1
|
Tran KT, Le VS, Dao LTM, Nguyen HK, Mai AK, Nguyen HT, Ngo MD, Tran QA, Nguyen LT. Novel findings from family-based exome sequencing for children with biliary atresia. Sci Rep 2021; 11:21815. [PMID: 34750413 PMCID: PMC8575792 DOI: 10.1038/s41598-021-01148-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Biliary atresia (BA) is a progressive inflammation and fibrosis of the biliary tree characterized by the obstruction of bile flow, which results in liver failure, scarring and cirrhosis. This study aimed to explore the elusive aetiology of BA by conducting whole exome sequencing for 41 children with BA and their parents (35 trios, including 1 family with 2 BA-diagnosed children and 5 child-mother cases). We exclusively identified and validated a total of 28 variants (17 X-linked, 6 de novo and 5 homozygous) in 25 candidate genes from our BA cohort. These variants were among the 10% most deleterious and had a low minor allele frequency against the employed databases: Kinh Vietnamese (KHV), GnomAD and 1000 Genome Project. Interestingly, AMER1, INVS and OCRL variants were found in unrelated probands and were first reported in a BA cohort. Liver specimens and blood samples showed identical variants, suggesting that somatic variants were unlikely to occur during morphogenesis. Consistent with earlier attempts, this study implicated genetic heterogeneity and non-Mendelian inheritance of BA.
Collapse
Affiliation(s)
- Kien Trung Tran
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam.
| | - Vinh Sy Le
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
- University of Engineering and Technology, Vietnam National University Hanoi, 144 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Lan Thi Mai Dao
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Huyen Khanh Nguyen
- Bioequivalence Center, National Institute of Drug Quality Control, 11/157 Bang B, Hoang Mai District, Hanoi, Vietnam
| | - Anh Kieu Mai
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Ha Thi Nguyen
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Minh Duy Ngo
- Vinmec International Hospital, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| | - Quynh Anh Tran
- Vietnam National Children's Hospital, 18/879 La Thanh, Dong Da District, Hanoi, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, 458 Minh Khai, Hai Ba Trung District, Hanoi, Vietnam
| |
Collapse
|
2
|
Ye D, Ma W, Xu J, Zhu G, Liu D, Liu C, Ding Y, Zhang Q. WTX inhibits gastric cancer migration through the reversal of epithelial-mesenchymal transition. Oncol Lett 2018; 16:4970-4976. [PMID: 30250562 PMCID: PMC6144879 DOI: 10.3892/ol.2018.9309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 12/07/2017] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to investigate whether the expression of Wilms' tumor gene on X chromosome (WTX) affected the epithelial-mesenchymal transition (EMT) process and migration of gastric cancer cells. Stable WTX-overexpressing AGS cells (AGS.W) were established and analyzed by flow cytometry. The efficiency of the overexpression was verified by fluorescence microscopy, reverse transcription-quantitative polymerase chain reaction and western blotting. To analyze the expression of EMT-associated proteins, western blotting and immunofluorescence assays were performed. The migratory capability of the cells was detected by Transwell wound-healing assays, respectively. Compared with that of the control cells (AGS.veh), WTX expression was notably increased at mRNA (P<0.05) and protein levels (P<0.05) in the AGS.W gastric cancer cells. Morphological observations indicated that AGS.W cells transformed into spindle shapes, compared to AGS.veh cells, which maintained round or oval shapes. Furthermore, western blotting and immunofluorescence validated that the expression level of the epithelial marker epithelial-cadherin was significantly increased, whereas the expression levels of the mesenchymal markers neural-cadherin, β-catenin and vimentin were significantly decreased in the AGS.W cells compared with those in the AGS.veh cells. In addition, the overexpression of WTX decreased the migratory ability of AGS.W cells compared with AGS.veh cells. Exogenous expression of WTX inhibited gastric cancer cell migration by reversing EMT. The results of the present study describe a molecular feature that may be a promising target for future gastric cancer therapy strategies.
Collapse
Affiliation(s)
- Danli Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Wenxia Ma
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Jiahui Xu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Guifang Zhu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Chun Liu
- Department of Pathology, Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| | - Qingling Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China.,Department of Pathology, College of Basic Medicine, Southern Medical University, Guangzhou, Guangzhou 510515, P.R. China
| |
Collapse
|
3
|
Alexandrescu S, Akhavanfard S, Harris MH, Vargas SO. Clinical, Pathologic, and Genetic Features of Wilms Tumors With WTX Gene Mutation. Pediatr Dev Pathol 2017; 20:105-111. [PMID: 28326956 DOI: 10.1177/1093526616683881] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Clinical and pathologic features of patients with WTX-mutated Wilms tumor (WT) have not been studied in detail. We characterize the clinical and pathologic findings in WT with WTX abnormalities and provide comparison with WT without WTX mutation. Clinical, gross, and microscopic features in 35 patients with WT were examined. Karyotype was examined in a subset of cases. All cases had been previously analyzed for WTX, WT1, and CTNNB1 aberrations via array comparative genomic hybridization; OncoMap 4 high throughput genotyping was performed on 18 cases. Eleven tumors had WTX abnormality. No significant differences were identified between patients with mutated versus nonmutated WTX with respect to gender (45% versus 33% male), age (mean 3.9 versus 4.1 years), tumor size (mean 12.7 cm versus 12.8 cm), anaplasia (9% versus 12%), rhabdomyoblastic differentiation (18% versus 8%), cartilage differentiation (9% versus 4%), mucinous epithelial differentiation (9% versus 4%), nephrogenic rests (28% versus 21%), or relapse rate (11% versus 25%). Mutations in KRAS, MYC, and PIK3R1 were restricted to WTX-mutated WT, mutations in AKT, CKDN2A, EFGR, HRAS, MET, and RET were restricted to WT without WTX mutation, and mutations in BRAF, CTTNB1, NRAS, PDGFRA, and STK11 were seen in both groups. Our study revealed no clinical or pathologic distinctions between WT with and without WTX abnormality. This similarity lends support to the concept of a common tumorigenic pathway between WT with aberrant WTX and those without.
Collapse
Affiliation(s)
- Sanda Alexandrescu
- 1 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Akhavanfard
- 3 Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marian H Harris
- 1 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara O Vargas
- 1 Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.,2 Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Gooch ME, Nader K, Kubicek GJ, Somer RA. Brain Metastasis Responsive to Pazopanib in Renal Cell Carcinoma: A Case Report and Review of the Literature. Clin Genitourin Cancer 2016; 14:e401-4. [PMID: 26873436 DOI: 10.1016/j.clgc.2016.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/18/2015] [Accepted: 01/16/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Megan E Gooch
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ.
| | - Kamyar Nader
- Department of Hematology and Oncology, MD Anderson Cancer Center at Cooper, Camden, NJ
| | - Gregory J Kubicek
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper, Camden, NJ
| | - Robert A Somer
- Department of Hematology and Oncology, MD Anderson Cancer Center at Cooper, Camden, NJ
| |
Collapse
|
5
|
Kim WJ, Wittner BS, Amzallag A, Brannigan BW, Ting DT, Ramaswamy S, Maheswaran S, Haber DA. The WTX Tumor Suppressor Interacts with the Transcriptional Corepressor TRIM28. J Biol Chem 2015; 290:14381-90. [PMID: 25882849 DOI: 10.1074/jbc.m114.631945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 02/05/2023] Open
Abstract
WTX encodes a tumor suppressor implicated in the pediatric kidney cancer Wilms tumor and in mesenchymal differentiation with potentially distinct functions in the cytoplasm, at the plasma membrane, and in the nucleus. Although modulating components of the WNT signaling pathway is a proposed function for cytoplasmic and membrane-bound WTX, its nuclear properties are not well understood. Here we report that the transcriptional corepressor TRIM28 is the major binding partner for nuclear WTX. WTX interacted with the coiled coil domain of TRIM28 required for its binding to Krüppel-associated box domains of transcription factors and for its chromatin recruitment through its own coiled coil and proline-rich domains. Knockdown of endogenous WTX reduced the recruitment of TRIM28 to a chromatinized reporter sequence and its ability to repress a target transcript. In mouse embryonic stem cells where TRIM28 plays a major role in repressing endogenous retroviruses and long interspersed elements, knockdown of either TRIM28 or WTX combined with single molecule RNA sequencing revealed a highly significant shared set of differentially regulated transcripts, including derepression of non-coding repetitive sequences and their neighboring protein encoding genes (p < 1e-20). In mesenchymal precursor cells, depletion of WTX and TRIM28 resulted in analogous β-catenin-independent defects in adipogenic and osteogenic differentiation, and knockdown of WTX reduced TRIM28 binding to Pparγ promoter. Together, the physical and functional interaction between WTX and TRIM28 suggests that the nuclear fraction of WTX plays a role in epigenetic silencing, an effect that may contribute to its function as a regulator of cellular differentiation and tumorigenesis.
Collapse
Affiliation(s)
- Woo Jae Kim
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Arnaud Amzallag
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - Brian W Brannigan
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and From the Departments of Medicine and
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and From the Departments of Medicine and
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and Surgery
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts 02129 and From the Departments of Medicine and Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|