1
|
Huffman BM, Rahma OE, Tyan K, Li YY, Giobbie-Hurder A, Schlechter BL, Bockorny B, Manos MP, Cherniack AD, Baginska J, Mariño-Enríquez A, Kao KZ, Maloney AK, Ferro A, Kelland S, Ng K, Singh H, Welsh EL, Pfaff KL, Giannakis M, Rodig SJ, Hodi FS, Cleary JM. A Phase I Trial of Trebananib, an Angiopoietin 1 and 2 Neutralizing Peptibody, Combined with Pembrolizumab in Patients with Advanced Ovarian and Colorectal Cancer. Cancer Immunol Res 2025; 13:9-22. [PMID: 39348472 DOI: 10.1158/2326-6066.cir-23-1027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Ovarian cancers and microsatellite stable (MSS) colorectal cancers are insensitive to anti-programmed cell death 1 (PD-1) immunotherapy, and new immunotherapeutic approaches are needed. Preclinical data suggest a relationship between immunotherapy resistance and elevated angiopoietin 2 levels. We performed a phase I dose escalation study of pembrolizumab and the angiopoietin 1/2 inhibitor trebananib (NCT03239145). This multicenter trial enrolled patients with metastatic ovarian cancer or MSS colorectal cancer. Trebananib was administered intravenously weekly for 12 weeks with 200 mg intravenous pembrolizumab every 3 weeks. The toxicity profile of this combination was manageable, and the protocol-defined highest dose level (trebananib 30 mg/kg weekly plus pembrolizumab 200 mg every 3 weeks) was declared the maximum tolerated dose. The objective response rate for all patients was 7.3% (90% confidence interval, 2.5%-15.9%). Three patients with MSS colorectal cancer had durable responses for ≥3 years. One responding patient's colorectal cancer harbored a POLE mutation. The other two responding patients had left-sided colorectal cancers, with no baseline liver metastases, and genomic analysis revealed that they both had KRAS wild-type, ERBB2-amplified tumors. After development of acquired resistance, biopsy of one patient's KRAS wild-type ERBB2-amplified tumor showed a substantial decline in tumor-associated T cells and an increase in immunosuppressive intratumoral macrophages. Future studies are needed to carefully assess whether clinicogenomic features, such as lack of liver metastases, ERBB2 amplification, and left-sided tumors, can predict increased sensitivity to PD-1 immunotherapy combinations.
Collapse
Affiliation(s)
- Brandon M Huffman
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Osama E Rahma
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kevin Tyan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yvonne Y Li
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Benjamin L Schlechter
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bruno Bockorny
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael P Manos
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Andrew D Cherniack
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Joanna Baginska
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adrián Mariño-Enríquez
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Katrina Z Kao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna K Maloney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Allison Ferro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sarah Kelland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kimmie Ng
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Harshabad Singh
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Emma L Welsh
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kathleen L Pfaff
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marios Giannakis
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Scott J Rodig
- Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- ImmunoProfile, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - James M Cleary
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
2
|
Novikova ON, Matyugina ES, Gorshenin AV, Velikorodnaya YI, Krengauz MD, Vedernikova VO, Spirin PV, Prassolov VS, Kochetkov SN, Khandazhinskaya AL. 5'-Noraristeromycin Repurposing: Well-known S-Adenosyl-L-homocysteine Hydrolase Inhibitor As a Potential Drug Against Leukemia. Acta Naturae 2024; 16:60-66. [PMID: 39555174 PMCID: PMC11569843 DOI: 10.32607/actanaturae.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/15/2023] [Indexed: 11/19/2024] Open
Abstract
5'-Noraristeromycin as a racemic mixture of enantiomers was found to exhibit a pronounced cytotoxic effect on leukemia cells; IC50 for the Jurkat, K562, and THP-1 cell lines was 7.3, 1.3, and 3.7 μM, respectively. The general toxicity of 5'-noraristeromycin was studied in experiments on white mice upon single-dose intragastric administration; toxicometric parameters were determined, and the clinical and pathomorphological presentation of acute intoxication was studied. LD50 of the substance was shown to be 63.2 (52.7÷75.8) mg/kg; LD16, 44.7 mg/kg, and LD84, 89.4 mg/kg. Administration of the substance at a dose within the studied dose range is accompanied by systemic damage to the internal organs and tissues of the experimental animals.
Collapse
Affiliation(s)
- O. N. Novikova
- Research Institute of Hygiene, Toxicology and Occupational Pathology, Federal Medical and Biological Agency, Volgograd, 400048 Russian Federation
| | - E. S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - A. V. Gorshenin
- Research Institute of Hygiene, Toxicology and Occupational Pathology, Federal Medical and Biological Agency, Volgograd, 400048 Russian Federation
| | - Yu. I. Velikorodnaya
- Research Institute of Hygiene, Toxicology and Occupational Pathology, Federal Medical and Biological Agency, Volgograd, 400048 Russian Federation
| | - M. D. Krengauz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701 Russian Federation
| | - V. O. Vedernikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141701 Russian Federation
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
- Center for High-Precision Editing and Genetic Technologies for Biomedicine, Institute of Molecular Biology. V.A. Engelhardt, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
- Center for High-Precision Editing and Genetic Technologies for Biomedicine, Institute of Molecular Biology. V.A. Engelhardt, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - S. N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| | - A. L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russian Federation
| |
Collapse
|
3
|
Wang HY, Diao Y, Tan PZ, Liang H. Four centrosome-related genes to predict the prognosis and drug sensitivity of patients with colon cancer. World J Gastrointest Oncol 2024; 16:1908-1924. [PMID: 38764831 PMCID: PMC11099447 DOI: 10.4251/wjgo.v16.i5.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND As the primary microtubule organizing center in animal cells, centrosome abnormalities are involved in human colon cancer. AIM To explore the role of centrosome-related genes (CRGs) in colon cancer. METHODS CRGs were collected from public databases. Consensus clustering analysis was performed to separate the Cancer Genome Atlas cohort. Univariate Cox and least absolute shrinkage selection operator regression analyses were performed to identify candidate prognostic CRGs and construct a centrosome-related signature (CRS) to score colon cancer patients. A nomogram was developed to evaluate the CRS risk in colon cancer patients. An integrated bioinformatics analysis was conducted to explore the correlation between the CRS and tumor immune microenvironment and response to immunotherapy, chemotherapy, and targeted therapy. Single-cell transcriptome analysis was conducted to examine the immune cell landscape of core prognostic genes. RESULTS A total of 726 CRGs were collected from public databases. A CRS was constructed, which consisted of the following four genes: TSC1, AXIN2, COPS7A, and MTUS1. Colon cancer patients with a high-risk signature had poor survival. Patients with a high-risk signature exhibited decreased levels of plasma cells and activated memory CD4+ T cells. Regarding treatment response, patients with a high-risk signature were resistant to immunotherapy, chemotherapy, and targeted therapy. COPS7A expression was relatively high in endothelial cells and fibroblasts. MTUS1 expression was high in endothelial cells, fibroblasts, and malignant cells. CONCLUSION We constructed a centrosome-related prognostic signature that can accurately predict the prognosis of colon cancer patients, contributing to the development of individualized treatment for colon cancer.
Collapse
Affiliation(s)
- Hui-Yan Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| | - Yan Diao
- Department of Clinical Laboratory, Heilongjiang Province Hospital, Harbin 150000, Heilongjiang Province, China
| | - Pei-Zhu Tan
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Huan Liang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150086, Heilongjiang Province, China
| |
Collapse
|
4
|
Wang S, Sun Y, Li C, Chong Y, Ai M, Wang Y, Shi H, Shang Y. TH1L involvement in colorectal cancer pathogenesis by regulation of CCL20 through the NF-κB signalling pathway. J Cell Mol Med 2024; 28:e18391. [PMID: 38809918 PMCID: PMC11135906 DOI: 10.1111/jcmm.18391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/12/2024] [Accepted: 04/27/2024] [Indexed: 05/31/2024] Open
Abstract
TH1L (also known as NELF-C/D) is a member of the Negative Elongation Factor (NELF) complex, which is a metazoan-specific factor that regulates RNA Polymerase II (RNAPII) pausing and transcription elongation. However, the function and molecular mechanisms of TH1L in cancer progression are still largely unknown. In this study, we found that TH1L was highly expressed in colorectal cancer (CRC) tissues and the faeces of CRC patients. Overexpression of TH1L significantly enhanced the proliferation and migration of CRC cells, while its knockdown markedly suppressed these processes. In mechanism, RNA sequencing revealed that CCL20 was upregulated in TH1L-overexpressed CRC cells, leading to activation of the NF-κB signalling pathway. Rescue assays showed that knockdown of CCL20 could impair the tumour-promoting effects of THIL in CRC cells. Taken together, these results suggest that TH1L may play a vital role via the CCL20/NF-κB signalling pathway in CRC proliferation and migration and may serve as a potential target for diagnosis and therapy of CRC.
Collapse
Affiliation(s)
- Shaochang Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yujing Sun
- Department of Laboratory MedicinePeking University International HospitalBeijingChina
| | - Chunya Li
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yueyang Chong
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
- Department of Cancer Precision Medicine, The MED‐X InstituteThe First Affiliated Hospital of Xi‘an Jiaotong UniversityXi‘anChina
| | - Meihong Ai
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Yanxia Wang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Haiyun Shi
- Department of GastroenterologyBeijing Friendship Hospital, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Diseases, Capital Medical UniversityBeijingChina
| | - Yu Shang
- The Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
5
|
Barlak N, Kusdemir G, Gumus R, Gundogdu B, Sahin MH, Tatar A, Ittmann M, Karatas OF. Overexpression of POFUT1 promotes malignant phenotype and mediates perineural invasion in head and neck squamous cell carcinoma. Cell Biol Int 2023; 47:1950-1963. [PMID: 37641160 DOI: 10.1002/cbin.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive neoplasms, which requires more effective prevention and treatment modalities. Previous studies found that protein O-fucosyltransferase 1 (POFUT1) upregulation promotes carcinogenesis, although the potential roles, underlying molecular mechanisms, and biological implications of POFUT1 in HNSCC were not investigated. In this study, in silico analyses referred POFUT1 as a potential oncogene in HNSCC. Further analysis of tumor and normal tissue samples as well as HNSCC cells with quantitative real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry showed significant overexpression of POFUT1 in HNSCC clinical tumor tissue specimens and cell lines compared to corresponding controls. In vitro investigations revealed that overexpression of POFUT1 promoted phenotypes associated with cancer aggressiveness and its knockdown in HNSCC cells suppressed those phenotypes. Further xenograft experiments demonstrated that POFUT1 is an oncogene in vivo for HNSCC. Immunohistochemical analysis with human clinical samples and cancer cell-dorsal root ganglion ex-vivo coculture model showed that deregulation of POFUT1 is involved in the perineural invasion of HNSCC cells. These results suggest POFUT1 expression as a potential prognostic marker for patients with head and neck cancer and highlight its potential as a target for HNSCC therapy, although more molecular clues are needed to better define the functions of POFUT1 related to HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Gulnur Kusdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Hakan Sahin
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey, VAMC, Houston, Texas, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
6
|
Han Z, Wang Y, Han L, Yang C. RPN2 in cancer: An overview. Gene 2023; 857:147168. [PMID: 36621657 DOI: 10.1016/j.gene.2023.147168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Oncogenes together with tumor suppresser genes are confirmed to regulate tumor phenotype in human cancers. RPN2, widely verified as an oncogene, encodes a protein that is part of an N-oligosaccharyl transferase, and is observed to be aberrantly expressed in human malignancies. Accumulating evidence unveils the vital functions of RPN2, contributing to tumorigenicity, metastasis, progression, and multi-drug resistance. Furthermore, previous studies partly indicated that RPN2 was involved in tumor progression via contributing to N-glycosylation and regulating multiple signaling pathways. In addition, RPN2 was also confirmed as a downstream target involved in tumor progression. Moreover, with demonstrated prognosis value and therapeutic target, RPN2 was also determined as a promising biomarker for forecasting patients' prognostic and therapy efficacy. In the present review, we aimed to summarize the present studies of RPN2 in cancer, and enhance the understanding of RPN2's extensive functions and clinical significances.
Collapse
Affiliation(s)
- Zhengxuan Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - You Wang
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Key Laboratory of Tumour Biological Behaviours, Wuhan, China; Hubei Cancer Clinical Study Center, Wuhan, China; The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan, China.
| |
Collapse
|
7
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009&set/a 845351627+823089559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022; 32:800-814. [PMID: 35365367 PMCID: PMC9378356 DOI: 10.1016/j.tcb.2022.02.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Cysteine, a thiol-containing amino acid, is crucial for the synthesis of sulfur-containing biomolecules that control multiple essential cellular activities. Altered cysteine metabolism has been linked to numerous driver oncoproteins and tumor suppressors, as well as to malignant traits in cancer. Cysteine can be acquired from extracellular sources or synthesized de novo via the transsulfuration (TSS) pathway. Limited availability of cystine in tumor interstitial fluids raises the possible dependency on de novo cysteine synthesis via TSS. However, the contribution of TSS to cancer metabolism remains highly contentious. Based on recent findings, we provide new perspectives on this crucial but understudied metabolic pathway in cancer.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Ramon I Klein Geltink
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Seth J Parker
- BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Zhang HF, Klein Geltink RI, Parker SJ, Sorensen PH. Transsulfuration, minor player or crucial for cysteine homeostasis in cancer. Trends Cell Biol 2022. [DOI: 10.1016/j.tcb.2022.02.009
expr 919953342 + 844571884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
AHCYL1 Is a Novel Biomarker for Predicting Prognosis and Immunotherapy Response in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5054324. [PMID: 35578598 PMCID: PMC9107370 DOI: 10.1155/2022/5054324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022]
Abstract
Background Colorectal cancer (CRC) is the third most frequent cancer worldwide. The AHCYL1 gene is required for CNV and has a close association with the tumor immune microenvironment. However, the predictive value of the AHCYL1 gene in patients with CRC remains unknown. Methods AHCYL1 gene with prognostic potential was comprehensively analyzed. Next, using LASSO Cox regression, we fully examined and integrated the AHCYL1 and AHCYL1-related genes from TCGA database. Meanwhile, TCGA database was used to study the connection between AHCYL1 and the tumor immune microenvironment and tumor mutation burden (TMB) in CRC. The influence of AHCYL1 in tumor growth and the recruiting ability of CD8+ T cells were verified, respectively, in vivo and in tissues. To ascertain the connection between AHCYL1 and AHCYL1-related genes and the prognosis of CRC, a prognostic model was created and validated. Result We demonstrated that AHCYL1 has a differential expression and patients with AHCYL1 deletion get shorter survival in CRC. Additionally, the tissues without AHCYL1 have a weaker ability to recruit the natural killer (NK) cell, CD8+ T cells, and tumor-infiltrating lymphocytes (TILs) and response to immunotherapy. Additionally, knockdown of AHCYL1 promoted tumor growth in the CRC mouse model and recruited lower CD8+ T cells in CRC tissues. TCGA database was used to classify patients into low- and high-risk categories based on the expression of four genes. Meanwhile, we discovered an association between the low-risk group and a lower TMB and a higher response to immunotherapy. Finally, a predictive nomogram based on these genes was developed and verified, yielding a C-index of 0.74. Conclusion For CRC patients, the prognostic model based on AHCYL1 and AHCYL1-related genes showed a high predictive performance in terms of prognosis and immunotherapy response.
Collapse
|
11
|
Tan ES, Knepper TC, Wang X, Permuth JB, Wang L, Fleming JB, Xie H. Copy Number Alterations as Novel Biomarkers and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2022; 14:2223. [PMID: 35565354 PMCID: PMC9101426 DOI: 10.3390/cancers14092223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
In colorectal cancer, somatic mutations have played an important role as prognostic and predictive biomarkers, with some also functioning as therapeutic targets. Another genetic aberration that has shown significance in colorectal cancer is copy number alterations (CNAs). CNAs occur when a change to the DNA structure propagates gain/amplification or loss/deletion in sections of DNA, which can often lead to changes in protein expression. Multiple techniques have been developed to detect CNAs, including comparative genomic hybridization with microarray, low pass whole genome sequencing, and digital droplet PCR. In this review, we summarize key findings in the literature regarding the role of CNAs in the pathogenesis of colorectal cancer, from adenoma to carcinoma to distant metastasis, and discuss the roles of CNAs as prognostic and predictive biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaine S. Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Todd C. Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12901 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| |
Collapse
|
12
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
13
|
Stefanovska B, André F, Fromigué O. Tribbles Pseudokinase 3 Regulation and Contribution to Cancer. Cancers (Basel) 2021; 13:cancers13081822. [PMID: 33920424 PMCID: PMC8070086 DOI: 10.3390/cancers13081822] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Accumulating evidence supports a key function for Tribbles proteins in oncogenesis, both in leukemia and solid tumors. However, the exact role of these proteins is hard to define since in a context-dependent manner they can function as both oncogenes and tumor suppressors. Their complex role arises from the capacity to interact with a wide range of target molecules thereby acting as molecular scaffolds and signaling regulators of multiple pathways. This review focuses on one particular Tribbles family member, namely, TRIB3, addressing its gene and protein expression, as well as its role in cancer development and progression. Abstract The first Tribbles protein was identified as critical for the coordination of morphogenesis in Drosophila melanogaster. Three mammalian homologs were subsequently identified, with a structure similar to classic serine/threonine kinases, but lacking crucial amino acids for the catalytic activity. Thereby, the very weak ATP affinity classifies TRIB proteins as pseudokinases. In this review, we provide an overview of the regulation of TRIB3 gene expression at both transcriptional and post-translational levels. Despite the absence of kinase activity, TRIB3 interferes with a broad range of cellular processes through protein–protein interactions. In fact, TRIB3 acts as an adaptor/scaffold protein for many other proteins such as kinase-dependent proteins, transcription factors, ubiquitin ligases, or even components of the spliceosome machinery. We then state the contribution of TRIB3 to cancer development, progression, and metastasis. TRIB3 dysregulation can be associated with good or bad prognosis. Indeed, as TRIB3 interacts with and regulates the activity of many key signaling components, it can act as a tumor-suppressor or oncogene in a context-dependent manner.
Collapse
Affiliation(s)
- Bojana Stefanovska
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
| | - Fabrice André
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Department of Medical Oncology, Gustave Roussy, F-94805 Villejuif, France
| | - Olivia Fromigué
- Inserm, UMR981, F-94805 Villejuif, France; (B.S.); (F.A.)
- Gustave Roussy, F-94805 Villejuif, France
- Orsay, Université Paris Saclay, F-91400 Gif-sur-Yvette, France
- Correspondence: ; Tel.: +33-142114211
| |
Collapse
|
14
|
Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, Singh HN. Differentially Expressed Genes and Their Clinical Significance in Ischaemic Stroke: An In-Silico Study. Malays J Med Sci 2021; 27:53-67. [PMID: 33447134 PMCID: PMC7785266 DOI: 10.21315/mjms2020.27.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Background Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS. Methods Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package ‘affy’ was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations. Results GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented. Conclusion The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.
Collapse
Affiliation(s)
| | | | | | - Hina Sharma
- National Network of Depression Centers India Foundation, New Delhi, India
| | | | - Vishnu Swarup
- All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
15
|
Okita K, Hara Y, Okura H, Hayashi H, Sasaki Y, Masuko S, Kitadai E, Masuko K, Yoshimoto S, Hayashi N, Sugiura R, Endo Y, Okazaki S, Arai S, Yoshioka T, Matsumoto T, Makino Y, Komiyama H, Sakamoto K, Masuko T. Antitumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene. Cancer Sci 2020; 112:563-574. [PMID: 33211385 PMCID: PMC7894011 DOI: 10.1111/cas.14741] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Copy number alterations detected by comparative genomic hybridization (CGH) can lead to the identification of novel cancer‐related genes. We analyzed chromosomal aberrations in a set of 100 human primary colorectal cancers (CRCs) using CGH and found a solute carrier (SLC) 7A1 gene, which encodes cationic amino acid transporter 1 (CAT1) with 14 putative transmembrane domains, in a chromosome region (13q12.3) with a high frequency of gene amplifications. SLC7A1/CAT1 is a transporter responsible for the uptake of cationic amino acids (arginine, lysine, and ornithine) essential for cellular growth. Microarray and PCR analyses have revealed that mRNA transcribed from CAT1 is overexpressed in more than 70% of human CRC samples, and RNA interference–mediated knockdown of CAT1 inhibited the cell growth of CRCs. Rats were immunized with rat hepatoma cells expressing CAT1 tagged with green fluorescent protein (GFP), and rat splenocytes were fused with mouse myeloma cells. Five rat monoclonal antibodies (mAbs) (CA1 ~ CA5) reacting with HEK293 cells expressing CAT1‐GFP in a GFP expression–dependent manner were selected from established hybridoma clones. Novel anti‐CAT1 mAbs selectively reacted with human CRC tumor tissues compared with adjacent normal tissues according to immuno‐histochemical staining and bound strongly to numerous human cancer cell lines by flow cytometry. Anti‐CAT1 mAbs exhibited internalization activity, antibody‐dependent cellular cytotoxicity, and migration inhibition activity against CRC cell lines. Furthermore, CA2 inhibited the in vivo growth of human HT29 and SW‐C4 CRC tumors in nude mice. This study suggested CAT1 to be a promising target for mAb therapy against CRCs.
Collapse
Affiliation(s)
- Kouki Okita
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Production and Manufacturing, Carna Biosciences, Inc., Kobe, Japan
| | - Yuta Hara
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hiroshi Okura
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Hidemi Hayashi
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yoko Sasaki
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Sachiko Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Eri Kitadai
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kazue Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan
| | - Soshi Yoshimoto
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Natsumi Hayashi
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Yuichi Endo
- Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| | - Shogo Okazaki
- Division of Cell Fate Regulation, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Sayaka Arai
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiaki Yoshioka
- Field of Basic Science, Department of Occupational therapy, Graduate School of Health Sciences, Akita University, Akita, Japan
| | - Toshiharu Matsumoto
- Department of Diagnostic Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yasutaka Makino
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromitsu Komiyama
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Kazuhiro Sakamoto
- Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, School of Pharmacy, Kindai University, Osaka, Japan.,Natural Drug Resources, Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
16
|
González-González M, Gutiérrez ML, Sayagués JM, Muñoz-Bellvís L, Orfao A. Genomic profiling of sporadic liver metastatic colorectal cancer. Semin Cancer Biol 2020; 71:98-108. [PMID: 32485312 DOI: 10.1016/j.semcancer.2020.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023]
Abstract
Sporadic colorectal cancer (sCRC) is the third leading cause of cancer death in the Western world. Approximately, a quarter of sCRC patients present metastatic dissemination at the moment of diagnosis, the liver being the most frequently affected organ. Additionally, this group of CRC patients is characterized by a worse prognosis. In the last decades, significant technological developments for genome analysis have fostered the identification and characterization of genetic alterations involved in the pathogenesis of sCRC. However, genetic alterations involved in the metastatic process through which tumor cells are able to colonize other tissues with a different microenvironment, still remain to be fully identified. Here, we review current knowledge about the most relevant genomic alterations involved in the liver metastatic process of sCRC, including detailed information about the genetic profile of primary colorectal tumors vs. their paired liver metastases.
Collapse
Affiliation(s)
- María González-González
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain
| | - María Laura Gutiérrez
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain
| | - José María Sayagués
- Department of Hematology, University Hospital of Salamanca, Salamanca, Spain; Department of Pathology, Universidad de Salamanca, Salamanca, Spain
| | - Luis Muñoz-Bellvís
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain; Department of General and Gastrointestinal Surgery, University Hospital of Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and Cytometry Service (NUCLEUS), University of Salamanca, Salamanca, Spain; Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Biomedical Research Networking Centre Consortium-CIBER-CIBERONC, Spain.
| |
Collapse
|
17
|
Akpa CA, Kleo K, Oker E, Tomaszewski N, Messerschmidt C, López C, Wagener R, Oehl-Huber K, Dettmer K, Schoeler A, Lenze D, Oefner PJ, Beule D, Siebert R, Capper D, Dimitrova L, Hummel M. Acquired resistance to DZNep-mediated apoptosis is associated with copy number gains of AHCY in a B-cell lymphoma model. BMC Cancer 2020; 20:427. [PMID: 32408898 PMCID: PMC7227222 DOI: 10.1186/s12885-020-06937-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/07/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Enhancer of zeste homolog 2 (EZH2) is considered an important driver of tumor development and progression by its histone modifying capabilities. Inhibition of EZH2 activity is thought to be a potent treatment option for eligible cancer patients with an aberrant EZH2 expression profile, thus the indirect EZH2 inhibitor 3-Deazaneplanocin A (DZNep) is currently under evaluation for its clinical utility. Although DZNep blocks proliferation and induces apoptosis in different tumor types including lymphomas, acquired resistance to DZNep may limit its clinical application. METHODS To investigate possible mechanisms of acquired DZNep resistance in B-cell lymphomas, we generated a DZNep-resistant clone from a previously DZNep-sensitive B-cell lymphoma cell line by long-term treatment with increasing concentrations of DZNep (ranging from 200 to 2000 nM) and compared the molecular profiles of resistant and wild-type clones. This comparison was done using molecular techniques such as flow cytometry, copy number variation assay (OncoScan and TaqMan assays), fluorescence in situ hybridization, Western blot, immunohistochemistry and metabolomics analysis. RESULTS Whole exome sequencing did not indicate the acquisition of biologically meaningful single nucleotide variants. Analysis of copy number alterations, however, demonstrated among other acquired imbalances an amplification (about 30 times) of the S-adenosyl-L-homocysteine hydrolase (AHCY) gene in the resistant clone. AHCY is a direct target of DZNep and is critically involved in the biological methylation process, where it catalyzes the reversible hydrolysis of S-adenosyl-L-homocysteine to L-homocysteine and adenosine. The amplification of the AHCY gene is paralleled by strong overexpression of AHCY at both the transcriptional and protein level, and persists upon culturing the resistant clone in a DZNep-free medium. CONCLUSIONS This study reveals one possible molecular mechanism how B-cell lymphomas can acquire resistance to DZNep, and proposes AHCY as a potential biomarker for investigation during the administration of EZH2-targeted therapy with DZNep.
Collapse
Affiliation(s)
- Chidimma Agatha Akpa
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany.
| | - Karsten Kleo
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Elisabeth Oker
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Nancy Tomaszewski
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Cristina López
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Kathrin Oehl-Huber
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Katja Dettmer
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Anne Schoeler
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dido Lenze
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Peter J Oefner
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| | - Dieter Beule
- Berlin Institute of Health, Charité Core Unit Bioinformatics, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - David Capper
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
- Department of Neuropathology, Charité, Medical University of Berlin, corporate member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK); Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lora Dimitrova
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Hummel
- Department of Experimental Hematopathology, Institute of Pathology, Charité Medical University, Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin School of Integrative Oncology, Charité - Medical University of Berlin, Berlin, Germany
| |
Collapse
|
18
|
Urata Y, Takeuchi H. Effects of Notch glycosylation on health and diseases. Dev Growth Differ 2019; 62:35-48. [PMID: 31886522 DOI: 10.1111/dgd.12643] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Notch signaling is an evolutionarily conserved signaling pathway and is essential for cell-fate specification in metazoans. Dysregulation of Notch signaling results in various human diseases, including cardiovascular defects and cancer. In 2000, Fringe, a known regulator of Notch signaling, was discovered as a Notch-modifying glycosyltransferase. Since then, glycosylation-a post-translational modification involving literal sugars-on the Notch extracellular domain has been noted as a critical mechanism for the regulation of Notch signaling. Additionally, the presence of diverse O-glycans decorating Notch receptors has been revealed in the extracellular domain epidermal growth factor-like (EGF) repeats. Here, we concisely summarize the recent studies in the human diseases associated with aberrant Notch glycosylation.
Collapse
Affiliation(s)
- Yusuke Urata
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
19
|
Li M, Su X, Wang Y, Fan L, Chai J, Li P, Zhao D, Liu Y, Ma J, Wang K, Yan Q, Guo S, Jin B, Liang R, Wang Z. Lineage-negative lymphoma with a helper innate lymphoid cell phenotype. Virchows Arch 2019; 476:285-293. [PMID: 31522287 DOI: 10.1007/s00428-019-02658-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
Abstract
Helper innate lymphoid cells (ILCs) were recently recognized as lineage-negative lymphoid cells that do not express rearranged receptors and have important effector and regulatory functions in innate immunity. However, to our knowledge, no cases of hematological malignancies arising from helper ILCs have ever been reported in the literature. Here, we report a case of a 17-year-old man with multiple lymphadenopathy who was diagnosed with lineage-negative lymphoma that displayed a helper ILC phenotype. Histological examination showed large monomorphic atypical lymphoid cells with prominent nucleoli and abundant eosinophilic cytoplasms with scattered and patchy distributions. Large amounts of histiocytes and infiltrating lymphocytes were observed in the background. Immunostaining revealed positive LCA and CD79a expression but negative expression of all lineage markers. IG and TCR rearrangement analysis showed no clonal rearrangements. Tumor cells strongly expressed helper ILC phenotypic markers, such as CD127, IL-1R, GATA3, ST2, IL-17Rβ, and RANKL, and helper ILC-produced cytokines, such as IL-4 and GM-CSF. PD-L1/PD-L2-positive histiocytes and FOXP3-positive Tregs were observed in the tumor microenvironment. Flow cytometry of bone marrow at recurrence was positive for IL-1R and negative for T, B, NK, and myelogenous lineage markers. TP53 sequencing showed that exon 5 was replaced with an intergenic sequence of chromosome 21. Next-generation sequencing demonstrated a novel IGLV2-14/IGLL5 fusion and mutations or deletions of tumor suppressor genes, such as PTPRB, PPP2CB, and UPK1A. This tumor was very aggressive, resistant to chemotherapy, recurred with bone marrow involvement, and caused the death of the patient within 6 months. To our knowledge, this is the first report of a hematological malignancy potentially arising from helper ILCs. We propose negativity for lineage markers and positivity for CD127/IL-1R in combination with specific transcription factor expression as markers of this tumor. This finding represents a novel addition to the growing spectrum of hematological malignancies.
Collapse
Affiliation(s)
- Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoli Su
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia Chai
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Peifeng Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Danhui Zhao
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Yixiong Liu
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Ma
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Kaijing Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qingguo Yan
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Shuangping Guo
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Boquan Jin
- Department of Immunology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Rong Liang
- Department of Hematology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Zhe Wang
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
20
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
21
|
Antfolk D, Antila C, Kemppainen K, Landor SKJ, Sahlgren C. Decoding the PTM-switchboard of Notch. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118507. [PMID: 31301363 PMCID: PMC7116576 DOI: 10.1016/j.bbamcr.2019.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The developmentally indispensable Notch pathway exhibits a high grade of pleiotropism in its biological output. Emerging evidence supports the notion of post-translational modifications (PTMs) as a modus operandi controlling dynamic fine-tuning of Notch activity. Although, the intricacy of Notch post-translational regulation, as well as how these modifications lead to multiples of divergent Notch phenotypes is still largely unknown, numerous studies show a correlation between the site of modification and the output. These include glycosylation of the extracellular domain of Notch modulating ligand binding, and phosphorylation of the PEST domain controlling half-life of the intracellular domain of Notch. Furthermore, several reports show that multiple PTMs can act in concert, or compete for the same sites to drive opposite outputs. However, further investigation of the complex PTM crosstalk is required for a complete understanding of the PTM-mediated Notch switchboard. In this review, we aim to provide a consistent and up-to-date summary of the currently known PTMs acting on the Notch signaling pathway, their functions in different contexts, as well as explore their implications in physiology and disease. Furthermore, we give an overview of the present state of PTM research methodology, and allude to a future with PTM-targeted Notch therapeutics.
Collapse
Affiliation(s)
- Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Christian Antila
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Kati Kemppainen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Sebastian K-J Landor
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
22
|
Perea J, García JL, Corchete L, Lumbreras E, Arriba M, Rueda D, Tapial S, Pérez J, Vieiro V, Rodríguez Y, Brandáriz L, García-Arranz M, García-Olmo D, Goel A, Urioste M, Sarmiento RG. Redefining synchronous colorectal cancers based on tumor clonality. Int J Cancer 2019; 144:1596-1608. [PMID: 30151896 PMCID: PMC6361712 DOI: 10.1002/ijc.31761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/14/2018] [Accepted: 07/13/2018] [Indexed: 12/19/2022]
Abstract
To analyze the possible clonal origin of a part of Synchronous colorectal cancer (SCRC), we studied 104 paired-SCRCs from 52 consecutive patients without hereditary forms of CRC. We used a Single-Nucleotide Polymorphism array to characterize the genomic profiles, and subsequently used a statistical application to define them according to clonality within the same individual. We categorized the ensuing groups according to colonic location to identify differential phenotypes. The SCRC Monoclonal group (M) (19 cases) was divided into Monosegmental (MM) and Pancolonic (MP) groups. The SCRC Polyclonal group (P) (33 cases) was also divided into Monosegmental (PM) and Pancolonic (PP), the first exhibiting preference for left colon. The MM group showed a high rate of mucinous tumors, the lowest mean-number of tumors and associated-polyps, and the worst prognosis. The MP group included the largest mean-number of associated-polyps, best prognosis and familial cancer component. The PM group seemed to be a "frontier" group. Finally, the PP group also exhibited a mucin component, the highest mean-number of tumors (4.6) compared with the mean-number of polyps (7.7), poor prognosis and sporadic cases. Most relevant differential genomic regions within M groups were gains on 1q24 and 8q24, and deletions on 1p21 and 1p23 for MM, while within P were the gains on 7q36 and deletions on 1p36 for PM. The statistical application employed seems to define clonality more accurately in SCRC -more likely to be polyclonal in origin-, and together with the tumor locations, helped us to configure a classification with prognostic and clinical value.
Collapse
Affiliation(s)
- José Perea
- Surgery Department, Fundación Jiménez Díaz University Hospital. Madrid, Spain
- Health Research Institute Fundación Jiménez Díaz. Madrid, Spain
| | - Juan L. García
- Biomedical Research Institute of Salamanca (IBSAL). University Hospital of Salamanca-USAL-CSIC. Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC. Salamanca, Spain
| | - Luis Corchete
- Biomedical Research Institute of Salamanca (IBSAL). University Hospital of Salamanca-USAL-CSIC. Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC. Salamanca, Spain
| | - Eva Lumbreras
- Biomedical Research Institute of Salamanca (IBSAL). University Hospital of Salamanca-USAL-CSIC. Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC. Salamanca, Spain
| | - María Arriba
- Biochemistry Department, Gregorio Marañón University Hospital. Madrid, Spain
| | - Daniel Rueda
- Centre for Biomedical Research of the 12 de Octubre University Hospital. Madrid, Spain
- Molecular Biology Laboratory, 12 de Octubre University Hospital. Madrid, Spain
| | - Sandra Tapial
- Centre for Biomedical Research of the 12 de Octubre University Hospital. Madrid, Spain
| | - Jessica Pérez
- Biomedical Research Institute of Salamanca (IBSAL). University Hospital of Salamanca-USAL-CSIC. Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC. Salamanca, Spain
| | - Victoria Vieiro
- Surgery Department, 12 de Octubre University Hospital. Madrid, Spain
| | - Yolanda Rodríguez
- Department of Pathology, 12 de Octubre University Hospital. Madrid, Spain
| | - Lorena Brandáriz
- Surgery Department, Fundación Jiménez Díaz University Hospital. Madrid, Spain
- Health Research Institute Fundación Jiménez Díaz. Madrid, Spain
| | | | - Damián García-Olmo
- Surgery Department, Fundación Jiménez Díaz University Hospital. Madrid, Spain
- Health Research Institute Fundación Jiménez Díaz. Madrid, Spain
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute, Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX. USA
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program. Spanish National Cancer Research Centre (CNIO). Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER). Institute of Health Carlos III. Madrid, Spain
| | - Rogelio González Sarmiento
- Biomedical Research Institute of Salamanca (IBSAL). University Hospital of Salamanca-USAL-CSIC. Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC). University of Salamanca-CSIC. Salamanca, Spain
| |
Collapse
|
23
|
Zhang Y, Zhang Z, Wang D, Xu J, Li Y, Wang H, Li J, Mo S, Zhang Y, Lin Y, Fan X, Li E, Huang J, Fan H, Yi Y. Multidimensional Integration Analysis of Autophagy-related Modules in Colorectal Cancer. LETT ORG CHEM 2019; 16:340-346. [DOI: 10.2174/1570178615666180914113224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 11/22/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive tract occurring in the colon, which mainly divided into adenocarcinoma, mucinous adenocarcinoma, and undifferentiated carcinoma. However, autophagy is related to the occurrence and development of various kinds of human diseases such as cancer. There is little research on the relationship between CRC and autophagy. Hence, we performed multidimensional integration analysis to systematically explore potential relationship between autophagy and CRC. Based on gene expression datasets of colon adenocarcinoma (COAD) and protein-protein interactions (PPIs), we first identified 12 autophagy-related modules in COAD using WGCNA. Then, 9 module pairs which with significantly crosstalk were deciphered, a total of 6 functional modules. Autophagy-related genes in these modules were closely related with CRC, emphasizing that the important role of autophagy-related genes in CRC, including PPP2CA and EIF4E, etc. In addition to, by integrating transcription factor (TF)-target and RNA-associated interactions, a regulation network was constructed, in which 42 TFs (including SMAD3 and TP53, etc.) and 20 miRNAs (including miR-20 and miR-30a, etc.) were identified as pivot regulators. Pivot TFs were mainly involved in cell cycle, cell proliferation and pathways in cancer. And pivot miRNAs were demonstrated associated with CRC. It suggests that these pivot regulators might be have an effect on the development of CRC by regulating autophagy. In a word, our results suggested that multidimensional integration strategy provides a novel approach to discover potential relationships between autophagy and CRC, and further improves our understanding of autophagy and tumor in human.
Collapse
Affiliation(s)
- Yang Zhang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zheng Zhang
- Department of Physical Education, Nanjing Audit University, Nanjing, China
| | - Dong Wang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jianzhen Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yanhui Li
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Peking University Health Science Center, Beijing, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shaowen Mo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yunqing Lin
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuzhao Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area and Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Ying Yi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Di J, Yang H, Wang Z, Yang J, Gao P, Jiang B, Su X. Clonality and heterogeneity of metachronous colorectal cancer. Mol Carcinog 2018; 58:447-457. [PMID: 30499617 DOI: 10.1002/mc.22947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/19/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Patients with metachronous colorectal cancer (CRC) have been diagnosed with primary CRC more than once. Given that the genetic and microenvironment is the same in these cases, metachronous CRC is an important model for studying colorectal tumorigenesis. We performed whole exome sequencing of seven freshly frozen tumors from three patients with metachronous CRC and compared their genetic profiles. In patients with metachronous tumors of distinct genetic origins, 3.74% and 0.20% of genes were ubiquitously mutated and candidate cancer genes mutated at different sites. Tumors from the same patients were clonally unrelated, and thus druggable genes differed. In contrast, in a patient with metachronous tumors of a common genetic origin, the ubiquitously mutated genes were 61.02%, with ubiquitously mutated genes and candidate cancer genes all mutated at the same sites, tumors were clonally related, and some druggable genes were the same. Therefore, two different clonal relationships between metachronous tumors exist in CRC, one is monoclonal and the other is polyclonal. Our findings may help to advance understanding of the differences in metachronous CRCs and the genetic mechanisms of which they originate, and provide new avenues for CRC treatment.
Collapse
Affiliation(s)
- Jiabo Di
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zaozao Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jie Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Pin Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Beihai Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiangqian Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery IV, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
25
|
Tashima Y, Okajima T. Congenital diseases caused by defective O-glycosylation of Notch receptors. NAGOYA JOURNAL OF MEDICAL SCIENCE 2018; 80:299-307. [PMID: 30214079 PMCID: PMC6125653 DOI: 10.18999/nagjms.80.3.299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Notch signaling pathway is highly conserved and essential for animal development. It is required for cell differentiation, survival, and proliferation. Regulation of Notch signaling is a crucial process for human health. Ligands initiate a signal cascade by binding to Notch receptors expressed on a neighboring cell. Notch receptors interact with ligands through their epidermal growth factor-like repeats (EGF repeats). Most EGF repeats are modified by O-glycosylation with residues such as O-linked N-acetylglucosamine (O-GlcNAc), O-fucose, and O-glucose. These O-glycan modifications are important for Notch function. Defects in O-glycosylation affect Notch-ligand interaction, trafficking of Notch receptors, and Notch stability on the cell surface. Although the roles of each modification are not fully understood, O-fucose is essential for binding of Notch receptors to their ligands. We reported an EGF domain-specific O-GlcNAc transferase (EOGT) localized in the endoplasmic reticulum. Mutations in genes encoding EOGT or NOTCH1 cause Adams-Oliver syndrome. Dysregulation of Notch signaling because of defects or mutations in Notch receptors or Notch signal-regulating proteins, such as glycosyltransferases, induce a variety of congenital disorders. In this review, we discuss O-glycosylation of Notch receptors and congenital human diseases caused by defects in O-glycans on Notch receptors.
Collapse
Affiliation(s)
- Yuko Tashima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Okajima
- Department of Molecular & Cellular Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Yang PS, Hsu HH, Hsu TC, Chen MJ, Wang CD, Yu SL, Hsu YC, Li KC. Genome-Wide Scan for Copy Number Alteration Association with Relapse-Free Survival in Colorectal Cancer with Liver Metastasis Patients. J Clin Med 2018; 7:446. [PMID: 30453668 PMCID: PMC6262537 DOI: 10.3390/jcm7110446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Predicting a patient's risk of recurrence after the resection of liver metastases from colorectal cancer is critical for evaluating and selecting therapeutic approaches. Clinical and pathologic parameters have shown limited accuracy thus far. Therefore, we combined the clinical status with a genomic approach to stratify relapse-free survival in colorectal cancer liver metastases patients. To identify new molecular and genetic signatures specific to colorectal cancer with liver metastasis (CRCLM) patients, we conducted DNA copy number profiling on a cohort of 21 Taiwanese CRCLM patients using a comparative genomic hybridization (CGH) array. We identified a three-gene signature based on differential copy number alteration between patients with different statuses of (1) recurrence and (2) synchronous metastasis. In relapse hotspot regions, only three genes (S100PBP, CSMD2, and TGFBI) were significantly associated with the synchronous liver metastasis factor. A final set of three genes-S100PBP, CSMD2, TGFBI-significantly predicted relapse-free survival in our cohort (p = 0.04) and another CRCLM cohort (p = 0.02). This three-gene signature is the first genomic signature validated for relapse-free survival in post-hepatectomy CRCLM patients. Our three-gene signature was developed using a whole-genome CGH array and has a good prognostic position for the relapse-free survival of CRCLM patients after hepatectomy.
Collapse
Affiliation(s)
- Po-Sheng Yang
- Department of Medicine, Mackay Medical College, New Taipei 252, Taiwan.
- Department of General Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Hsi-Hsien Hsu
- Department of Colorectal Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Chi Hsu
- Department of Colorectal Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Ming-Jen Chen
- Department of Colorectal Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Cin-Di Wang
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320, Taiwan.
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan.
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Chabanais J, Labrousse F, Chaunavel A, Germot A, Maftah A. POFUT1 as a Promising Novel Biomarker of Colorectal Cancer. Cancers (Basel) 2018; 10:cancers10110411. [PMID: 30380753 PMCID: PMC6266312 DOI: 10.3390/cancers10110411] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 12/18/2022] Open
Abstract
Background: While protein O-fucosyltransferase 1 (POFUT1) overexpression has been recently proposed as a potential biomarker for different cancer types, no study was carried out on POFUT1 implication in colorectal cancer (CRC). Methods: Data from 626 tumors and 51 non-tumor adjacent tissues available in FireBrowse had been used in this study. Statistical analyses on POFUT1 expression and gene copy number, NOTCH receptors (main targets of POFUT1 enzymatic activity) expression and association of POFUT1 and NOTCH1 expressions with clinical parameters were investigated. Data were completed by POFUT1 histological labeling on six tumor tissues from patients with CRC. Results: We found that POFUT1 is overexpressed from the stage I (p < 0.001) and 76.02% of tumors have a 20q11.21 amplification, associated in 90.13% of cases with a POFUT1 overexpression, compared to non-tumor adjacent tissues. The POFUT1 copy number in tumors is mainly between 2 and 3. POFUT1 is positively correlated with NOTCH1 (rs = 0.34, p < 0.001), NOTCH3 (rs = 0.087, p = 0.0297), and NOTCH4 (rs = 0.097, p = 0.0148) expressions, while negatively correlated with NOTCH2 expression (rs = −0.098, p = 0.0142). POFUT1 overexpression is markedly associated with rectal location, non-mucinous adenocarcinoma and cancer stages IV and M1. NOTCH1 overexpression is only associated with rectal location and non-mucinous adenocarcinoma. Conclusion: We conclude that POFUT1 is overexpressed in CRC from stage I, and its high expression is associated with metastatic process, probably through NOTCH pathway activation. Then, POFUT1 could represent a potential novel biomarker for CRC diagnosis.
Collapse
Affiliation(s)
- Julien Chabanais
- Glycosylation and Cell Differentiation, Limoges University, PEIRENE, EA 7500, F-87060 Limoges cedex, France.
| | - François Labrousse
- Department of Pathology, Limoges University Hospital, 87042 Limoges cedex, France.
| | - Alain Chaunavel
- Department of Pathology, Limoges University Hospital, 87042 Limoges cedex, France.
| | - Agnès Germot
- Glycosylation and Cell Differentiation, Limoges University, PEIRENE, EA 7500, F-87060 Limoges cedex, France.
| | - Abderrahman Maftah
- Glycosylation and Cell Differentiation, Limoges University, PEIRENE, EA 7500, F-87060 Limoges cedex, France.
| |
Collapse
|
28
|
Lira-Navarrete E, Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation. Acta Crystallogr F Struct Biol Commun 2018; 74:443-450. [PMID: 30084393 PMCID: PMC6096484 DOI: 10.1107/s2053230x18004788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Protein O-fucosylation is an important post-translational modification (PTM) found in cysteine-rich repeats in proteins. Protein O-fucosyltransferases 1 and 2 (PoFUT1 and PoFUT2) are the enzymes responsible for this PTM and selectively glycosylate specific residues in epidermal growth factor-like (EGF) repeats and thrombospondin type I repeats (TSRs), respectively. Within the past six years, crystal structures of both enzymes have been reported, revealing important information on how they recognize protein substrates and achieve catalysis. Here, the structural information available today is summarized and how PoFUT1 and PoFUT2 employ different catalytic mechanisms is discussed.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI–IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Fundación ARAID, Avenida de Ranillas, 50018 Zaragoza, Spain
| |
Collapse
|
29
|
Lv W, Zhang M, Zhu J, Zhang M, Ci C, Shang S, Wei Y, Liu H, Li X, Zhang Y. Exploration of drug-response mechanism by integrating genetics and epigenetics across cancers. Epigenomics 2018; 10:993-1010. [DOI: 10.2217/epi-2017-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: To discover CpG island methylator phenotype (CIMP) as a predictor for cancer drug-response mechanism. Materials & methods: CIMP classification of 966 cancer cell lines was determined according to identified copy number alteration and differential methylation by DNA methylation profiles. CIMP-related drugs were analyzed by analysis of variance. Tissue–cell–drug networks were developed to predict drug response of individual samples. Results & conclusion: One hundred and thirty-six copy number gain and 142 copy number loss cell lines were classified into CIMP-high and CIMP-low groups, meanwhile 9 and 24 CIMP-associated drugs were identified, respectively. Specially, breast invasive carcinoma samples primarily composed by HCC1419 were predicted to be sensitive to GSK690693. The study provides guidance for drug response in cancer therapy through genome-wide DNA methylation.
Collapse
Affiliation(s)
- Wenhua Lv
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Mengying Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Jiang Zhu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Min Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Ce Ci
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Shipeng Shang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Yanjun Wei
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Hui Liu
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| | - Xin Li
- Department of Respiratory Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, PR China
| | - Yan Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin, 150086, PR China
| |
Collapse
|
30
|
Bi C, Jiang B. Downregulation of RPN2 induces apoptosis and inhibits migration and invasion in colon carcinoma. Oncol Rep 2018; 40:283-293. [PMID: 29749494 PMCID: PMC6059750 DOI: 10.3892/or.2018.6434] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
The morbidity of colorectal cancer (CRC) increases annualy, which accounts to higher mortality worldwide. Therefore, it is important to study the pathogenesis of colon cancer. Ribophorin II (RPN2), part of the N-oligosaccharyltransferase complex, is highly expressed in CRC. In the present study, we investigated whether RPN2 can regulate apoptosis, migration and invasion by RNA interference in CRC and sought to clarify the molecular mechanism involved. Based on previous research, an abnormal high expression of RPN2 was observed in CRC tissues and cell lines by real-time (RT)-PCR, immunohistochemistry (IHC) and western blot analysis. RPN2 knockdown via small RNA interference (siRNA) strategy attenuated the expression of RPN2 at the mRNA and protein levels in vivo, leading to decreased cell viability and increased cell apoptosis. In addition, RNAi-RPN2 effectively arrested the cell cycle at the G0/G1-phase in SW1116 and SW480 cells. Furthermore, the Transwell assay demonstrated that cell migration and invasion abilities were significantly inhibited after cell transfection with RPN2 interference plasmid. The apoptosis-related protein (caspase-3) expression was increased and the cell cycle-related protein (cyclin D1) expression was decreased in the siRNA-RPN2 group. RT-PCR and western blot analysis results indicated that migration- and invasion-related proteins including E-cadherin, matrix metalloproteinases (MMP)-2 and TIMP-2 were markedly regulated by RPN2 siRNA. Phosphorylation levels of signal transducer and activator of transcription (STAT)3 and Janus kinase (JAK)2 were inhibited by RPN2 siRNA. These findings indicated a novel pathway of tumor-promoting activity by RPN2 in CRC, with significant implications for unraveling the tumorigenesis of CRC.
Collapse
Affiliation(s)
- Chongyao Bi
- Department of General Surgery, Jiaozhou Central Hospital of Qingdao, Qingdao, Shandong 266300, P.R. China
| | - Baofei Jiang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
31
|
Deeb AM, Yousef Z, Al-Johani M, Aziz MA. Effect of sampling procedure on the quality control metrics of cytoscan HD array for studying cytogenetic aspects of colorectal cancer. Int J Health Sci (Qassim) 2018; 12:49-55. [PMID: 30022904 PMCID: PMC6040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVES The method of colorectal cancer (CRC) tissue sampling would affect its molecular profile and the downstream processing. In this study, we described the impact of CRC tissue sampling procedures on the quality control (QC) metrics of cytoscan HD array. METHODS We employed a high-resolution cytoscan HD microarray platform to investigate the chromosomal aberrations that could be associated with CRC. We compared the tissue extraction procedures and their impact on the QC parameters from the cytoscan HD array determined by chromosome analysis software (Suite3.1). Median of absolute values of all pairwise differences (MAPD), waviness-standard deviation (Waviness-SD), and single nucleotide polymorphism QC (SNPQC) were the QC parameters that were analyzed. RESULTS From 67 patients, we collected 843 colorectal tissues. Of these, 65.7% were obtained through endoscopic procedures, and the rest was after surgical resections. The mean transit time between tissue excision and preservation was 26 ± 15.5 and 74.6 ± 24.8 min, respectively. The tissues extracted from the surgical procedure showed mean MAPD of 0.28 ± 0.06 compared to 0.24 ± 0.06, for endoscopy, P = 0.005, degree of waviness-SD of 0.20 ± 0.1 compared to 0.2 ± 0.1, P = 0.64, and SNPQC of 9.6 ± 4.2 compared to 11.1 ± 4.6, P = 0.23. CONCLUSIONS This report provides objective results that can help in tissue sampling intended to be used for DNA based molecular studies. Tissue collection protocol should be optimized to support microarray-analysis methods. Tissue extraction from endoscopic procedures had faster transit time and relatively better quality metrics outcome than surgical procedures. However, surgical procedures have less refusal rate, higher tissue quantity, and less negative results for malignancy.
Collapse
Affiliation(s)
- Ahmad M. Deeb
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Zeyad Yousef
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Mishal Al-Johani
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs, Saudi Arabia
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh, Ministry of National Guard Health Affairs, Saudi Arabia,Address for correspondence: Dr. Mohammad Azhar Aziz, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Kingdom of Saudi Arabia. Mail Code 2216; Tel: +966 11 801 1111, extn: 53994. E-mail Add:
| |
Collapse
|
32
|
Harvey BM, Haltiwanger RS. Regulation of Notch Function by O-Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:59-78. [PMID: 30030822 DOI: 10.1007/978-3-319-89512-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch receptor initiates a unique intercellular signaling pathway that is evolutionarily conserved across all metazoans and contributes to the development and maintenance of numerous tissues. Consequently, many diseases result from aberrant Notch signaling. Emerging roles for Notch in disease are being uncovered as studies reveal new information regarding various components of this signaling pathway. Notch activity is regulated at several levels, but O-linked glycosylation of Epidermal Growth Factor (EGF) repeats in the Notch extracellular domain has emerged as a major regulator that, depending on context, can increase or decrease Notch activity. Three types of O-linked glycosylation occur at consensus sequences found within the EGF repeats of Notch: O-fucosylation, O-glucosylation, and O-GlcNAcylation. Recent studies have investigated the site occupancy of these types of glycosylation and also defined specific roles for these glycans on Notch structure and function. Nevertheless, there are many functional aspects to each type of O-glycosylation that remain unclear. Here, we will discuss molecular mechanisms of how O-glycosylation regulates Notch signaling and describe disorders associated with defects in Notch O-glycosylation.
Collapse
Affiliation(s)
- Beth M Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,Present Address: Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
33
|
Uchiyama N, Dougan DR, Lawson JD, Kimura H, Matsumoto SI, Tanaka Y, Kawamoto T. Identification of AHCY inhibitors using novel high-throughput mass spectrometry. Biochem Biophys Res Commun 2017; 491:1-7. [DOI: 10.1016/j.bbrc.2017.05.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022]
|
34
|
Li S, Xu Y, Sun Z, Feng L, Shang D, Zhang C, Shi X, Han J, Su F, Yang H, Zhao J, Song C, Zhang Y, Li C, Li X. Identification of a lncRNA involved functional module for esophageal cancer subtypes. MOLECULAR BIOSYSTEMS 2017; 12:3312-3323. [PMID: 27539139 DOI: 10.1039/c6mb00101g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Esophageal cancer (EC) is the sixth most common cause of death from cancer and has two principal histological subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). In addition, Barrett's esophagus (BE), due to its strong association with EAC, is generally considered to be a premalignant condition of EAC. lncRNAs are believed to function in initiation and progression of multiple cancers, and therefore should play prominent, but unknown roles in the determination and behavior of different EC subtypes. In this study, by using expression profile re-annotation and differential expression (DE) analysis, we identified DE-lncRNAs and DE-protein-coding genes (DE-PCGs), and then constructed a lncRNA-PCG network, using co-expressed DE-lncRNAs (550) and DE-PCGs (5236), which was also annotated for EC subtypes. After module mining of the network, we obtained twenty candidate lncRNA-PCG modules that were ranked by gene expression and subtype-specification. Within the top four modules, we identified an ESCC specific module, two EAC-BE-specific modules and a heterologous module. Novel candidate lncRNAs were identified, in addition to lncRNAs known to be functionally connected to EC, and could be responsible for the subtype disparities in the GO biological process and at pathway levels.
Collapse
Affiliation(s)
- Shang Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Zeguo Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Li Feng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Desi Shang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Xinrui Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Fei Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Haixiu Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Jianmei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chao Song
- School of Pharmacology, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| | - Chunquan Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China. and School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
35
|
Alonso MH, Aussó S, Lopez-Doriga A, Cordero D, Guinó E, Solé X, Barenys M, de Oca J, Capella G, Salazar R, Sanz-Pamplona R, Moreno V. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br J Cancer 2017; 117:421-431. [PMID: 28683472 PMCID: PMC5537504 DOI: 10.1038/bjc.2017.208] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 06/09/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. METHODS Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. RESULTS High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman's r=0.42, P=0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B, were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. CONCLUSIONS Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to consider the purity of tumour samples to accurately calculate CNA events in CRC.
Collapse
Affiliation(s)
- M Henar Alonso
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Susanna Aussó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Adriana Lopez-Doriga
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - David Cordero
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Xavier Solé
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Mercè Barenys
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Gastroenterology Service, Hospital de Viladecans, Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Javier de Oca
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Department of General and Digestive Surgery, Bellvitge University Hospital, Barcelona, Spain
| | - Gabriel Capella
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO) and CIBERONC, Barcelona, Spain
| | - Ramón Salazar
- Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain.,Oncology Department, Catalan Institute of Oncology (ICO) and CIBERONC, Barcelona, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Cancer Prevention and Control Program, Catalan Institute of Oncology (ICO), CIBERESP, Gran Via 199, Hospitalet Llobregat, 08908 Barcelona, Spain.,Molecular Mechanisms and Experimental Therapy Cancer Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Faculty of Medicine, Department of Clinical Sciences, University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
36
|
Bozgeyik I, Yumrutas O, Bozgeyik E. MTUS1, a gene encoding angiotensin-II type 2 (AT2) receptor-interacting proteins, in health and disease, with special emphasis on its role in carcinogenesis. Gene 2017; 626:54-63. [PMID: 28499941 DOI: 10.1016/j.gene.2017.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 01/13/2023]
Abstract
Loss of tumor suppressor activity is a frequent event in the formation and progression of tumors and has been listed as an important hallmark of cancers. Microtubule-Associated Scaffold Protein 1 (MTUS1) is a candidate tumor suppressor gene which is reported to be frequently down-regulated in a variety of human cancers including pancreas, colon, bladder, head-and-neck, ovarian, breast cancers, gastric, lung cancers. It is also reported to be implicated in several types of pathologies such as cardiac hypertrophy, atherosclerosis, and SLE-like lymphoproliferative diseases. Moreover, MTUS1-encoded proteins are shown to be involved in the regulation of vital cellular processes such as proliferation, differentiation, DNA repair, inflammation, vascular remodeling and senescence. However, the current knowledge is very limited about the role of this gene in human cancers as well as other type diseases. Besides, there is no literature report which summarizes and criticizes the importance of MTUS1 in the cellular processes, especially in the processes of carcinogenesis. Accordingly, in this comprehensive review, we tried to shed light on the role of tumor suppressor MTUS1/ATIP in health and disease, putting special emphasis on its role in the development and progression of human cancers as well as associated molecular mechanisms and the reasons behind MTUS1/ATIP deficiency, which have been not well documented previously.
Collapse
Affiliation(s)
- Ibrahim Bozgeyik
- Adiyaman University, Faculty of Medicine, Department of Medical Biology, Adiyaman, Turkey.
| | - Onder Yumrutas
- Adiyaman University, Faculty of Medicine, Department of Medical Biology, Adiyaman, Turkey
| | - Esra Bozgeyik
- University of Gaziantep, Faculty of Medicine, Department of Medical Biology and Genetics, Gaziantep, Turkey
| |
Collapse
|
37
|
Sugai T, Eizuka M, Takahashi Y, Fukagawa T, Habano W, Yamamoto E, Akasaka R, Otuska K, Matsumoto T, Suzuki H. Molecular subtypes of colorectal cancers determined by PCR-based analysis. Cancer Sci 2017; 108:427-434. [PMID: 28083970 PMCID: PMC5378279 DOI: 10.1111/cas.13164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/05/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Tumor tissue consists of a heterogeneous cell population. The allelic imbalance (AI) ratio, determined in isolated tumor glands, is a good index of tumor heterogeneity. However, associations of the patterns of AI and microsatellite instability (MSI) development, observed in most cases of colorectal cancer (CRC), with tumor progression have not been reported previously. In this study, we examined whether CRC genetic profiles stratified by a combination of the AI ratio and MSI facilitate categorization of CRC, and whether these genetic profiles are associated with specific molecular alterations in CRC. A crypt isolation method was used to isolate DNA from tumors and normal glands obtained from 147 sporadic CRCs. AI and MSI statuses were determined using PCR‐based microsatellite analysis and stratified based on AI ratio and MSI status. DNA methylation status (high methylation, intermediate methylation and low methylation status and mutations in KRAS,BRAF, and TP53 were examined. In addition, mucin markers were immunostained. Based on this analysis, four subgroups were categorized. Subgroup 1 was characterized by a high MSI status and BRAF mutation; subgroup 2 was closely associated with a high AI ratio, which accumulated during the early phases of colorectal carcinogenesis, and TP53 mutation; subgroup 3 was associated with a low AI ratio, seen during the later phases of colorectal carcinogenesis, and KRAS mutation; and subgroup 4 was defined as a minor subgroup. These results confirmed that classification of distinct molecular profiles provides important insights into colorectal carcinogenesis.
Collapse
Affiliation(s)
- Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Makoto Eizuka
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Yayoi Takahashi
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Tomoyuki Fukagawa
- Department of Molecular Diagnostic Pathology, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Wataru Habano
- Pharmacodynamics and Molecular Genetics, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| | - Risaburo Akasaka
- Division of Gastroenterology, Department of Internal Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Kouki Otuska
- Department of Surgery, School of Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, School of Pharmacy, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
38
|
Pan Y, Liu H, Wang Y, Kang X, Liu Z, Owzar K, Han Y, Su L, Wei Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Teresa Landi M, Heinrich J, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Associations between genetic variants in mRNA splicing-related genes and risk of lung cancer: a pathway-based analysis from published GWASs. Sci Rep 2017; 7:44634. [PMID: 28304396 PMCID: PMC5356340 DOI: 10.1038/srep44634] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/06/2017] [Indexed: 01/08/2023] Open
Abstract
mRNA splicing is an important mechanism to regulate mRNA expression. Abnormal regulation of this process may lead to lung cancer. Here, we investigated the associations of 11,966 single-nucleotide polymorphisms (SNPs) in 206 mRNA splicing-related genes with lung cancer risk by using the summary data from six published genome-wide association studies (GWASs) of Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16,838 controls) and another two lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1,319 cases and 26,380 controls). We found that a total of 12 significant SNPs with false discovery rate (FDR) ≤0.05 were mapped to one novel gene PRPF6 and two previously reported genes (DHX16 and LSM2) that were also confirmed in this study. The six novel SNPs in PRPF6 were in high linkage disequilibrium and associated with PRPF6 mRNA expression in lymphoblastoid cells from 373 Europeans in the 1000 Genomes Project. Taken together, our studies shed new light on the role of mRNA splicing genes in the development of lung cancer.
Collapse
Affiliation(s)
- Yongchu Pan
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Yanru Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Xiaozheng Kang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | - Younghun Han
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, USA
| | - Li Su
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Yongyue Wei
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, United Kingdom
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuanqing Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Christopher I. Amos
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
39
|
Ali H, Bitar MS, Al Madhoun A, Marafie M, Al-Mulla F. Functionally-focused algorithmic analysis of high resolution microarray-CGH genomic landscapes demonstrates comparable genomic copy number aberrations in MSI and MSS sporadic colorectal cancer. PLoS One 2017; 12:e0171690. [PMID: 28231327 PMCID: PMC5322957 DOI: 10.1371/journal.pone.0171690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 01/23/2017] [Indexed: 12/25/2022] Open
Abstract
Array-based comparative genomic hybridization (aCGH) emerged as a powerful technology for studying copy number variations at higher resolution in many cancers including colorectal cancer. However, the lack of standardized systematic protocols including bioinformatic algorithms to obtain and analyze genomic data resulted in significant variation in the reported copy number aberration (CNA) data. Here, we present genomic aCGH data obtained using highly stringent and functionally relevant statistical algorithms from 116 well-defined microsatellites instable (MSI) and microsatellite stable (MSS) colorectal cancers. We utilized aCGH to characterize genomic CNAs in 116 well-defined sets of colorectal cancer (CRC) cases. We further applied the significance testing for aberrant copy number (STAC) and Genomic Identification of Significant Targets in Cancer (GISTIC) algorithms to identify functionally relevant (nonrandom) chromosomal aberrations in the analyzed colorectal cancer samples. Our results produced high resolution genomic landscapes of both, MSI and MSS sporadic CRC. We found that CNAs in MSI and MSS CRCs are heterogeneous in nature but may be divided into 3 distinct genomic patterns. Moreover, we show that although CNAs in MSI and MSS CRCs differ with respect to their size, number and chromosomal distribution, the functional copy number aberrations obtained from MSI and MSS CRCs were in fact comparable but not identical. These unifying CNAs were verified by MLPA tumor-loss gene panel, which spans 15 different chromosomal locations and contains 50 probes for at least 20 tumor suppressor genes. Consistently, deletion/amplification in these frequently cancer altered genes were identical in MSS and MSI CRCs. Our results suggest that MSI and MSS copy number aberrations driving CRC may be functionally comparable.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriya, Kuwait
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Milad S. Bitar
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
- Department of Pharmacology & Toxicology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ashraf Al Madhoun
- Research Division, Immunology Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | | | - Fahd Al-Mulla
- Molecular Pathology Unit, Department of Pathology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- Research Division, Genomics Unit, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| |
Collapse
|
40
|
Sefrioui D, Vermeulin T, Blanchard F, Chapusot C, Beaussire L, Armengol-Debeir L, Sesboué R, Gangloff A, Hebbar M, Copin MC, Houivet E, Schwarz L, Clatot F, Tuech JJ, Bénichou J, Martin L, Bouvier AM, Sabourin JC, Sarafan-Vasseur N, Frébourg T, Lepage C, Michel P, Di Fiore F. Copy number variations inDCC/18q andERBB2/17q are associated with disease-free survival in microsatellite stable colon cancer. Int J Cancer 2017; 140:1653-1661. [DOI: 10.1002/ijc.30584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/10/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
Affiliation(s)
- David Sefrioui
- Digestive Oncology Unit, Department of Hepato-Gastroenterology; Rouen University Hospital; Rouen France
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
| | - Thomas Vermeulin
- Department of Biostatistics; Rouen University Hospital; Rouen France
| | - France Blanchard
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
- Department of Pathology; Rouen University Hospital; Rouen France
| | - Caroline Chapusot
- Department of Pathology; Dijon University Hospital, University of Burgundy; Dijon France
| | - Ludivine Beaussire
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
| | - Laura Armengol-Debeir
- Digestive Oncology Unit, Department of Hepato-Gastroenterology; Rouen University Hospital; Rouen France
| | - Richard Sesboué
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
| | - Alice Gangloff
- Digestive Oncology Unit, Department of Hepato-Gastroenterology; Rouen University Hospital; Rouen France
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
| | - Mohamed Hebbar
- Department of Medical Oncology; Lille University Hospital; Lille France
| | | | - Estelle Houivet
- Department of Biostatistics; Rouen University Hospital; Rouen France
| | - Lilian Schwarz
- Department of Surgery; Rouen University Hospital; Rouen France
| | - Florian Clatot
- Department of Medical Oncology; Centre Henri Becquerel; Rouen France
| | | | - Jacques Bénichou
- Department of Biostatistics; Rouen University Hospital; Rouen France
| | - Laurent Martin
- Department of Pathology; Dijon University Hospital, University of Burgundy; Dijon France
| | - Anne-Marie Bouvier
- Digestive Cancer Registry of Burgundy, INSERM U866, University Hospital Dijon, University of Burgundy; Dijon France
| | - Jean-Christophe Sabourin
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
- Department of Pathology; Rouen University Hospital; Rouen France
| | - Nasrin Sarafan-Vasseur
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
| | - Thierry Frébourg
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
| | - Côme Lepage
- Digestive Cancer Registry of Burgundy, INSERM U866, University Hospital Dijon, University of Burgundy; Dijon France
| | - Pierre Michel
- Digestive Oncology Unit, Department of Hepato-Gastroenterology; Rouen University Hospital; Rouen France
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
| | - Frédéric Di Fiore
- Digestive Oncology Unit, Department of Hepato-Gastroenterology; Rouen University Hospital; Rouen France
- Inserm U1079, University of Rouen, Institute for Biomedical Research and Innovation; Rouen France
- EquIpe de Recherche en ONcogie (IRON), Rouen University Hospital; Rouen France
- Department of Medical Oncology; Centre Henri Becquerel; Rouen France
| |
Collapse
|
41
|
Mutanome and expression of immune response genes in microsatellite stable colon cancer. Oncotarget 2017; 7:17711-25. [PMID: 26871478 PMCID: PMC4951244 DOI: 10.18632/oncotarget.7293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to analyze the impact of the mutanome in the prognosis of microsatellite stable stage II CRC tumors. The exome of 42 stage II, microsatellite stable, colon tumors (21 of them relapse) and their paired mucosa were sequenced and analyzed. Although some pathways accumulated more mutations in patients exhibiting good or poor prognosis, no single somatic mutation was associated with prognosis. Exome sequencing data is also valuable to infer tumor neoantigens able to elicit a host immune response. Hence, putative neoantigens were identified by combining information about missense mutations in each tumor and HLAs genotypes of the patients. Under the hypothesis that neoantigens should be correctly presented in order to activate the immune response, expression levels of genes involved in the antigen presentation machinery were also assessed. In addition, CD8A level (as a marker of T-cell infiltration) was measured. We found that tumors with better prognosis showed a tendency to generate a higher number of immunogenic epitopes, and up-regulated genes involved in the antigen processing machinery. Moreover, tumors with higher T-cell infiltration also showed better prognosis. Stratifying by consensus molecular subtype, CMS4 tumors showed the highest association of expression levels of genes involved in the antigen presentation machinery with prognosis. Thus, we hypothesize that a subset of stage II microsatellite stable CRC tumors are able to generate an immune response in the host via MHC class I antigen presentation, directly related with a better prognosis.
Collapse
|
42
|
Bioinformatics insight into glycosyltransferase gene expression in gastric cancer: POFUT1 is a potential biomarker. Biochem Biophys Res Commun 2017; 483:171-177. [DOI: 10.1016/j.bbrc.2016.12.172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/26/2016] [Indexed: 11/22/2022]
|
43
|
Bigagli E, De Filippo C, Castagnini C, Toti S, Acquadro F, Giudici F, Fazi M, Dolara P, Messerini L, Tonelli F, Luceri C. DNA copy number alterations, gene expression changes and disease-free survival in patients with colorectal cancer: a 10 year follow-up. Cell Oncol (Dordr) 2016; 39:545-558. [PMID: 27709558 DOI: 10.1007/s13402-016-0299-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND DNA copy number alterations (CNAs) and gene expression changes have amply been encountered in colorectal cancers (CRCs), but the extent at which CNAs affect gene expression, as well as their relevance for tumor development, are still poorly defined. Here we aimed at assessing the clinical relevance of these parameters in a 10 year follow-up study. METHODS Tumors and normal adjacent colon mucosa, obtained at primary surgery from 21 CRC patients, were subjected to (i) high-resolution array CGH (a-CGH) for the detection of CNAs and (ii) microarray-based transcriptome profiling for the detection of gene expression (GE) changes. Correlations between these genomic and transcriptomic changes and their associations with clinical and histopathological parameters were assessed with the aim to identify molecular signatures associated with disease-free survival of the CRC patients during a 10 year follow-up. RESULTS DNA copy number gains were frequently detected in chromosomes 7, 8q, 13, 19, 20q and X, whereas DNA copy number losses were frequently detected in chromosomes 1p, 4, 8p, 15, 17p, 18, 19 and 22q. None of these alterations were observed in all samples. In addition, we found that 2,498 genes were up- and that 1,094 genes were down-regulated in the tumor samples compared to their corresponding normal mucosa (p < 0.01). The expression of 65 genes was found to be significantly associated with prognosis (p < 0.01). Specifically, we found that up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, were strongly associated with a poor survival. Subsequent integrated analyses revealed that increased expression levels of the MMP9, BMP7, UBE2C, I-CAM, NOTCH3, NOTCH1, PTGES2, HMGB1 and ERBB3 genes were associated with copy number gains, whereas decreased expression levels of the MUC1, E2F2, HRAS and SIRT3 genes were associated with copy number losses. Pathways related to cell cycle progression, eicosanoid metabolism, and TGF-β and apoptosis signaling, were found to be most significantly affected. CONCLUSIONS Our results suggest that CNAs in CRC tumor tissues are associated with concomitant changes in the expression of cancer-related genes. In other genes epigenetic mechanism may be at work. Up-regulation of the IL17RA, IGF2BP2 and ABCC2 genes, and of genes acting in the mTOR and cytokine receptor pathways, appear to be associated with a poor survival. These alterations may, in addition to Dukes' staging, be employed as new prognostic biomarkers for the prediction of clinical outcome in CRC patients.
Collapse
Affiliation(s)
- Elisabetta Bigagli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| | - Carlotta De Filippo
- Institute of Biometeorology (IBIMET), National Research Council (CNR), Florence, Italy
| | - Cinzia Castagnini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | | | - Francesco Acquadro
- Molecular Cytogenetics Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre-CNIO, Madrid, Spain
| | - Francesco Giudici
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Marilena Fazi
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Piero Dolara
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Luca Messerini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Tonelli
- Department of Surgery and Translational Medicine, University of Florence, Florence, Italy
| | - Cristina Luceri
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
44
|
Ding C, Fan X, Wu G. Peroxiredoxin 1 - an antioxidant enzyme in cancer. J Cell Mol Med 2016; 21:193-202. [PMID: 27653015 PMCID: PMC5192802 DOI: 10.1111/jcmm.12955] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxiredoxins (PRDXs), a ubiquitous family of redox‐regulating proteins, are reported of potential to eliminate various reactive oxygen species (ROS). As a major member of the antioxidant enzymes, PRDX1 can become easily over‐oxidized on its catalytically active cysteine induced by a variety of stimuli in vitro and in vivo. In nucleus, oligomeric PRDX1 directly associates with p53 or transcription factors such as c‐Myc, NF‐κB and AR, and thus affects their bioactivities upon gene regulation, which in turn induces or suppresses cell death. Additionally, PRDX1 in cytoplasm has anti‐apoptotic potential through direct or indirect interactions with several ROS‐dependent (redox regulation) effectors, including ASK1, p66Shc, GSTpi/JNK and c‐Abl kinase. PRDX1 is proven to be a versatile molecule regulating cell growth, differentiation and apoptosis. Recent studies have found that PRDX1 and/or PRDX1‐regulated ROS‐dependent signalling pathways play an important role in the progression and metastasis of human tumours, particularly in breast, oesophageal and lung cancers. In this paper, we review the structure, effector functions of PRDX1, its role in cancer and the pivotal role of ROS in anticancer treatment.
Collapse
Affiliation(s)
- Chenbo Ding
- Medical School of Southeast University, Nanjing, China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing, China
| | - Guoqiu Wu
- Medical School of Southeast University, Nanjing, China.,Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
45
|
Sokolova V, Crippa E, Gariboldi M. Integration of genome scale data for identifying new players in colorectal cancer. World J Gastroenterol 2016; 22:534-45. [PMID: 26811605 PMCID: PMC4716057 DOI: 10.3748/wjg.v22.i2.534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/13/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancers (CRCs) display a wide variety of genomic aberrations that may be either causally linked to their development and progression, or might serve as biomarkers for their presence. Recent advances in rapid high-throughput genetic and genomic analysis have helped to identify a plethora of alterations that can potentially serve as new cancer biomarkers, and thus help to improve CRC diagnosis, prognosis, and treatment. Each distinct data type (copy number variations, gene and microRNAs expression, CpG island methylation) provides an investigator with a different, partially independent, and complementary view of the entire genome. However, elucidation of gene function will require more information than can be provided by analyzing a single type of data. The integration of knowledge obtained from different sources is becoming increasingly essential for obtaining an interdisciplinary view of large amounts of information, and also for cross-validating experimental results. The integration of numerous types of genetic and genomic data derived from public sources, and via the use of ad-hoc bioinformatics tools and statistical methods facilitates the discovery and validation of novel, informative biomarkers. This combinatory approach will also enable researchers to more accurately and comprehensively understand the associations between different biologic pathways, mechanisms, and phenomena, and gain new insights into the etiology of CRC.
Collapse
|
46
|
Sylvester BE, Vakiani E. Tumor evolution and intratumor heterogeneity in colorectal carcinoma: insights from comparative genomic profiling of primary tumors and matched metastases. J Gastrointest Oncol 2015; 6:668-75. [PMID: 26697200 DOI: 10.3978/j.issn.2078-6891.2015.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metastatic colorectal cancer (CRC) is one of the leading causes of cancer-related mortality among men and women worldwide. Over the past few decades, advances in our understanding of the genetic and epigenetic underpinnings of CRC have led to important insights into the pathogenesis of invasive tumors and have identified different molecular subgroups. Nonetheless, the events that might facilitate dissemination of tumor cells to distant sites giving rise to metastatic disease are not well characterized. Furthermore, in contrast to intertumor heterogeneity the extent of intratumor heterogeneity in different types of CRC has not been fully defined. In this paper, we review studies that have compared the genetic profile of primary invasive carcinomas to that of matched metastases and discuss the implications of their findings for our understanding of tumor evolution and for the clinical management of patients with advanced CRC.
Collapse
Affiliation(s)
- Brooke E Sylvester
- 1 Human Oncology and Pathogenesis Program, 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Efsevia Vakiani
- 1 Human Oncology and Pathogenesis Program, 2 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
47
|
Briffa R, Um I, Faratian D, Zhou Y, Turnbull AK, Langdon SP, Harrison DJ. Multi-Scale Genomic, Transcriptomic and Proteomic Analysis of Colorectal Cancer Cell Lines to Identify Novel Biomarkers. PLoS One 2015; 10:e0144708. [PMID: 26678268 PMCID: PMC4692059 DOI: 10.1371/journal.pone.0144708] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Selecting colorectal cancer (CRC) patients likely to respond to therapy remains a clinical challenge. The objectives of this study were to establish which genes were differentially expressed with respect to treatment sensitivity and relate this to copy number in a panel of 15 CRC cell lines. Copy number variations of the identified genes were assessed in a cohort of CRCs. IC50's were measured for 5-fluorouracil, oxaliplatin, and BEZ-235, a PI3K/mTOR inhibitor. Cell lines were profiled using array comparative genomic hybridisation, Illumina gene expression analysis, reverse phase protein arrays, and targeted sequencing of KRAS hotspot mutations. Frequent gains were observed at 2p, 3q, 5p, 7p, 7q, 8q, 12p, 13q, 14q, and 17q and losses at 2q, 3p, 5q, 8p, 9p, 9q, 14q, 18q, and 20p. Frequently gained regions contained EGFR, PIK3CA, MYC, SMO, TRIB1, FZD1, and BRCA2, while frequently lost regions contained FHIT and MACROD2. TRIB1 was selected for further study. Gene enrichment analysis showed that differentially expressed genes with respect to treatment response were involved in Wnt signalling, EGF receptor signalling, apoptosis, cell cycle, and angiogenesis. Stepwise integration of copy number and gene expression data yielded 47 candidate genes that were significantly correlated. PDCD6 was differentially expressed in all three treatment responses. Tissue microarrays were constructed for a cohort of 118 CRC patients and TRIB1 and MYC amplifications were measured using fluorescence in situ hybridisation. TRIB1 and MYC were amplified in 14.5% and 7.4% of the cohort, respectively, and these amplifications were significantly correlated (p≤0.0001). TRIB1 protein expression in the patient cohort was significantly correlated with pERK, Akt, and Caspase 3 expression. In conclusion, a set of candidate predictive biomarkers for 5-fluorouracil, oxaliplatin, and BEZ235 are described that warrant further study. Amplification of the putative oncogene TRIB1 has been described for the first time in a cohort of CRC patients.
Collapse
Affiliation(s)
- Romina Briffa
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Inhwa Um
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United
Kingdom
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Ying Zhou
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Arran K. Turnbull
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - Simon P. Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine,
University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XU, United
Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, United
Kingdom
| |
Collapse
|
48
|
Zhang J, Yan B, Späth SS, Qun H, Cornelius S, Guan D, Shao J, Hagiwara K, Van Waes C, Chen Z, Su X, Bi Y. Integrated transcriptional profiling and genomic analyses reveal RPN2 and HMGB1 as promising biomarkers in colorectal cancer. Cell Biosci 2015; 5:53. [PMID: 26388988 PMCID: PMC4574027 DOI: 10.1186/s13578-015-0043-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/16/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that is associated with a gradual accumulation of genetic and epigenetic alterations. Among all CRC stages, stage II tumors are highly heterogeneous with a high relapse rate in about 20–25 % of stage II CRC patients following surgery. Thus, a comprehensive analysis of gene signatures to identify aggressive and metastatic phenotypes in stage II CRC is desired for a more accurate disease classification and outcome prediction. By utilizing a Cancer Array, containing 440 oncogenes and tumor suppressors to profile mRNA expression, we identified a larger number of differentially expressed genes in poorly differentiated stage II colorectal adenocarcinoma tissues, compared to their matched normal tissues. Ontology and Ingenuity Pathway Analysis (IPA) indicated that these genes are involved in functional mechanisms associated with several transcription factors. Genomic alterations of these genes were also investigated through The Cancer Genome Atlas (TCGA) database, utilizing 195 published CRC specimens. The percentage of genomic alterations in these genes was ranked based on their mRNA expression, copy number variations and mutations. This data was further combined with published microarray studies from a large set of CRC tumors classified based on prognostic features. This led to the identification of eight candidate genes including RPN2, HMGB1, AARS, IGFBP3, STAT1, HYOU1, NQO1 and PEA15 that were associated with the progressive phenotype. In particular, RPN2 and HMGB1 displayed a higher genomic alteration frequency in CRC, compared to eight other major solid cancers. Immunohistochemistry was performed on additional 78 stage I–IV CRC samples, where RPN2 protein immunostaining exhibited a significant association with stage III/IV tumors, distant metastasis, and poor differentiation, indicating that RPN2 expression is associated with poor prognosis. Further, our study revealed significant transcriptional regulatory mechanisms, networks and gene signatures, underlying CRC malignant progression and phenotype warranting future clinical investigations.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Public Health, Wuhan University, Wuhan, China ; Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China ; Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Bin Yan
- Laboratory for Food Safety and Environmental Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Stephan Stanislaw Späth
- Pediatric Endocrinology Unit, Department of Women's and Children's Health, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Hu Qun
- Department of Oncology, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Shaleeka Cornelius
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Bioinformatics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Koichi Hagiwara
- Department of Respiratory Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Zhong Chen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, USA
| | - Xiulan Su
- Clinical Medicine Research Center, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, China
| | - Yongyi Bi
- School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Wang H, Liang L, Fang JY, Xu J. Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2015; 35:2011-9. [PMID: 26257062 DOI: 10.1038/onc.2015.304] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/07/2015] [Accepted: 07/12/2015] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) results from the accumulation of genetic alterations, and somatic copy number alterations (CNAs) are crucial for the development of CRC. Genome-wide survey of CNAs provides opportunities for identifying cancer driver genes in an unbiased manner. The detection of aberrant CNAs may provide novel markers for the early diagnosis and personalized treatment of CRC. A major challenge in array-based profiling of CNAs is to distinguish the alterations that play causative roles from the random alterations that accumulate during colorectal carcinogenesis. In this view, we systematically discuss the frequent CNAs in CRC, focusing on functional genes that have potential diagnostic, prognostic and therapeutic significance.
Collapse
Affiliation(s)
- H Wang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - L Liang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J-Y Fang
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - J Xu
- State Key Laboratory for Oncogenes and Related Genes; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University; Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
50
|
Abstract
Background With one million new cases of colorectal cancer (CRC) diagnosed annually in the world, CRC is the third most commonly diagnosed cancer in the Western world. Patients with stage I-III CRC can be cured with surgery but are at risk for recurrence. Colorectal cancer is characterized by the presence of chromosomal deletions and gains. Large genomic profiling studies have however not been conducted in this disease. The number of a specific genetic aberration in a tumour sample could correlate with recurrence-free survival or overall survival, possibly leading to its use as biomarker for therapeutic decisions. At this point there are not sufficient markers for prediction of disease recurrence in colorectal cancer, which can be used in the clinic to discriminate between stage II patients who will benefit from adjuvant chemotherapy. For instance, the benefit of adjuvant chemotherapy has been most clearly demonstrated in stage III disease with an approximately 30 percent relative reduction in the risk of disease recurrence. The benefits of adjuvant chemotherapy in stage II disease are less certain, the risk for relapse is much smaller in the overall group and the specific patients at risk are hard to identify. Materials and Methods In this study, array-comparative genomic hybridization analysis (array-CGH) was applied to study high-resolution DNA copy number alterations in 93 colon carcinoma samples. These genomic data were combined with parameters like KRAS mutation status, microsatellite status and clinicopathological characteristics. Results Both large and small chromosomal losses and gains were identified in our sample cohort. Recurrent gains were found for chromosome 1q, 7, 8q, 13 and 20 and losses were mostly found for 1p, 4, 8p, 14, 15, 17p, 18, 21 and 22. Data analysis demonstrated that loss of chromosome 4 is linked to a worse prognosis in our patients series. Besides these alterations, two interesting small regions of overlap were identified, which could be associated with disease recurrence. Gain of the 16p13.3 locus (including the RNA binding protein, fox-1 homolog gene, RBFOX1) was linked with a worse recurrence-free survival in our patient cohort. On the other hand, loss of RBFOX1 was only found in patients without disease recurrence. Most interestingly, above mentioned characteristics were also found in stage II patients, for whom there is a high medical need for the identification of new prognostic biomarkers. Conclusions In conclusion, copy number variation of the 16p13.3 locus seems to be an important parameter for prediction of disease recurrence in colon cancer.
Collapse
|