1
|
Selvi S, Real CM, Gentiluomo M, Balounova K, Vokacova K, Cumova A, Mohlenikova-Duchonova B, Rizzato C, Halasova E, Vodickova L, Smolkova B, Hemminki K, Campa D, Vodicka P. Genomic instability, DNA damage response and telomere homeostasis in pancreatic cancer. Semin Cancer Biol 2025; 113:59-73. [PMID: 40378535 DOI: 10.1016/j.semcancer.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/19/2025]
Abstract
Pancreatic cancer (PC) is becoming one of the most serious health problems at present, but its causes and risk factors are still unclear. One of the drivers in pancreatic carcinogenesis is altered genomic (DNA) integrity with subsequent genomic instability in cancer cells. The latter comprises a) DNA damage response and DNA repair mechanisms, b) DNA replication and mitosis, c) epigenetic regulation, and d) telomere maintenance. In our review we addressed the above aspects in relation to the most abundant and severe form of PC, pancreatic ductal adenocarcinoma (PDAC). In summary, the interactions between the DNA damage response, telomere homeostasis and mitotic regulation are not comprehensively understood at present, including the epigenetic factors entering the trait of genomic stability maintenance. In addition, the complexity of telomere homeostasis in relation to PDAC risk, prognosis and prediction also warrants further investigations.
Collapse
Affiliation(s)
- Saba Selvi
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague 12800, Czech Republic
| | - Carmen Macías Real
- Cancer Predisposition and Biomarkers Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | | | - Katerina Balounova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Vokacova
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 4 14200, Czech Republic
| | - Andrea Cumova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | | | - Cosmeri Rizzato
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia
| | - Ludmila Vodickova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 84505, Slovakia
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, FRG 69120, Germany
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa 56123, Italy
| | - Pavel Vodicka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4, Martin 03601, Slovakia; Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, Pilsen 32300, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, Prague 12800, Czech Republic.
| |
Collapse
|
2
|
Vodicka P, Kroupa M, Vodickova L, Kumar R. Editorial: Current understanding of genomic and chromosomal instabilities in solid malignancies. Front Oncol 2023; 13:1245087. [PMID: 37692841 PMCID: PMC10484570 DOI: 10.3389/fonc.2023.1245087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michal Kroupa
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Rajiv Kumar
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Akbas E, Unal F, Yuzbasioglu D. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol 2022; 45:2471-2482. [PMID: 35184618 DOI: 10.1080/01480545.2021.1957913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Gadobutrol and gadoversetamide are gadolinium-based contrast agents (GBCAs) widely used during magnetic resonance imaging examination. In this study, the genotoxicity of two GBCAs, gadobutrol and gadoversetamide, was investigated by using different endpoints: chromosome aberration (CAs), sister chromatid exchange (SCEs), and micronucleus (MNi). Human peripheral lymphocytes (PBLs) were treated with five concentrations (7 000, 14 000, 28 000, 56 000, and 112 000 μg/mL) of both agents. While a few concentrations of gadobutrol significantly increased abnormal cell frequency and CA/Cell, nearly all the concentrations of gadoversetamide significantly elevated the same aberrations. Similarly, the effect of gadoversetamide on the formation of SCEs was higher than those of gadobutrol. Only one concentration of gadoversetamide significantly increased MN% but no gadobutrol. The comet assay was applied for the only gadobutrol which induced a significant increase in tail intensity at the highest concentration only. On the other hand, significantly decreased mitotic index (MI) was observed following both substances, again gadoversetamide was slightly higher than those of the gadobutrol. The results revealed that both the contrast agents are likely to induce genotoxic risk in PBLs. However, different concentrations and treatment periods should be examined in vitro and specifically in vivo with different test systems for the safer usage of these contrast agents.
Collapse
Affiliation(s)
- Ece Akbas
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| | - Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, 06560, Ankara, Turkey
| |
Collapse
|
4
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Hemminki K, Försti A. DNA Repair Gene Polymorphisms and Chromosomal Aberrations in Exposed Populations. Front Genet 2021; 12:691947. [PMID: 34220964 PMCID: PMC8242355 DOI: 10.3389/fgene.2021.691947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 02/05/2023] Open
Abstract
DNA damage and unrepaired or insufficiently repaired DNA double-strand breaks as well as telomere shortening contribute to the formation of structural chromosomal aberrations (CAs). Non-specific CAs have been used in the monitoring of individuals exposed to potential carcinogenic chemicals and radiation. The frequency of CAs in peripheral blood lymphocytes (PBLs) has been associated with cancer risk and the association has also been found in incident cancer patients. CAs include chromosome-type aberrations (CSAs) and chromatid-type aberrations (CTAs) and their sum CAtot. In the present study, we used data from our published genome-wide association studies (GWASs) and extracted the results for 153 DNA repair genes for 607 persons who had occupational exposure to diverse harmful substances/radiation and/or personal exposure to tobacco smoking. The analyses were conducted using linear and logistic regression models to study the association of DNA repair gene polymorphisms with CAs. Considering an arbitrary cutoff level of 5 × 10-3, 14 loci passed the threshold, and included 7 repair pathways for CTA, 4 for CSA, and 3 for CAtot; 10 SNPs were eQTLs influencing the expression of the target repair gene. For the base excision repair pathway, the implicated genes PARP1 and PARP2 encode poly(ADP-ribosyl) transferases with multiple regulatory functions. PARP1 and PARP2 have an important role in maintaining genome stability through diverse mechanisms. Other candidate genes with known roles for CSAs included GTF2H (general transcription factor IIH subunits 4 and 5), Fanconi anemia pathway genes, and PMS2, a mismatch repair gene. The present results suggest pathways with mechanistic rationale for the formation of CAs and emphasize the need to further develop techniques for measuring individual sensitivity to genotoxic exposure.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Ludovit Musak
- Jessenius Faculty of Medicine, Biomedical Center Martin, Comenius University in Bratislava, Bratislava, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, Prague, Czecia
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
5
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair (Amst) 2021; 101:103079. [PMID: 33676360 DOI: 10.1016/j.dnarep.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910 Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora 4D, 03601 Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Minina VI, Savchenko YA, Bakanova ML, Ryzhkova AV, Sokolova AO, Meyer AV, Tolochko TA, Voronina EN, Druzhinin VG, Glushkov AN. Chromosomal Instability and Genetic Polymorphism in Miners and Workers of Coal Thermal Power Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dušinská M, Musak L, Vodicka P, Hemminki K, Försti A. Genetic variation associated with chromosomal aberration frequency: A genome-wide association study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:17-28. [PMID: 30368896 DOI: 10.1002/em.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023]
Abstract
Chromosomal aberrations (CAs) in human peripheral blood lymphocytes (PBL) measured with the conventional cytogenetic assay have been used for human biomonitoring of genotoxic exposure for decades. CA frequency in peripheral blood is a marker of cancer susceptibility. Previous studies have shown associations between genetic variants in metabolic pathway, DNA repair and major mitotic checkpoint genes and CAs. We conducted a genome-wide association study on 576 individuals from the Czech Republic and Slovakia followed by a replication in two different sample sets of 482 (replication 1) and 1288 (replication 2) samples. To have a broad look at the genetic susceptibility associated with CA frequency, the sample sets composed of individuals either differentially exposed to smoking, occupational/environmental hazards, or they were untreated cancer patients. Phenotypes were divided into chromosome- and chromatid-type aberrations (CSAs and CTAs, respectively) and total chromosomal aberrations (CAtot). The arbitrary cutoff point between individuals with high and low CA frequency was 2% for CAtot and 1% for CSA and CTA. The data were analyzed using age, sex, occupation/cancer and smoking history as covariates. Altogether 11 loci reached the P-value of 10-5 in the GWAS. Replication 1 supported the association of rs1383997 (8q13.3) and rs2824215 (21q21.1) in CAtot and rs983889 (5p15.1) in CTA analysis. These loci were found to be associated with genes involved in mitosis, response to environmental and chemical factors and genes involved in syndromes linked to chromosomal abnormalities. Identification of new genetic variants for the frequency of CAs offers prediction tools for cancer risk in future. Environ. Mol. Mutagen. 60:17-28, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Medizinische Fakultät, Universität Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127, Bonn, Germany
| | - Maria Dušinská
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Ludovit Musak
- Clinic of Occupational Medicine and Toxicology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Kollarova 2, 03601, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, 20502, Malmö, Sweden
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, 20502, Malmö, Sweden
| |
Collapse
|
8
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|
9
|
Kroupa M, Polivkova Z, Rachakonda S, Schneiderova M, Vodenkova S, Buchler T, Jiraskova K, Urbanova M, Vodickova L, Hemminki K, Kumar R, Vodicka P. Bleomycin‐induced chromosomal damage and shortening of telomeres in peripheral blood lymphocytes of incident cancer patients. Genes Chromosomes Cancer 2017; 57:61-69. [DOI: 10.1002/gcc.22508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michal Kroupa
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
| | - Zdenka Polivkova
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
| | | | - Michaela Schneiderova
- Department of SurgeryGeneral University Hospital in PraguePrague12800 Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Tomas Buchler
- Department of OncologyFirst Faculty of Medicine, Charles University and Thomayer HospitalPrague, 14059 Czech Republic
| | - Katerina Jiraskova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Marketa Urbanova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Rajiv Kumar
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| |
Collapse
|
10
|
Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans. Cancer Lett 2016; 380:442-446. [PMID: 27424524 DOI: 10.1016/j.canlet.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022]
Abstract
Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs. Genetic variation in individual genes played a minor importance, consistent with the high conservation and selection pressure of the checkpoint system. However, gene pairs were significantly associated with CAs: PTTG1-ZWILCH and PTTG1-ZWINT. MAD2L1 and PTTG1 were the most common partners in any of the two-way interactions. The results suggest that interactions at the level of cohesin (PTTG1) and kinetochore function (ZWINT, ZWILCH and MAD2L1) contribute to the frequency of CAs, suggesting that gene variants at different checkpoint functions appeared to be required for the formation of CAs.
Collapse
|
11
|
Vodicka P, Musak L, Fiorito G, Vymetalkova V, Vodickova L, Naccarati A. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:26-34. [PMID: 27894688 DOI: 10.1016/j.mrrev.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
Abstract
The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed either environmentally or occupationally to genotoxic chemicals. However, there is an emerging need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to main classes of chemical genotoxins. The main aim of the present report is to systematically review published studies investigating the use of the lymphocyte CBMN assay to determine DNA damage in subjects exposed to anaesthetic gases. We also compared performance of the CBMN assay with other DNA damage assays employed and identified strengths and weaknesses of the published studies. We have retrieved 11 studies, published between 1996 and 2013, reporting MN associated with occupational exposures (operating room personnel). The individual job categories were often described (anaesthesiologists, technicians, radiologists) among cases, as well as duration of exposure. All studies reported the compounds present at the workplace and, in some instances, the exposure levels were measured. Controls were usually recruited among personnel at the hospital not exposed to anaesthetics or they were healthy unexposed subjects from general population. The number of investigated subjects, due to the character of the occupation, was relatively smaller than those investigated in other occupational monitoring settings. Overall, the majority of the studies were age- and gender- matched (or investigated only males or females) while less attention was given to lifestyle confounders. Appropriate measurement of exposure, available in approximately half of the studies only, was compromised by the lack of the personal dosimetry-based determinations. In all studies, higher MN frequencies were observed in exposed individuals. The meta-analysis of mean MN frequency of combined studies confirmed this tendency (log mean ratio=0.56 [0.34-0.77]; P=3.51×10-7). Similar differences between the exposed and controls were also observed for other biomarkers.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Ludovit Musak
- Clinic of Occupational Medicine and Toxicology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Kollarova 2, 03601 Martin, Slovakia
| | - Giovanni Fiorito
- Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| | - Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - Alessio Naccarati
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| |
Collapse
|