1
|
Shibata A. Carbon ion radiation and clustered DNA double-strand breaks. Enzymes 2022; 51:117-130. [PMID: 36336405 DOI: 10.1016/bs.enz.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A carbon ion categorized as a heavy ion particle has been used for cancer radiotherapy. High linear energy transfer (LET) carbon ion irradiation deposits energy at a high density along a particle track, generating multiple types of DNA damage. Complex DNA lesions, comprising DNA double-strand breaks (DSBs), single-strand breaks, and base damage within 1-2 helical turns (<3-4nm), are thought to be difficult to repair and critically influence cell viability. In addition to the effect of lesion complexity, the most recent studies have demonstrated another characteristic of high LET particle radiation-induced DNA damage, clustered DSBs. Clustered DSBs are defined as the formation of multiple DSBs in close proximity where the scale of clustering is approximately 1-2μm3, i.e., the scale of the event is estimated to be > ∼1Mbp. This chapter reviews the hallmarks of clustered DSBs and how such DNA damage influences genome instability and cell viability in the context of high LET carbon ion radiotherapy.
Collapse
Affiliation(s)
- Atsushi Shibata
- Gunma University Initiative for Advanced Research, GIAR, Gunma University, Maebashi, Japan.
| |
Collapse
|
2
|
Danforth JM, Provencher L, Goodarzi AA. Chromatin and the Cellular Response to Particle Radiation-Induced Oxidative and Clustered DNA Damage. Front Cell Dev Biol 2022; 10:910440. [PMID: 35912116 PMCID: PMC9326100 DOI: 10.3389/fcell.2022.910440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to environmental ionizing radiation is prevalent, with greatest lifetime doses typically from high Linear Energy Transfer (high-LET) alpha particles via the radioactive decay of radon gas in indoor air. Particle radiation is highly genotoxic, inducing DNA damage including oxidative base lesions and DNA double strand breaks. Due to the ionization density of high-LET radiation, the consequent damage is highly clustered wherein ≥2 distinct DNA lesions occur within 1–2 helical turns of one another. These multiply-damaged sites are difficult for eukaryotic cells to resolve either quickly or accurately, resulting in the persistence of DNA damage and/or the accumulation of mutations at a greater rate per absorbed dose, relative to lower LET radiation types. The proximity of the same and different types of DNA lesions to one another is challenging for DNA repair processes, with diverse pathways often confounding or interplaying with one another in complex ways. In this context, understanding the state of the higher order chromatin compaction and arrangements is essential, as it influences the density of damage produced by high-LET radiation and regulates the recruitment and activity of DNA repair factors. This review will summarize the latest research exploring the processes by which clustered DNA damage sites are induced, detected, and repaired in the context of chromatin.
Collapse
|
3
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
4
|
Nakajima NI, Yamauchi M, Kakoti S, Cuihua L, Kato R, Permata TBM, Iijima M, Yajima H, Yasuhara T, Yamada S, Hasegawa S, Shibata A. RNF8 promotes high linear energy transfer carbon-ion-induced DNA double-stranded break repair in serum-starved human cells. DNA Repair (Amst) 2020; 91-92:102872. [PMID: 32502756 DOI: 10.1016/j.dnarep.2020.102872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The cell-killing effect of radiotherapy largely depends on unrepaired DNA double-stranded breaks (DSBs) or lethal chromosome aberrations induced by DSBs. Thus, the capability of DSB repair is critically important for the cancer-cell-killing effect of ionizing radiation. Here, we investigated the involvement of the DNA damage signaling factors ataxia telangiectasia mutated (ATM), ring finger protein 8 (RNF8), and RNF168 in quiescent G0/G1 cells, which are expressed in the majority of cell populations in tumors, after high linear energy transfer (LET) carbon-ion irradiation. Interestingly, ATM inhibition caused a substantial DSB repair defect after high-LET carbon-ion irradiation. Similarly, RNF8 or RNF168 depletion caused a substantial DSB repair defect. ATM inhibition did not exert an additive effect in RNF8-depleted cells, suggesting that ATM and RNF8 function in the same pathway. Importantly, we found that the RNF8 RING mutant showed a similar DSB repair defect, suggesting the requirement of ubiquitin ligase activity in this repair pathway. The RNF8 FHA domain was also required for DSB repair in this axis. Furthermore, the p53-binding protein 1 (53BP1), which is an important downstream factor in RNF8-dependent DSB repair, was also required for this repair. Importantly, either ATM inhibition or RNF8 depletion increased the frequency of chromosomal breaks, but reduced dicentric chromosome formation, demonstrating that ATM/RNF8 is required for the rejoining of DSB ends for the formation of dicentric chromosomes. Finally, we showed that RNF8 depletion augmented radiosensitivity after high-LET carbon-ion irradiation. This study suggests that the inhibition of RNF8 activity or its downstream pathway may augment the efficacy of high-LET carbon-ion therapy.
Collapse
Affiliation(s)
- Nakako Izumi Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan.
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Sangeeta Kakoti
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan
| | - Liu Cuihua
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tiara Bunga Mayang Permata
- Department of Radiation Oncology, Faculty of MedicineUniversitas Indonesia - Dr. Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Moito Iijima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo,160-8582, Japan
| | - Hirohiko Yajima
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shigeru Yamada
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sumitaka Hasegawa
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
5
|
Kakoti S, Yamauchi M, Gu W, Kato R, Yasuhara T, Hagiwara Y, Laskar S, Oike T, Sato H, Held KD, Nakano T, Shibata A. p53 deficiency augments nucleolar instability after ionizing irradiation. Oncol Rep 2019; 42:2293-2302. [PMID: 31578593 PMCID: PMC6826308 DOI: 10.3892/or.2019.7341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/20/2019] [Indexed: 11/06/2022] Open
Abstract
Ribosomes are important cellular components that maintain cellular homeostasis through overall protein synthesis. The nucleolus is a prominent subnuclear structure that contains ribosomal DNA (rDNA) encoding ribosomal RNA (rRNA), an essential component of ribosomes. Despite the significant role of the rDNA‑rRNA‑ribosome axis in cellular homeostasis, the stability of rDNA in the context of the DNA damage response has not been fully investigated. In the present study, the number and morphological changes of nucleolin, a marker of the nucleolus, were examined following ionizing radiation (IR) in order to investigate the impact of DNA damage on nucleolar stability. An increase in the number of nucleoli per cell was found in HCT116 and U2OS cells following IR. Interestingly, the IR‑dependent increase in nucleolar fragmentation was enhanced by p53 deficiency. In addition, the morphological analysis revealed several distinct types of nucleolar fragmentation following IR. The pattern of nucleolar morphology differed between HCT116 and U2OS cells, and the p53 deficiency altered the pattern of nucleolar morphology. Finally, a significant decrease in rRNA synthesis was observed in HCT116 p53‑/‑ cells following IR, suggesting that severe nucleolar fragmentation downregulates rRNA transcription. The findings of the present study suggest that p53 plays a key role in protecting the transcriptional activity of rDNA in response to DNA damage.
Collapse
Affiliation(s)
- Sangeeta Kakoti
- Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Wenchao Gu
- Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Reona Kato
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yoshihiko Hagiwara
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Siddhartha Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Mumbai 400012, India
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Kathryn D. Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
- International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Atsushi Shibata
- Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
6
|
Hagiwara Y, Oike T, Niimi A, Yamauchi M, Sato H, Limsirichaikul S, Held KD, Nakano T, Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation. JOURNAL OF RADIATION RESEARCH 2019; 60:69-79. [PMID: 30476166 PMCID: PMC6373698 DOI: 10.1093/jrr/rry096] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Indexed: 05/16/2023]
Abstract
Photons, such as X- or γ-rays, induce DNA damage (distributed throughout the nucleus) as a result of low-density energy deposition. In contrast, particle irradiation with high linear energy transfer (LET) deposits high-density energy along the particle track. High-LET heavy-ion irradiation generates a greater number and more complex critical chromosomal aberrations, such as dicentrics and translocations, compared with X-ray or γ irradiation. In addition, the formation of >1000 bp deletions, which is rarely observed after X-ray irradiation, has been identified following high-LET heavy-ion irradiation. Previously, these chromosomal aberrations have been thought to be the result of misrepair of complex DNA lesions, defined as DNA damage through DNA double-strand breaks (DSBs) and single-strand breaks as well as base damage within 1-2 helical turns (<3-4 nm). However, because the scale of complex DNA lesions is less than a few nanometers, the large-scale chromosomal aberrations at a micrometer level cannot be simply explained by complex DNA lesions. Recently, we have demonstrated the existence of clustered DSBs along the particle track through the use of super-resolution microscopy. Furthermore, we have visualized high-level and frequent formation of DSBs at the chromosomal boundary following high-LET heavy-ion irradiation. In this review, we summarize the latest findings regarding the hallmarks of DNA damage structure and the repair pathway following heavy-ion irradiation. Furthermore, we discuss the mechanism through which high-LET heavy-ion irradiation may induce dicentrics, translocations and large deletions.
Collapse
Affiliation(s)
- Yoshihiko Hagiwara
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
| | | | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi, Gunma, Japan
| | - Atsushi Shibata
- Education and Research Support Center (ERSC), Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, Japan
- Corresponding author. Education and Research Support Center, Graduate School of Medicine, Gunma University, 3-39-22, Showa-machi, Maebashi, Gunma, 371-8511, Japan. Tel: +81-27-220-7977; Fax: +81-27-220-7909;
| |
Collapse
|
7
|
Hagiwara Y, Niimi A, Isono M, Yamauchi M, Yasuhara T, Limsirichaikul S, Oike T, Sato H, Held KD, Nakano T, Shibata A. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation. Oncotarget 2017; 8:109370-109381. [PMID: 29312614 PMCID: PMC5752527 DOI: 10.18632/oncotarget.22679] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.
Collapse
Affiliation(s)
- Yoshihiko Hagiwara
- Education and Research Support Center (ERSC), Gunma University, Maebashi 371-8511, Japan.,Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Atsuko Niimi
- Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Mayu Isono
- Department of Molecular Metabolic Regulation Research, Sasaki Institute, Tokyo 101-0062, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Takaaki Yasuhara
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan
| | - Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA.,International Open Laboratory, Gunma University Initiative for Advanced Research (GIAR), Gunma 371-8511, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan.,Research Program for Heavy Ion Therapy, Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi 371-8511, Japan
| | - Atsushi Shibata
- Education and Research Support Center (ERSC), Gunma University, Maebashi 371-8511, Japan
| |
Collapse
|
8
|
Nikitaki Z, Nikolov V, Mavragani IV, Mladenov E, Mangelis A, Laskaratou DA, Fragkoulis GI, Hellweg CE, Martin OA, Emfietzoglou D, Hatzi VI, Terzoudi GI, Iliakis G, Georgakilas AG. Measurement of complex DNA damage induction and repair in human cellular systems after exposure to ionizing radiations of varying linear energy transfer (LET). Free Radic Res 2016; 50:S64-S78. [PMID: 27593437 DOI: 10.1080/10715762.2016.1232484] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Detrimental effects of ionizing radiation (IR) are correlated to the varying efficiency of IR to induce complex DNA damage. A double strand break (DSB) can be considered the simpler form of complex DNA damage. These types of damage can consist of DSBs, single strand breaks (SSBs) and/or non-DSB lesions such as base damages and apurinic/apyrimidinic (AP; abasic) sites in different combinations. Enthralling theoretical (Monte Carlo simulations) and experimental evidence suggests an increase in the complexity of DNA damage and therefore repair resistance with linear energy transfer (LET). In this study, we have measured the induction and processing of DSB and non-DSB oxidative clusters using adaptations of immunofluorescence. Specifically, we applied foci colocalization approaches as the most current methodologies for the in situ detection of clustered DNA lesions in a variety of human normal (FEP18-11-T1) and cancerous cell lines of varying repair efficiency (MCF7, HepG2, A549, MO59K/J) and radiation qualities of increasing LET, that is γ-, X-rays 0.3-1 keV/μm, α-particles 116 keV/μm and 36Ar ions 270 keV/μm. Using γ-H2AX or 53BP1 foci staining as DSB probes, we calculated a DSB apparent rate of 5-16 DSBs/cell/Gy decreasing with LET. A similar trend was measured for non-DSB oxidized base lesions detected using antibodies against the human repair enzymes 8-oxoguanine-DNA glycosylase (OGG1) or AP endonuclease (APE1), that is damage foci as probes for oxidized purines or abasic sites, respectively. In addition, using colocalization parameters previously introduced by our groups, we detected an increasing clustering of damage for DSBs and non-DSBs. We also make correlations of damage complexity with the repair efficiency of each cell line and we discuss the biological importance of these new findings with regard to the severity of IR due to the complex nature of its DNA damage.
Collapse
Affiliation(s)
- Zacharenia Nikitaki
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Vladimir Nikolov
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Ifigeneia V Mavragani
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Emil Mladenov
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Anastasios Mangelis
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Danae A Laskaratou
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Georgios I Fragkoulis
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| | - Christine E Hellweg
- c Radiation Biology Department , German Aerospace Center (DLR), Institute of Aerospace Medicine , Linder Höhe , Köln , Germany
| | - Olga A Martin
- d Research Division , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia.,e Sir Peter MacCallum Department of Oncology , The University of Melbourne , Melbourne , VIC , Australia.,f Division of Radiation Oncology and Cancer Imaging , Peter MacCallum Cancer Centre , Melbourne , VIC , Australia
| | - Dimitris Emfietzoglou
- g Medical Physics Laboratory , Medical School, University of Ioannina , Ioannina , Greece
| | - Vasiliki I Hatzi
- h Laboratory of Health Physics , Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos" , Athens , Greece
| | - Georgia I Terzoudi
- h Laboratory of Health Physics , Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research "Demokritos" , Athens , Greece
| | - George Iliakis
- b Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School , Essen , Germany
| | - Alexandros G Georgakilas
- a Physics Department, School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou , Athens , Greece
| |
Collapse
|