1
|
Othonicar MF, Garcia GS, Oliveira MT. The alternative enzymes-bearing tunicates lack multiple widely distributed genes coding for peripheral OXPHOS subunits. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149046. [PMID: 38642871 DOI: 10.1016/j.bbabio.2024.149046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 04/01/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.
Collapse
Affiliation(s)
- Murilo F Othonicar
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Geovana S Garcia
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil
| | - Marcos T Oliveira
- Departamento de Biotecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, Universidade Estadual Paulista "Júlio de Mesquita Filho", Jaboticabal, SP, Brazil.
| |
Collapse
|
2
|
Tauziède-Espariat A, Nicaise Y, Sievers P, Sahm F, von Deimling A, Guillemot D, Pierron G, Duchesne M, Edjlali M, Dangouloff-Ros V, Boddaert N, Roux A, Dezamis E, Hasty L, Lhermitte B, Hirsch E, Hirsch MPV, Ardellier FD, Karnoub MA, Csanyi M, Maurage CA, Mokhtari K, Bielle F, Rigau V, Roujeau T, Abad M, Klein S, Bernier M, Horodyckid C, Adam C, Brandal P, Niehusmann P, Vannod-Michel Q, Provost C, de Champfleur NM, Nichelli L, Métais A, Mariet C, Chrétien F, Blauwblomme T, Beccaria K, Pallud J, Puget S, Uro-Coste E, Varlet P. CNS tumors with PLAGL1-fusion: beyond ZFTA and YAP1 in the genetic spectrum of supratentorial ependymomas. Acta Neuropathol Commun 2024; 12:55. [PMID: 38581034 PMCID: PMC10998316 DOI: 10.1186/s40478-023-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/22/2023] [Indexed: 04/07/2024] Open
Abstract
A novel methylation class, "neuroepithelial tumor, with PLAGL1 fusion" (NET-PLAGL1), has recently been described, based on epigenetic features, as a supratentorial pediatric brain tumor with recurrent histopathological features suggesting an ependymal differentiation. Because of the recent identification of this neoplastic entity, few histopathological, radiological and clinical data are available. Herein, we present a detailed series of nine cases of PLAGL1-fused supratentorial tumors, reclassified from a series of supratentorial ependymomas, non-ZFTA/non-YAP1 fusion-positive and subependymomas of the young. This study included extensive clinical, radiological, histopathological, ultrastructural, immunohistochemical, genetic and epigenetic (DNA methylation profiling) data for characterization. An important aim of this work was to evaluate the sensitivity and specificity of a novel fluorescent in situ hybridization (FISH) targeting the PLAGL1 gene. Using histopathology, immunohistochemistry and electron microscopy, we confirmed the ependymal differentiation of this new neoplastic entity. Indeed, the cases histopathologically presented as "mixed subependymomas-ependymomas" with well-circumscribed tumors exhibiting a diffuse immunoreactivity for GFAP, without expression of Olig2 or SOX10. Ultrastructurally, they also harbored features reminiscent of ependymal differentiation, such as cilia. Different gene partners were fused with PLAGL1: FOXO1, EWSR1 and for the first time MAML2. The PLAGL1 FISH presented a 100% sensitivity and specificity according to RNA sequencing and DNA methylation profiling results. This cohort of supratentorial PLAGL1-fused tumors highlights: 1/ the ependymal cell origin of this new neoplastic entity; 2/ benefit of looking for a PLAGL1 fusion in supratentorial cases of non-ZFTA/non-YAP1 ependymomas; and 3/ the usefulness of PLAGL1 FISH.
Collapse
Affiliation(s)
- Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
| | - Yvan Nicaise
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
| | - Philipp Sievers
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center DKFZ, German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Delphine Guillemot
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Gaëlle Pierron
- Paris-Sciences-Lettres, Curie Institute Research Center, INSERMU830, Paris, France
- Laboratory of Somatic Genetics, Curie Institute Hospital, Paris, France
| | - Mathilde Duchesne
- Department of Pathology, Dupuytren University Hospital, Limoges, France
| | - Myriam Edjlali
- Radiology Department, AP-HP, Raymond Poincaré Hospital, 92380, Garches, France
| | - Volodia Dangouloff-Ros
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Nathalie Boddaert
- Pediatric Radiology Department, AP-HP, Hôpital Universitaire Necker-Enfants Malades, France, and Université de Paris, INSERM ERL UA10, INSERM U1163, Institut Imagine, F-75015, Paris, France
| | - Alexandre Roux
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Edouard Dezamis
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Lauren Hasty
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Benoît Lhermitte
- Department of Pathology, Strasbourg Hospital, Strasbourg, France
| | - Edouard Hirsch
- Department of Neurology, Strasbourg Hospital, Strasbourg, France
| | | | - François-Daniel Ardellier
- Radiology 2 Department, Strasbourg University Hospital, Hautepierre Hospital, Strasbourg, France
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Mélodie-Anne Karnoub
- Department of Pediatric Neurosurgery, Lille University Hospital, 59000, Lille, France
| | - Marie Csanyi
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Claude-Alain Maurage
- Institute of Pathology, Centre de Biologie Pathologie, Lille University Hospital, 59000, Lille, France
| | - Karima Mokhtari
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Franck Bielle
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm,, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neuropathologie, 75013, Paris, France
| | - Valérie Rigau
- Department of Pathology, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Thomas Roujeau
- Department of Neurosurgery, Gui de Chauliac Hospital, 34295, Montpellier, France
| | - Marine Abad
- Department of Pathology, Jean Minjoz Hospital, Besançon, France
| | - Sébastien Klein
- Department of Pediatric Oncology, Jean Minjoz Hospital, Besançon, France
| | | | | | - Clovis Adam
- Department of Pathology, Bicêtre Hospital, 94275, Le Kremlin-Bicêtre, France
| | - Petter Brandal
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Pitt Niehusmann
- Devision of Cancer Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Corentin Provost
- Department of Radiology, GHU-Paris-Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France
| | | | - Lucia Nichelli
- Department of Neuroradiology, Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, 75013, Paris, France
| | - Alice Métais
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Cassandra Mariet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
| | - Fabrice Chrétien
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kévin Beccaria
- Department of Pediatric Neurosurgery, Necker Hospital, APHP, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| | - Stéphanie Puget
- Department of Neurosurgery, La Martinique Hospital, Fort-de-France, France
| | - Emmanuelle Uro-Coste
- Department of Pathology, Toulouse University Hospital, Toulouse, France
- Cancer Research Center of Toulouse (CRCT), INSERM U1037, Toulouse, France
- Université Paul Sabatier, Toulouse III, Toulouse, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie Et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, Imabrain Team, 75014, Paris, France
| |
Collapse
|
3
|
Zheng Y, Lang Y, Qi B, Li T. TSPAN4 and migrasomes in atherosclerosis regression correlated to myocardial infarction and pan-cancer progression. Cell Adh Migr 2023; 17:14-19. [PMID: 36513632 PMCID: PMC9754108 DOI: 10.1080/19336918.2022.2155337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The migrasomes formation is mediated by the assembly of micron-scale tetraspanin macrodomains and the recruitment of tetraspanin 4 (TSPAN4). However, the physiological functions of TSPAN4 on migrasomes are less known. The TSPAN4 expression in macrophages in single-cell sequencing data, GEO datasets and TCGA database were determined. TSPAN4 expression was highly associated with atherosclerosis regression-related macrophages, intraplaque hemorrhage and ruptured plaques. TSPAN4 expression was upregulated in spontaneous MI and inducible MI mice model. Besides, TSPAN4 expression was highly correlated with tumor-associated macrophages. The study provided a critical role of TSPAN4 aberrant expression in the progression of atherosclerosis and pan-cancer, and the intervention of TSPAN4 and migrasomes may save dying patients' lives and improve their prognosis.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, Binhai, China
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China
- Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China
- Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China
| | - Yuheng Lang
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China
- Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China
- Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China
| | - Bingcai Qi
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China
- Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China
- Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, Binhai, China
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China
- Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China
- Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China
| |
Collapse
|
4
|
Ershov P, Yablokov E, Mezentsev Y, Ivanov A. Uncharacterized Proteins CxORFx: Subinteractome Analysis and Prognostic Significance in Cancers. Int J Mol Sci 2023; 24:10190. [PMID: 37373333 DOI: 10.3390/ijms241210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Functions of about 10% of all the proteins and their associations with diseases are poorly annotated or not annotated at all. Among these proteins, there is a group of uncharacterized chromosome-specific open-reading frame genes (CxORFx) from the 'Tdark' category. The aim of the work was to reveal associations of CxORFx gene expression and ORF proteins' subinteractomes with cancer-driven cellular processes and molecular pathways. We performed systems biology and bioinformatic analysis of 219 differentially expressed CxORFx genes in cancers, an estimation of prognostic significance of novel transcriptomic signatures and analysis of subinteractome composition using several web servers (GEPIA2, KMplotter, ROC-plotter, TIMER, cBioPortal, DepMap, EnrichR, PepPSy, cProSite, WebGestalt, CancerGeneNet, PathwAX II and FunCoup). The subinteractome of each ORF protein was revealed using ten different data sources on physical protein-protein interactions (PPIs) to obtain representative datasets for the exploration of possible cellular functions of ORF proteins through a spectrum of neighboring annotated protein partners. A total of 42 out of 219 presumably cancer-associated ORF proteins and 30 cancer-dependent binary PPIs were found. Additionally, a bibliometric analysis of 204 publications allowed us to retrieve biomedical terms related to ORF genes. In spite of recent progress in functional studies of ORF genes, the current investigations aim at finding out the prognostic value of CxORFx expression patterns in cancers. The results obtained expand the understanding of the possible functions of the poorly annotated CxORFx in the cancer context.
Collapse
Affiliation(s)
- Pavel Ershov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | | | - Yuri Mezentsev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexis Ivanov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| |
Collapse
|
5
|
Zheng Y, Lang Y, Qi B, Wang Y, Gao W, Li T. TSPAN4 is a prognostic and immune target in Glioblastoma multiforme. Front Mol Biosci 2023; 9:1030057. [PMID: 36685274 PMCID: PMC9853066 DOI: 10.3389/fmolb.2022.1030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Atherosclerosis can impact cancer progression due to the cholesterol and calcium metabolism, illustrating the links between atherosclerosis and cancer metastasis. Tetraspanin 4 (TSPAN4) may help understand migrasomes in diseases and provide novel targets for treatment. Methods: TSPAN4 expression in atherosclerosis Gene Expression Omnibus (EO) dataset and multiple omics data were explored, such as enriched pathways analysis, protein-protein interaction analysis, immune subtypes as well as diagnostic and prognostic value in pan-cancer. The relationship between Glioblastoma multiforme (GBM) and TSPAN4 was further investigated. Results: Compared to control, TSPAN4 expression was upregulated in foam cells from patients with atherosclerosis and survival analysis demonstrated high TSPAN4 expression contributes to poor prognosis. TSPAN4 expression differs significantly in immune subtypes of cancers, which can be a diagnostic and prognostic target of cancers due to the high accuracy. Overall survival analysis of subgroups demonstrated that higher TSPAN4 expression had a worse prognosis and the univariate analysis and multivariate analysis demonstrated age, TSPAN4 expression, WHO grade, IDH status and histological types were independent risk factors of Glioblastoma multiforme. Conclusion: The TSPAN4 expression was associated with atherosclerosis progression and pan-cancer, especially in Glioblastoma multiforme and GBMLGG. Therefore, TSPAN4 may serve as a potential biomarker and the crosstalk between atherosclerosis and tumor progression. The results are not fully validated and further studies are still needed to validate in vivo and in vitro.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
| | - Yuheng Lang
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Bingcai Qi
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Yuchao Wang
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Wenqing Gao
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, China
- Department of Heart Center, The Third Central Hospital of Tianjin, Tianjin, China
- Nankai University Affiliated Third Center Hospital, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Huang C, Shen ZR, Huang J, Sun SC, Ma D, Li MY, Wang ZK, Zheng YC, Zheng ZJ, He F, Xu X, Li Z, Zheng BY, Li YM, Xu XM, Xiong F. C1orf194 deficiency leads to incomplete early embryonic lethality and dominant intermediate Charcot-Marie-Tooth disease in a knockout mouse model. Hum Mol Genet 2021; 29:2471-2480. [PMID: 32592472 DOI: 10.1093/hmg/ddaa129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/23/2020] [Accepted: 06/16/2020] [Indexed: 01/24/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy and shows clinical and genetic heterogeneity. Mutations in C1orf194 encoding a Ca2+ regulator in neurons and Schwann cells have been reported previously by us to cause CMT disease. In here, we further investigated the function and pathogenic mechanism of C1or194 by generating C1orf194 knockout (KO) mice. Homozygous mutants of C1orf194 mice exhibited incomplete embryonic lethality, characterized by differentiation abnormalities and stillbirth on embryonic days 7.5-15.5. Heterozygous and surviving homozygous C1orf194 KO mice developed motor and sensory defects at the age of 4 months. Electrophysiologic recordings showed decreased compound muscle action potential and motor nerve conduction velocity in the sciatic nerve of C1orf194-deficient mice as a pathologic feature of dominant intermediate-type CMT. Transmission electron microscopy analysis revealed demyelination and axonal atrophy in the sciatic nerve as well as swelling and loss of mitochondrial matrix and other abnormalities in axons and Schwann cells. A histopathologic examination showed a loss of motor neurons in the anterior horn of the spinal cord and muscle atrophy. Shorter internodal length between nodes of Ranvier and Schmidt-Lanterman incisures was detected in the sciatic nerve of affected animals. These results indicate that C1orf194 KO mice can serve as an animal model of CMT with a severe dominant intermediate CMT phenotype that can be used to investigate the molecular mechanisms of the disease and evaluate the efficacy of therapeutic strategies.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zong Rui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jin Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shun Chang Sun
- Department of Clinical Laboratory, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mei Yi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi Kui Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Chun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo Jun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyuan Xu
- Experimental Teaching Center for Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziang Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bo Yang Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Mao Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiang Min Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R. China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, P.R. China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
7
|
Newtson A, Reyes H, Devor EJ, Goodheart MJ, Bosquet JG. Identification of Novel Fusion Transcripts in High Grade Serous Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22094791. [PMID: 33946483 PMCID: PMC8125626 DOI: 10.3390/ijms22094791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/11/2022] Open
Abstract
Fusion genes are structural chromosomal rearrangements resulting in the exchange of DNA sequences between genes. This results in the formation of a new combined gene. They have been implicated in carcinogenesis in a number of different cancers, though they have been understudied in high grade serous ovarian cancer. This study used high throughput tools to compare the transcriptome of high grade serous ovarian cancer and normal fallopian tubes in the interest of identifying unique fusion transcripts within each group. Indeed, we found that there were significantly more fusion transcripts in the cancer samples relative to the normal fallopian tubes. Following this, the role of fusion transcripts in chemo-response and overall survival was investigated. This led to the identification of fusion transcripts significantly associated with overall survival. Validation was performed with different analytical platforms and different algorithms to find fusion transcripts.
Collapse
Affiliation(s)
- Andreea Newtson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Correspondence: ; Tel.: +1-319-356-2015
| | - Henry Reyes
- Department of Obstetrics and Gynecology, University of Buffalo, Buffalo, NY 14260, USA;
| | - Eric J. Devor
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
- Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Michael J. Goodheart
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Jesus Gonzalez Bosquet
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; (M.J.G.); (J.G.B.)
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
8
|
Andreiuolo F, Varlet P, Tauziède-Espariat A, Jünger ST, Dörner E, Dreschmann V, Kuchelmeister K, Waha A, Haberler C, Slavc I, Corbacioglu S, Riemenschneider MJ, Leipold A, Rüdiger T, Körholz D, Acker T, Russo A, Faber J, Sommer C, Armbrust S, Rose M, Erdlenbruch B, Hans VH, Bernbeck B, Schneider D, Lorenzen J, Ebinger M, Handgretinger R, Neumann M, van Buiren M, Prinz M, Roganovic J, Jakovcevic A, Park SH, Grill J, Puget S, Messing-Jünger M, Reinhard H, Bergmann M, Hattingen E, Pietsch T. Childhood supratentorial ependymomas with YAP1-MAMLD1 fusion: an entity with characteristic clinical, radiological, cytogenetic and histopathological features. Brain Pathol 2018; 29:205-216. [PMID: 30246434 PMCID: PMC7379249 DOI: 10.1111/bpa.12659] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/25/2022] Open
Abstract
Ependymoma with YAP1‐MAMLD1 fusion is a rare, recently described supratentorial neoplasm of childhood, with few cases published so far. We report on 15 pediatric patients with ependymomas carrying YAP1‐MAMLD1 fusions, with their characteristic histopathology, immunophenotype and molecular/cytogenetic, radiological and clinical features. The YAP1‐MAMLD1 fusion was documented by RT‐PCR/Sanger sequencing, and tumor genomes were studied by molecular inversion probe (MIP) analysis. Significant copy number alterations were identified by GISTIC (Genomic Identification of Significant Targets in Cancer) analysis. All cases showed similar histopathological features including areas of high cellularity, presence of perivascular pseudo‐rosettes, small to medium‐sized nuclei with characteristic granular chromatin and strikingly abundant cells with dot‐like cytoplasmic expression of epithelial membrane antigen. Eleven cases presented features of anaplasia, corresponding to WHO grade III. MRI showed large supratentorial multinodular tumors with cystic components, heterogeneous contrast enhancement, located in the ventricular or periventricular region. One of two variants of YAP1‐MAMLD1 fusions was detected in all cases. The MIP genome profiles showed balanced profiles, with focal alterations of the YAP1 locus at 11q22.1–11q21.2 (7/14), MAMLD1 locus (Xp28) (10/14) and losses of chromosome arm 22q (5/14). Most patients were female (13/15) and younger than 3 years at diagnosis (12/15; median age, 8.2 months). Apart from one patient who died during surgery, all patients are alive without evidence of disease progression after receiving different treatment protocols, three without postoperative further treatment (median follow‐up, 4.84 years). In this to date, largest series of ependymomas with YAP1‐MAMLD1 fusions we show that they harbor characteristic histopathological, cytogenetic and imaging features, occur mostly in young girls under 3 years and are associated with good outcome. Therefore, this genetically defined neoplasm should be considered a distinct disease entity. The diagnosis should be confirmed by demonstration of the specific fusion. Further studies on large collaborative series are warranted to confirm our findings.
Collapse
Affiliation(s)
- Felipe Andreiuolo
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Pascale Varlet
- Department of Neuropathology, Sainte-Anne Hospital and Paris Descartes University, Paris, France
| | | | - Stephanie T Jünger
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Evelyn Dörner
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Verena Dreschmann
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Klaus Kuchelmeister
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - Andreas Waha
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | | | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Selim Corbacioglu
- Department of Hematology, Oncology and Stem Cell Transplantation, University Children's Hospital, Regensburg, Regensburg, Germany
| | | | | | - Thomas Rüdiger
- Institute of Pathology, Hospital Karlsruhe, Karlsruhe, Germany
| | - Dieter Körholz
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Justus-Liebig University of Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, University of Giessen, Giessen, Germany
| | - Alexandra Russo
- Section of Pediatric Oncology, Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jörg Faber
- Section of Pediatric Oncology, Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Clemens Sommer
- Institute of Neuropathology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sven Armbrust
- Department of Pediatrics and Adolescent Medicine, Dietrich-Bonhoeffer Hospital, Neubrandenburg, Germany
| | - Martina Rose
- University Hospital for Children and Adolescents, Johannes Wesling Hospital Minden, Ruhr University Hospital, Bochum, Germany
| | - Bernhard Erdlenbruch
- University Hospital for Children and Adolescents, Johannes Wesling Hospital Minden, Ruhr University Hospital, Bochum, Germany
| | - Volkmar H Hans
- Department of Neuropathology, Evangelisches Krankenhaus Bielefeld GmbH, Bielefeld, Germany
| | | | | | - Johann Lorenzen
- Department of Pathology, Klinikum Dortmund, Dortmund, Germany
| | - Martin Ebinger
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tuebingen, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Hematology/Oncology, University Children's Hospital, Tuebingen, Germany
| | - Manuela Neumann
- Department of Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Miriam van Buiren
- Department of Pediatric Hematology and Oncology, Center for Pediatrics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Jelena Roganovic
- Department of Pediatrics, Clinical Hospital Center Rijeka, School of Medicine Rijeka, Rijeka, Croatia
| | - Antonia Jakovcevic
- Department of Pathology, University Hospital Center Zagreb, School of Medicine, Zagreb, Croatia
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, College of Medicine, Seoul, Republic of Korea
| | - Jacques Grill
- Pediatric and Adolescent Oncology and Unite Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Gustave Roussy, Paris-Saclay University, Villejuif, France
| | - Stéphanie Puget
- Department of Neurosurgery, Necker Enfants-Malades Hospital and Paris Descartes University, Paris, France
| | - Martina Messing-Jünger
- Department of Pediatric Neurosurgery, Children's Hospital St. Augustin, Sankt Augustin, Germany
| | - Harald Reinhard
- Department of Pediatric Oncology, Children's Hospital St. Augustin, Sankt Augustin, Germany
| | - Markus Bergmann
- Institute of Clinical Neuropathology, Bremen-Mitte Medical Center, Bremen, Germany
| | - Elke Hattingen
- Neuroradiology, Department of Radiology, University of Bonn Medical Center, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
9
|
Expressed fusion gene landscape and its impact in multiple myeloma. Nat Commun 2017; 8:1893. [PMID: 29196615 PMCID: PMC5711960 DOI: 10.1038/s41467-017-00638-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple myeloma is a plasma cell malignancy characterized by recurrent IgH translocations and well described genomic heterogeneity. Although transcriptome profiles in multiple myeloma has been described, landscape of expressed fusion genes and their clinical impact remains unknown. To provide a comprehensive and detailed fusion gene cartography and suggest new mechanisms of tumorigenesis in multiple myeloma, we performed RNA sequencing in a cohort of 255 newly diagnosed and homogeneously treated multiple myeloma patients with long follow-up. Here, we report that patients have on average 5.5 expressed fusion genes. Kappa and lambda light chains and IgH genes are main partners in a third of all fusion genes. We also identify recurrent fusion genes that significantly impact both progression-free and overall survival and may act as drivers of the disease. Lastly, we find a correlation between the number of fusions, the age of patients and the clinical outcome, strongly suggesting that genomic instability drives prognosis of the disease. Multiple myeloma is a malignancy of plasma cells in the blood. Here, the authors establish the landscape of fusion genes within this disease, identifying novel recurrent fusion genes that impact survival and may drive disease progression.
Collapse
|
10
|
Servidei T, Meco D, Muto V, Bruselles A, Ciolfi A, Trivieri N, Lucchini M, Morosetti R, Mirabella M, Martini M, Caldarelli M, Lasorella A, Tartaglia M, Riccardi R. Novel SEC61G- EGFR Fusion Gene in Pediatric Ependymomas Discovered by Clonal Expansion of Stem Cells in Absence of Exogenous Mitogens. Cancer Res 2017; 77:5860-5872. [PMID: 29092923 DOI: 10.1158/0008-5472.can-17-0790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/13/2017] [Accepted: 08/30/2017] [Indexed: 11/16/2022]
Abstract
The basis for molecular and cellular heterogeneity in ependymomas of the central nervous system is not understood. This study suggests a basis for this phenomenon in the selection for mitogen-independent (MI) stem-like cells with impaired proliferation but increased intracranial tumorigenicity. MI ependymoma cell lines created by selection for EGF/FGF2-independent proliferation exhibited constitutive activation of EGFR, AKT, and STAT3 and sensitization to the antiproliferative effects of EGFR tyrosine kinase inhibitors (TKI). One highly tumorigenic MI line harbored membrane-bound, constitutively active, truncated EGFR. Two EGFR mutants (ΔN566 and ΔN599) were identified as products of intrachromosomal rearrangements fusing the 3' coding portion of the EGFR gene to the 5'-UTR of the SEC61G, yielding products lacking the entire extracellular ligand-binding domain of the receptor while retaining the transmembrane and tyrosine kinase domains. EGFR TKI efficiently targeted ΔN566/ΔN599-mutant-mediated signaling and prolonged the survival of mice bearing intracranial xenografts of MI cells harboring these mutations. RT-PCR sequencing of 16 childhood ependymoma samples identified SEC61G-EGFR chimeric mRNAs in one infratentorial ependymoma WHO III, arguing that this fusion occurs in a small proportion of these tumors. Our findings demonstrate how in vitro culture selections applied to genetically heterogeneous tumors can help identify focal mutations that are potentially pharmaceutically actionable in rare cancers. Cancer Res; 77(21); 5860-72. ©2017 AACR.
Collapse
Affiliation(s)
- Tiziana Servidei
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy.
| | - Daniela Meco
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| | - Valentina Muto
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Alessandro Bruselles
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Nadia Trivieri
- Mendel Institute, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | | | - Roberta Morosetti
- UOC Neurologia, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| | | | | | | | - Anna Lasorella
- Department of Pediatrics, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Riccardo Riccardi
- UOC Oncologia Pediatrica, Fondazione Policlinico Universitario "A. Gemelli," Rome, Italy
| |
Collapse
|