are mainly found in acute myeloid leukemia and blastic phase of Philadelphia chromosome-positive chronic myeloid leukemia, more rarely in myelodysplastic syndromes. They include inv(3)(q21q26), t(3;3)(q21;q26), t(3;21)(q26;q22), t(3;12)(q26;p13) and t(2;3)(p15–23;q26). However, many other chromosomal rearrangements involving 3q26/EVI1 have been identified. The precise molecular event has not been elucidated in the majority of these chromosomal abnormalities and most gene partners remain unknown.
Collapse
Affiliation(s)
- Marc De Braekeleer
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Marie-Josée Le Bris
- Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Etienne De Braekeleer
- Division of Stem Cells & Cancer, German Cancer Research Center (DKFZ) & Heidelberg Institute for Stem Cell Technology & Experimental Medicine GmbH (HI-STEM), Heidelberg, Germany
- Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, UK
| | - Audrey Basinko
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Frédéric Morel
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| | - Nathalie Douet-Guilbert
- Laboratoire d'Histologie, Embryologie et Cytogénétique, Faculté de Médecine et des Sciences de la Santé, Université de Brest, Brest, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France
- Service de Cytogénétique et Biologie de la Reproduction, Hôpital Morvan, CHRU Brest, Brest, France
| |
Collapse
|
23
|
Expression and role of RIP140/NRIP1 in chronic lymphocytic leukemia. J Hematol Oncol 2015; 8:20. [PMID: 25879677 PMCID: PMC4354752 DOI: 10.1186/s13045-015-0116-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 12/31/2022] Open
Abstract
RIP140 is a transcriptional coregulator, (also known as NRIP1), which finely tunes the activity of various transcription factors and plays very important physiological roles. Noticeably, the RIP140 gene has been implicated in the control of energy expenditure, behavior, cognition, mammary gland development and intestinal homeostasis. RIP140 is also involved in the regulation of various oncogenic signaling pathways and participates in the development and progression of solid tumors. During the past years, several papers have reported evidences linking RIP140 to hematologic malignancies. Among them, two recent studies with correlative data suggested that gene expression signatures including RIP140 can predict survival in chronic lymphocytic leukemia (CLL). This review aims to summarize the literature dealing with the expression of RIP140 in CLL and to explore the potential impact of this factor on transcription pathways which play key roles in this pathology.
Collapse
|
24
|
Jancuskova T, Plachy R, Zemankova L, Hardekopf DW, Stika J, Zejskova L, Praulich I, Kreuzer KA, Rothe A, Othman MA, Kosyakova N, Pekova S. Molecular characterization of the rare translocation t(3;10)(q26;q21) in an acute myeloid leukemia patient. Mol Cytogenet 2014; 7:47. [PMID: 25071866 PMCID: PMC4113123 DOI: 10.1186/1755-8166-7-47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/02/2014] [Indexed: 01/17/2023] Open
Abstract
Background In acute myeloid leukemia (AML), the MDS1 and EVI1 complex locus - MECOM, also known as the ecotropic virus integration site 1 - EVI1, located in band 3q26, can be rearranged with a variety of partner chromosomes and partner genes. Here we report on a 57-year-old female with AML who presented with the rare translocation t(3;10)(q26;q21) involving the MECOM gene. Our aim was to identify the fusion partner on chromosome 10q21 and to characterize the precise nucleotide sequence of the chromosomal breakpoint. Methods Cytogenetic and molecular-cytogenetic techniques, chromosome microdissection, next generation sequencing, long-range PCR and direct Sanger sequencing were used to map the chromosomal translocation. Results Using a combination of cytogenetic and molecular approaches, we mapped the t(3;10)(q26;q21) to the single nucleotide level, revealing a fusion of the MECOM gene (3q26.2) and C10orf107 (10q21.2). Conclusions The approach described here opens up new possibilities in characterizing acquired as well as congenital chromosomal aberrations. In addition, DNA sequences of chromosomal breakpoints may be a useful tool for unique molecular minimal residual disease target identification in acute leukemia patients.
Collapse
Affiliation(s)
- Tereza Jancuskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Radek Plachy
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lucie Zemankova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - David Warren Hardekopf
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Jiri Stika
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Lenka Zejskova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| | - Inka Praulich
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Karl-Anton Kreuzer
- Department I of Internal Medicine, University at Cologne, Kerpener Str., Cologne, Germany
| | - Achim Rothe
- Oncological Therapy Center, Buchforststr., Cologne, Germany
| | - Moneeb Ak Othman
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Institute of Human Genetics, Kollegiengasse 10, Jena, Germany
| | - Sona Pekova
- Laboratory for Molecular Diagnostics, synlab genetics s.r.o., Evropska 176/16, Prague 6 16000, Czech Republic
| |
Collapse
|
25
|
Volkert S, Schnittger S, Zenger M, Kern W, Haferlach T, Haferlach C. Amplification of EVI1 on cytogenetically cryptic double minutes as new mechanism for increased expression of EVI1. Cancer Genet 2014; 207:103-8. [PMID: 24726268 DOI: 10.1016/j.cancergen.2014.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), increased expression of EVI1 (ecotropic virus integration site 1) was found to be associated with adverse prognosis. Although increased expression of the EVI1 gene is mainly caused by chromosomal rearrangements involving chromosome band 3q26, where EVI1 is located, it can also be identified in cases without these rearrangements. The mechanisms that cause increased EVI1 expression in the absence of 3q26 rearrangements remain unclear. Here, we present four cases with increased EVI1 expression due to EVI1 amplification on cytogenetically cryptic double minutes (dmin). The dmin are small acentric chromosome structures and were observed in about 1% of AML and MDS. We investigated the four cases by conventional cytogenetics, fluorescence in situ hybridization, and array comparative genomic hybridization. Furthermore, EVI1 expression was measured by quantitative reverse transcriptase-PCR. By conventional chromosome analysis, the EVI1 dmin cannot be detected, due to the small size of the amplicons of 0.49-0.78 Mbp. Median % EVI1/ABL expression was 88.9% and therefore comparable to the median % EVI1/ABL expression of patients with EVI1 rearrangements. In conclusion, EVI1 amplification on cytogenetically cryptic dmin causes increased expression of EVI1 and is a new mechanism that causes increased EVI1 expression without a 3q26 rearrangement.
Collapse
|
26
|
Rogers HJ, Vardiman JW, Anastasi J, Raca G, Savage NM, Cherry AM, Arber D, Moore E, Morrissette JJD, Bagg A, Liu YC, Mathew S, Orazi A, Lin P, Wang SA, Bueso-Ramos CE, Foucar K, Hasserjian RP, Tiu RV, Karafa M, Hsi ED. Complex or monosomal karyotype and not blast percentage is associated with poor survival in acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2): a Bone Marrow Pathology Group study. Haematologica 2014; 99:821-9. [PMID: 24463215 DOI: 10.3324/haematol.2013.096420] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Acute myeloid leukemia and myelodysplastic syndrome with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) have a poor prognosis. Indeed, the inv(3)(q21q26.2)/t(3;3)(q21;q26.2) has been recognized as a poor risk karyotype in the revised International Prognostic Scoring System. However, inv(3)(q21q26.2)/t(3;3)(q21;q26.2) is not among the cytogenetic abnormalities pathognomonic for diagnosis of acute myeloid leukemia irrespective of blast percentage in the 2008 WHO classification. This multicenter study evaluated the clinico-pathological features of acute myeloid leukemia/myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and applied the revised International Prognostic Scoring System to myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2). A total of 103 inv(3)(q21q26.2)/t(3;3)(q21;q26.2) patients were reviewed and had a median bone marrow blast count of 4% in myelodysplastic syndrome (n=40) and 52% in acute myeloid leukemia (n=63) (P<0.001). Ninety-one percent of patients showed characteristic dysmegakaryopoiesis. There was no difference in overall survival between acute myeloid leukemia and myelodysplastic syndrome patients with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) (12.9 vs. 7.9 months; P=0.16). Eighty-three percent of patients died (median follow up 7.9 months). Complex karyotype, monosomal karyotype and dysgranulopoiesis (but not blast percentage) were independent poor prognostic factors in the entire cohort on multivariable analysis. The revised International Prognostic Scoring System better reflected overall survival of inv(3)(q21q26.2)/t(3;3)(q21;q26.2) than the International Prognostic Scoring System but did not fully reflect the generally dismal prognosis. Our data support consideration of myelodysplastic syndrome with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) as an acute myeloid leukemia with recurrent genetic abnormalities, irrespective of blast percentage.
Collapse
|
27
|
Abstract
Acute myeloid leukemia (AML) with inv(3)(q21q26.2)/t(3;3)(q21;q26.2) [inv3/t(3;3)] is a distinct entity under the subgroup of AMLs with recurrent genetic abnormalities in the 2008 World Health Organization classification. Myelodysplastic syndrome (MDS) with inv3/t(3;3) has a high risk of progression to AML. AML and MDS with inv3/t(3;3) have a similarly aggressive clinical course with short overall survival (OS) and are commonly refractory to therapy. In this article, clinical and pathologic features and prognosis in AML and MDS with inv3/t(3;3) are reviewed, and other myeloid neoplasms with similar dysplastic features to be differentiated from AML and MDS with inv3/t(3;3) are discussed.
Collapse
Affiliation(s)
- Heesun J Rogers
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Eric D Hsi
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Ho PA, Alonzo TA, Gerbing RB, Pollard JA, Hirsch B, Raimondi SC, Cooper T, Gamis AS, Meshinchi S. High EVI1 expression is associated with MLL rearrangements and predicts decreased survival in paediatric acute myeloid leukaemia: a report from the children's oncology group. Br J Haematol 2013; 162:670-7. [PMID: 23826732 DOI: 10.1111/bjh.12444] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/09/2013] [Indexed: 01/19/2023]
Abstract
Ectopic viral integration site-1 (EVI1) is highly expressed in certain cytogenetic subsets of adult acute myeloid leukaemia (AML), and has been associated with inferior survival. We sought to examine the clinical and biological associations of EVI1(high) , defined as expression in excess of normal controls, in paediatric AML. EVI1 mRNA expression was measured via quantitative real-time polymerase chain reaction in diagnostic specimens obtained from 206 patients. Expression levels were correlated with clinical features and outcome. EVI1(high) was present in 58/206 (28%) patients. MLL rearrangements occurred in 40% of EVI1(high) patients as opposed to 12% of the EVI1(low/absent) patients (P < 0·001). No abnormalities of 3q26 were found in EVI1(high) patients by conventional cytogenetic analysis, nor were cryptic 3q26 abnormalities detected in a subset of patients screened by next-generation sequencing. French-American-British class M7 was enriched in the EVI1(high) group, accounting for 24% of these patients. EVI1(high) patients had significantly lower 5-year overall survival from study entry (51% vs. 68%, P = 0·015). However, in multivariate analysis including other established prognostic markers, EVI1 expression did not retain independent prognostic significance. EVI1 expression is currently being studied in a larger cohort of patients enrolled on subsequent Children's Oncology Group trials, to determine if EVI1(high) has prognostic value in MLL-rearranged or intermediate-risk subsets.
Collapse
Affiliation(s)
- Phoenix A Ho
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98103, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
High incidence of RAS signalling pathway mutations in MLL-rearranged acute myeloid leukemia. Leukemia 2013; 27:1933-6. [PMID: 23535558 DOI: 10.1038/leu.2013.90] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Rashidi A, McNeill S, Winters J, Alexander B, Roullet M. T-cell acute lymphoblastic leukemia/lymphoma with inversion(3)(q21q26). Int J Lab Hematol 2013; 35:e34-6. [PMID: 23521817 DOI: 10.1111/ijlh.12064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A Rashidi
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA.
| | | | | | | | | |
Collapse
|
31
|
Katz OB, Rowe JM, Schiff E, Oliven A, Attias D, Tadmor T. Acute myeloid leukemia with monosomy 20 and diabetes insipidus: a possible novel association. Leuk Lymphoma 2012; 54:1547-51. [PMID: 23121069 DOI: 10.3109/10428194.2012.745934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|