1
|
Hemminki K, Niazi Y, Vodickova L, Vodicka P, Försti A. Genetic and environmental associations of nonspecific chromosomal aberrations. Mutagenesis 2025; 40:30-38. [PMID: 38422374 PMCID: PMC11911008 DOI: 10.1093/mutage/geae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
Collapse
Affiliation(s)
- Kari Hemminki
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg 69120, Germany
| | - Yasmeen Niazi
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen 32300, Czech Republic
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14200, Czech Republic
- Institute of Biology and Medical Genetics, Charles University, Albertov 4, Prague 12800, Czech Republic
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
2
|
Vodicka P, Vodenkova S, Horak J, Opattova A, Tomasova K, Vymetalkova V, Stetina R, Hemminki K, Vodickova L. An investigation of DNA damage and DNA repair in chemical carcinogenesis triggered by small-molecule xenobiotics and in cancer: Thirty years with the comet assay. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 885:503564. [PMID: 36669813 DOI: 10.1016/j.mrgentox.2022.503564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/04/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
In the present review we addressed the determination of DNA damage induced by small-molecule carcinogens, considered their persistence in DNA and mutagenicity in in vitro and in vivo systems over a period of 30 years. The review spans from the investigation of the role of DNA damage in the cascade of chemical carcinogenesis. In the nineties, this concept evolved into the biomonitoring studies comprising multiple biomarkers that not only reflected DNA/chromosomal damage, but also the potential of the organism for biotransformation/elimination of various xenobiotics. Since first years of the new millennium, dynamic system of DNA repair and host susceptibility factors started to appear in studies and a considerable knowledge has been accumulated on carcinogens and their role in carcinogenesis. It was understood that the final biological links bridging the arising DNA damage and cancer onset remain to be elucidated. In further years the community of scientists learnt that cancer is a multifactorial disease evolving over several decades of individual´s life. Moreover, DNA damage and DNA repair are inseparable players also in treatment of malignant diseases, but affect substantially other processes, such as degeneration. Functional monitoring of DNA repair pathways and DNA damage response may cast some light on above aspects. Very little is currently known about the relationship between telomere homeostasis and DNA damage formation and repair. DNA damage/repair in genomic and mitochondrial DNA and crosstalk between these two entities emerge as a new interesting topic.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Opattova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic
| | - Rudolf Stetina
- Department of Research and Development, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Kari Hemminki
- Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 691 20 Heidelberg, Germany
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Centre in Pilsen, Charles University, 306 05 Pilsen, Czech Republic.
| |
Collapse
|
3
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dusinska M, Musak L, Vodicka P, Försti A, Hemminki K. DNA repair gene polymorphisms and chromosomal aberrations in healthy, nonsmoking population. DNA Repair (Amst) 2021; 101:103079. [PMID: 33676360 DOI: 10.1016/j.dnarep.2021.103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 02/05/2023]
Abstract
Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations. In the present study, we used the result of our published genome-wide association studies to extract data on 153 DNA repair genes from 866 nonsmoking persons who had no known occupational exposure to genotoxic substances. Considering an arbitrary cut-off level of P< 5 × 10-3, single nucleotide polymorphisms (SNPs) tagging 22 DNA repair genes were significantly associated with CAs and they remained significant at P < 0.05 when adjustment for multiple comparisons was done by the Binomial Sequential Goodness of Fit test. Nucleotide excision repair pathway genes showed most associations with 6 genes. Among the associated genes were several in which mutations manifest CA phenotype, including Fanconi anemia, WRN, BLM and genes that are important in maintaining genome stability, as well as PARP2 and mismatch repair genes. RPA2 and RPA3 may participate in telomere maintenance through the synthesis of the C strand of telomeres. Errors in NHEJ1 function may lead to translocations. The present results show associations with some genes with known CA phenotype and suggest other pathways with mechanistic rationale for the formation of CAs in healthy nonsmoking population.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 6910 Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Soňa Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003 Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Malá Hora 4D, 03601 Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Hopp Children's Cancer Center (KiTZ), 69120, Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Sestakova Z, Kalavska K, Smolkova B, Miskovska V, Rejlekova K, Sycova-Mila Z, Palacka P, Obertova J, Holickova A, Hurbanova L, Jurkovicova D, Roska J, Goffa E, Svetlovska D, Chovanec M, Mardiak J, Mego M, Chovanec M. DNA damage measured in blood cells predicts overall and progression-free survival in germ cell tumour patients. Mutat Res 2020; 854-855:503200. [PMID: 32660824 DOI: 10.1016/j.mrgentox.2020.503200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/15/2022]
Abstract
Germ cell tumour (GCT) patients who fail to respond to chemotherapy or who relapse have a poor prognosis. Timely and accurately stratifying such patients could optimise their therapy. We identified endogenous DNA damage levels as a prognostic marker for progression-free (PFS) and overall (OS) survival in chemotherapy-naïve GCT patients. In the present study, we have extended our previous results and reviewed the prognostic power of DNA damage level in GCTs. Endogenous DNA damage levels were measured with the comet assay. Receiver operator characteristic analysis was applied to determine the optimal cut-off value and to evaluate its prognostic accuracy. PFS and OS were estimated by the Kaplan-Meier method and compared using the log-rank test. Hazard ratio (HR) estimates were calculated by Cox regression analysis. A cut-off value of 6.34 provided the highest sensitivity and specificity, with area under curve values of 0.813 and 0.814 for disease progression and mortality, respectively. A % DNA in tail > 6.34 was significantly associated with shorter PFS (HR = 9.54, 95 % confidence interval [CI]: 3.43-26.55, p < 0.001) and OS (HR = 14.62, 95 % CI: 3.14-67.95, p = 0.001) by univariate analysis. The prognostic value of DNA damage measurement was confirmed by multivariate models (HR = 6.45, 95 % CI: 2.22-18.75, p = 0.001 for PFS and HR = 9.40, 95 % CI: 1.70-52.09, p = 0.010 for OS), when HR was adjusted for relevant clinical categories. The added prognostic value of DNA damage in combination with International Germ Cell Cancer Collaborative Group (IGCCCG) risk groups has been revealed. Endogenous DNA damage is an independent prognosticator for PFS and OS in GCT patients and its clinical use, particularly in combination with IGCCCG risk groups, may help in stratifying these patients.
Collapse
Affiliation(s)
- Zuzana Sestakova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Katarina Kalavska
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic; Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Vera Miskovska
- 1(st)Department of Oncology, Faculty of Medicine, Comenius University, St. Elisabeth Cancer Institute, Bratislava, Slovak Republic
| | - Katarina Rejlekova
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Zuzana Sycova-Mila
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Patrik Palacka
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Jana Obertova
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic
| | - Andrea Holickova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Lenka Hurbanova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Dana Jurkovicova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Jan Roska
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Eduard Goffa
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic
| | - Daniela Svetlovska
- Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Michal Chovanec
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Jozef Mardiak
- Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Michal Mego
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic; Translational Research Unit, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic; Department of Oncology, National Cancer Institute, Bratislava, Slovak Republic; 2(nd)Department of Oncology, Faculty of Medicine, Comenius University, National Cancer Institute, Bratislava, Slovak Republic
| | - Miroslav Chovanec
- Department of Genetics, Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
5
|
Minina VI, Savchenko YA, Bakanova ML, Ryzhkova AV, Sokolova AO, Meyer AV, Tolochko TA, Voronina EN, Druzhinin VG, Glushkov AN. Chromosomal Instability and Genetic Polymorphism in Miners and Workers of Coal Thermal Power Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420040079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Lin E, Kuo PH, Liu YL, Yang AC, Tsai SJ. Polymorphisms of the DNA repair gene EXO1 modulate cognitive aging in old adults in a Taiwanese population. DNA Repair (Amst) 2019; 78:1-6. [PMID: 30928815 DOI: 10.1016/j.dnarep.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
Evidence indicates that the age-related neuropathological mechanisms associated with DNA repair genes may contribute to cognitive aging and Alzheimer's disease. In this study, we hypothesize that single nucleotide polymorphisms (SNPs) within 155 DNA repair genes may be linked to cognitive aging independently and/or through complex interactions in an older Taiwanese population. A total of 3,730 Taiwanese subjects aged over 60 years from the Taiwan Biobank were analyzed. Mini-Mental State Examination (MMSE) was administered to all subjects, and MMSE scores were used to measure cognitive functions. Our data showed that out of 1,652 SNPs, the rs1776181 (P = 1.47 × 10-5), rs1776177 (P = 8.42 × 10-7), rs1635510 (P = 7.97 × 10-6), and rs2526698 (P = 7.06 × 10-6) SNPs in the EXO1 gene were associated with cognitive aging. The association with these SNP remained significant after performing Bonferroni correction. Additionally, we found that interactions between the EXO1 and RAD51C genes influenced cognitive aging (P = 0.002). Finally, we pinpointed the influence of interactions between EXO1 and physical activity (P < 0.001) as well as between DCLRE1C and physical activity (P < 0.001). Our study indicated that DNA repair genes may contribute to susceptibility in cognitive aging independently as well as through gene-gene and gene-physical interactions.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA; Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, 98195, USA; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan; Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, 02215, USA; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Psychiatry, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
7
|
Niazi Y, Thomsen H, Smolkova B, Vodickova L, Vodenkova S, Kroupa M, Vymetalkova V, Kazimirova A, Barancokova M, Volkovova K, Staruchova M, Hoffmann P, Nöthen MM, Dušinská M, Musak L, Vodicka P, Hemminki K, Försti A. Genetic variation associated with chromosomal aberration frequency: A genome-wide association study. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:17-28. [PMID: 30368896 DOI: 10.1002/em.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/18/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023]
Abstract
Chromosomal aberrations (CAs) in human peripheral blood lymphocytes (PBL) measured with the conventional cytogenetic assay have been used for human biomonitoring of genotoxic exposure for decades. CA frequency in peripheral blood is a marker of cancer susceptibility. Previous studies have shown associations between genetic variants in metabolic pathway, DNA repair and major mitotic checkpoint genes and CAs. We conducted a genome-wide association study on 576 individuals from the Czech Republic and Slovakia followed by a replication in two different sample sets of 482 (replication 1) and 1288 (replication 2) samples. To have a broad look at the genetic susceptibility associated with CA frequency, the sample sets composed of individuals either differentially exposed to smoking, occupational/environmental hazards, or they were untreated cancer patients. Phenotypes were divided into chromosome- and chromatid-type aberrations (CSAs and CTAs, respectively) and total chromosomal aberrations (CAtot). The arbitrary cutoff point between individuals with high and low CA frequency was 2% for CAtot and 1% for CSA and CTA. The data were analyzed using age, sex, occupation/cancer and smoking history as covariates. Altogether 11 loci reached the P-value of 10-5 in the GWAS. Replication 1 supported the association of rs1383997 (8q13.3) and rs2824215 (21q21.1) in CAtot and rs983889 (5p15.1) in CTA analysis. These loci were found to be associated with genes involved in mitosis, response to environmental and chemical factors and genes involved in syndromes linked to chromosomal abnormalities. Identification of new genetic variants for the frequency of CAs offers prediction tools for cancer risk in future. Environ. Mol. Mutagen. 60:17-28, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yasmeen Niazi
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Medizinische Fakultät, Universität Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg
| | - Hauke Thomsen
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 84505, Bratislava, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Katarina Volkovova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03, Bratislava, Slovakia
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127, Bonn, Germany
| | - Maria Dušinská
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007, Kjeller, Norway
| | - Ludovit Musak
- Clinic of Occupational Medicine and Toxicology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Kollarova 2, 03601, Martin, Slovakia
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, The Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Kari Hemminki
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, 20502, Malmö, Sweden
| | - Asta Försti
- Department of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
- Center of Primary Health Care Research, Clinical Research Center, Lund University, 20502, Malmö, Sweden
| |
Collapse
|
8
|
Vodicka P, Musak L, Vodickova L, Vodenkova S, Catalano C, Kroupa M, Naccarati A, Polivkova Z, Vymetalkova V, Försti A, Hemminki K. Genetic variation of acquired structural chromosomal aberrations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:13-21. [PMID: 30389156 DOI: 10.1016/j.mrgentox.2018.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.
Collapse
Affiliation(s)
- Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic.
| | - Ludovit Musak
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, 03601, Slovakia
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Italian Institute for Genomic Medicine (IIGM), Torino, 10126, Italy
| | - Zdena Polivkova
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, 10000, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 14220, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, 12800, Czech Republic; Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, 30605, Czech Republic
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| | - Kari Hemminki
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, D69120, Germany; Center for Primary Health Care Research, Lund University, Malmö, 214 28, Sweden
| |
Collapse
|
9
|
Savchenko YA, Minina VI, Bakanova ML, Ryzhkova AV, Soboleva OA, Kulemin YE, Voronina EN, Glushkov AN, Vafin IA. Role of Gene-Gene Interactions in the Chromosomal Instability in Workers at Coal Thermal Power Plants. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418010106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Minina VI, Soboleva OA, Glushkov AN, Voronina EN, Sokolova EA, Bakanova ML, Savchenko YA, Ryzhkova AV, Titov RA, Druzhinin VG, Sinitsky MY, Asanov MA. Polymorphisms of GSTM1, GSTT1, GSTP1 genes and chromosomal aberrations in lung cancer patients. J Cancer Res Clin Oncol 2017; 143:2235-2243. [PMID: 28770368 DOI: 10.1007/s00432-017-2486-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022]
Abstract
PURPOSE To study the potential links between genetic polymorphisms in the GSTT1, GSTM1, GSTP1 genes and the frequency of chromosomal aberrations (CAs) in lung cancer patients and healthy residents in Russian Federation. METHODS 200 cells in well-spread metaphase with 46 chromosomes were examined for 353 newly diagnosed lung cancer patients (males) who received medical treatment in the Kemerovo Regional Oncology Center (Kemerovo, Russian Federation), and 300 healthy males from Kemerovo, Russian Federation. The polymorphisms of the GSTM1 del and GSTT1 del genes were analysed by multiplex PCR. Genotyping of the polymorphic variants in the GSTP1 (A313G, T341C) gene was performed using Real-time PCR with competing TaqMan probes complementary to the polymorphic DNA sites. The data analysis was performed using software STATISTICA 8.0 (StatSoft Inc., USA). RESULTS We discovered that a GSTM1 del polymorphism increases the frequency of chromosomal damage in smoking patients with lung cancer, a general group of lung cancer patients, donors with non-small cell lung cancer and patients in the latest stages of the malignant process. The synergetic effects of occupational exposure and the malignant process can induce some modifications in the cytogenetic status in lung cancer patients harbouring the GSTM1 del polymorphism. CONCLUSIONS CAs in peripheral blood lymphocytes can be used as biomarkers of the early biological effects of exposure to genotoxic carcinogens and may predict future cancer incidence in several epidemiologic studies. Genetic changes in genes encoding phase II detoxification enzymes are linked to decreases in the metabolic detoxification of environmentally derived genotoxic carcinogens.
Collapse
Affiliation(s)
- Varvara I Minina
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation.
- Department of Genetics, Biology Faculty, Kemerovo State University, Krasnaya St 6, Kemerovo, 650043, Russian Federation.
| | - Olga A Soboleva
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Andrey N Glushkov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Elena N Voronina
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Lavrentiev Ave 8, Novosibirsk, 630090, Russian Federation
| | - Ekaterina A Sokolova
- Institute of Chemical Biology and Fundamental Medicine of SB RAS, Lavrentiev Ave 8, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Pirogova St 2, Novosibirsk, 630090, Russian Federation
| | - Marina L Bakanova
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Yana A Savchenko
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Anastasia V Ryzhkova
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Ruslan A Titov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| | - Vladimir G Druzhinin
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
- Department of Genetics, Biology Faculty, Kemerovo State University, Krasnaya St 6, Kemerovo, 650043, Russian Federation
| | - Maxim Yu Sinitsky
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, Sosnovy Blvd 6, Kemerovo, 650002, Russian Federation
| | - Maxim A Asanov
- Federal State Budget Scientific Institution, The Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Sovetskiy Ave 18, Kemerovo, 650065, Russian Federation
| |
Collapse
|
11
|
Santovito A, Gendusa C, Cervella P. Evaluation of baseline frequency of sister chromatid exchanges in an Italian population according to age, sex, smoking habits, and gene polymorphisms. Am J Hum Biol 2017; 29. [PMID: 28664594 DOI: 10.1002/ajhb.23034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 05/17/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Increased SCEs frequencies in human lymphocytes are an indicator of spontaneous chromosome instability and could be influenced by different exogenous and endogenous factors. In this study, we evaluated the influence of age, sex, smoking habits, and genetic polymorphisms on the background levels of SCEs in peripheral blood lymphocytes. METHODS Two hundred-thirty healthy Italian subjects were recruited. Data about age, sex and smoking habits were recorded. Subjects were also genotyped for GSTT1, GSTM1, GSTP1 A/G, CYP1A1 Ile/Val, CYP2C19 G/A, ERCC2/XPD Lys751Gln, XRCC1 Arg194ATrp, XRCC1 Arg399Gln, and XRCC1Arg208His gene polymorphisms. RESULTS The frequency of SCEs/cell was 5.15 ± 1.87, with females showing a significantly higher SCEs value with respect to males (5.36 ± 2.10 and 4.82 ± 1.39, respectively). Smokers showed significantly increased levels of SCEs with respect to nonsmokers (5.93 ± 1.75 and 4.70 ± 1.79, respectively) whereas no differences were observed between heavy and light smokers. Age correlated with the RI value (P = .01) but not with the SCEs frequency (P = 07), although the 31-40 age group showed a significantly lower SCEs frequency with respect to the other age groups. A significant association was also found between GSTP2C19-AA, GSTT1-null, GSTM1-null, ERCC2/XPD Gln751Gln, and XRCC1 His208His genotypes, and higher frequencies of SCEs. CONCLUSION We describe the association between some phase I, phase II, and DNA-repair gene polymorphisms with increased SCEs frequencies, reinforcing the importance of genetic analysis in biomonitoring studies. Sex and age were found to be important endogenous factors that affect the level of genomic damage and the replicative capacity of cells, respectively.
Collapse
Affiliation(s)
- Alfredo Santovito
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, Torino, 10123, Italy
| | - Claudio Gendusa
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, Torino, 10123, Italy
| | - Piero Cervella
- University of Turin, Department of Life Sciences and Systems Biology, Via Accademia Albertina n. 13, Torino, 10123, Italy
| |
Collapse
|
12
|
Genetic variation in the major mitotic checkpoint genes associated with chromosomal aberrations in healthy humans. Cancer Lett 2016; 380:442-446. [PMID: 27424524 DOI: 10.1016/j.canlet.2016.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/12/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022]
Abstract
Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs. Genetic variation in individual genes played a minor importance, consistent with the high conservation and selection pressure of the checkpoint system. However, gene pairs were significantly associated with CAs: PTTG1-ZWILCH and PTTG1-ZWINT. MAD2L1 and PTTG1 were the most common partners in any of the two-way interactions. The results suggest that interactions at the level of cohesin (PTTG1) and kinetochore function (ZWINT, ZWILCH and MAD2L1) contribute to the frequency of CAs, suggesting that gene variants at different checkpoint functions appeared to be required for the formation of CAs.
Collapse
|
13
|
Vodicka P, Musak L, Fiorito G, Vymetalkova V, Vodickova L, Naccarati A. DNA and chromosomal damage in medical workers exposed to anaesthetic gases assessed by the lymphocyte cytokinesis-block micronucleus (CBMN) assay. A critical review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:26-34. [PMID: 27894688 DOI: 10.1016/j.mrrev.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 11/26/2022]
Abstract
The lymphocyte cytokinesis-block micronucleus (CBMN) assay has been applied in hundreds of in vivo biomonitoring studies of humans exposed either environmentally or occupationally to genotoxic chemicals. However, there is an emerging need to re-evaluate the use of MN and other biomarkers within the lymphocyte CBMN cytome assay as quantitative indicators of exposure to main classes of chemical genotoxins. The main aim of the present report is to systematically review published studies investigating the use of the lymphocyte CBMN assay to determine DNA damage in subjects exposed to anaesthetic gases. We also compared performance of the CBMN assay with other DNA damage assays employed and identified strengths and weaknesses of the published studies. We have retrieved 11 studies, published between 1996 and 2013, reporting MN associated with occupational exposures (operating room personnel). The individual job categories were often described (anaesthesiologists, technicians, radiologists) among cases, as well as duration of exposure. All studies reported the compounds present at the workplace and, in some instances, the exposure levels were measured. Controls were usually recruited among personnel at the hospital not exposed to anaesthetics or they were healthy unexposed subjects from general population. The number of investigated subjects, due to the character of the occupation, was relatively smaller than those investigated in other occupational monitoring settings. Overall, the majority of the studies were age- and gender- matched (or investigated only males or females) while less attention was given to lifestyle confounders. Appropriate measurement of exposure, available in approximately half of the studies only, was compromised by the lack of the personal dosimetry-based determinations. In all studies, higher MN frequencies were observed in exposed individuals. The meta-analysis of mean MN frequency of combined studies confirmed this tendency (log mean ratio=0.56 [0.34-0.77]; P=3.51×10-7). Similar differences between the exposed and controls were also observed for other biomarkers.
Collapse
Affiliation(s)
- Pavel Vodicka
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Ludovit Musak
- Clinic of Occupational Medicine and Toxicology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava and University Hospital Martin, Kollarova 2, 03601 Martin, Slovakia
| | - Giovanni Fiorito
- Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| | - Veronika Vymetalkova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Ludmila Vodickova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00 Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - Alessio Naccarati
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Videnska 1083, 142 00 Prague, Czech Republic; Human Genetics Foundation (HuGeF) Turin, via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
14
|
da Silva ALG, Bresciani MJ, Karnopp TE, Weber AF, Ellwanger JH, Henriques JAP, Valim ARDM, Possuelo LG. DNA damage and cellular abnormalities in tuberculosis, lung cancer and chronic obstructive pulmonary disease. Multidiscip Respir Med 2015; 10:38. [PMID: 26688728 PMCID: PMC4684909 DOI: 10.1186/s40248-015-0034-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB), Lung Cancer (LC) and Chronic Obstructive Pulmonary Diseases (COPD) affect millions of individuals worldwide. Monitoring of DNA damage in pathological situations has been investigated because it can add a new dimension to clinical expression and may represent a potential target for therapeutic intervention. The aim of this study was to evaluate DNA damage and the frequency of cellular abnormalities in TB, LC and COPD patients by comparing them to healthy subjects. METHODS The detection of DNA damage by a buccal micronucleus cytome assay was investigated in patients with COPD (n = 28), LC (n = 18) and TB (n = 22) and compared to control individuals (n = 17). RESULTS The COPD group had a higher frequency of apoptotic cells compared to TB and LC group. The TB group showed a higher frequency of DNA damage, defect in cytokinesis, apoptotic and necrotic cells. Patients with LC had low frequency of chromosomal aberrations than TB and COPD patients. CONCLUSION COPD patients showed cellular abnormalities that corresponded to cell death by apoptosis and necrosis, while patients with TB presented defects in cytokinesis and dysfunctions in DNA repair that resulted in the formation of micronucleus (MN) besides apoptotic and necrotic cells. Patients with COPD, TB and LC had a low frequency of permanent DNA damage.
Collapse
Affiliation(s)
- Andréa Lúcia Gonçalves da Silva
- />Department of Health and Physical Education, University of Santa Cruz do Sul – UNISC, Avenida Independência, 2293, Bairro Universitário, Santa Cruz do Sul, RS CEP 96815-900 Brazil
| | - Maribel Josimara Bresciani
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
| | - Thaís Evelyn Karnopp
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
| | - Augusto Ferreira Weber
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
| | - Joel Henrique Ellwanger
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
- />Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS Brazil
| | - João Antonio Pêgas Henriques
- />Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS Brazil
| | - Andréia Rosane de Moura Valim
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
- />Graduate Program in Health Promotion, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
| | - Lia Gonçalves Possuelo
- />Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
- />Graduate Program in Health Promotion, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS Brazil
| |
Collapse
|
15
|
Vodicka P, Musak L, Frank C, Kazimirova A, Vymetalkova V, Barancokova M, Smolkova B, Dzupinkova Z, Jiraskova K, Vodenkova S, Kroupa M, Osina O, Naccarati A, Palitti F, Försti A, Dusinska M, Vodickova L, Hemminki K. Interactions of DNA repair gene variants modulate chromosomal aberrations in healthy subjects. Carcinogenesis 2015; 36:1299-306. [DOI: 10.1093/carcin/bgv127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/20/2015] [Indexed: 11/14/2022] Open
|
16
|
Václavíková R, Hughes DJ, Souček P. Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease. Gene 2015. [PMID: 26216302 DOI: 10.1016/j.gene.2015.07.071] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Microsomal epoxide hydrolase (EPHX1) is an evolutionarily highly conserved biotransformation enzyme for converting epoxides to diols. Notably, the enzyme is able to either detoxify or bioactivate a wide range of substrates. Mutations and polymorphic variants in the EPHX1 gene have been associated with susceptibility to several human diseases including cancer. This review summarizes the key knowledge concerning EPHX1 gene and protein structure, expression pattern and regulation, and substrate specificity. The relevance of EPHX1 for human pathology is especially discussed.
Collapse
Affiliation(s)
- Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - David J Hughes
- Centre for Systems Medicine, Department of Physiology, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Plzen, Charles University in Prague, Plzen, Czech Republic.
| |
Collapse
|
17
|
Vodenkova S, Polivkova Z, Musak L, Smerhovsky Z, Zoubkova H, Sytarova S, Kavcova E, Halasova E, Vodickova L, Jiraskova K, Svoboda M, Ambrus M, Hemminki K, Vodicka P. Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis 2015; 30:557-63. [DOI: 10.1093/mutage/gev018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|