1
|
Zhang B, Liu H, Wu F, Ding Y, Wu J, Lu L, Bajpai AK, Sang M, Wang X. Identification of hub genes and potential molecular mechanisms related to drug sensitivity in acute myeloid leukemia based on machine learning. Front Pharmacol 2024; 15:1359832. [PMID: 38650628 PMCID: PMC11033397 DOI: 10.3389/fphar.2024.1359832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common form of leukemia among adults and is characterized by uncontrolled proliferation and clonal expansion of hematopoietic cells. There has been a significant improvement in the treatment of younger patients, however, prognosis in the elderly AML patients remains poor. Methods: We used computational methods and machine learning (ML) techniques to identify and explore the differential high-risk genes (DHRGs) in AML. The DHRGs were explored through multiple in silico approaches including genomic and functional analysis, survival analysis, immune infiltration, miRNA co-expression and stemness features analyses to reveal their prognostic importance in AML. Furthermore, using different ML algorithms, prognostic models were constructed and validated using the DHRGs. At the end molecular docking studies were performed to identify potential drug candidates targeting the selected DHRGs. Results: We identified a total of 80 DHRGs by comparing the differentially expressed genes derived between AML patients and normal controls and high-risk AML genes identified by Cox regression. Genetic and epigenetic alteration analyses of the DHRGs revealed a significant association of their copy number variations and methylation status with overall survival (OS) of AML patients. Out of the 137 models constructed using different ML algorithms, the combination of Ridge and plsRcox maintained the highest mean C-index and was used to build the final model. When AML patients were classified into low- and high-risk groups based on DHRGs, the low-risk group had significantly longer OS in the AML training and validation cohorts. Furthermore, immune infiltration, miRNA coexpression, stemness feature and hallmark pathway analyses revealed significant differences in the prognosis of the low- and high-risk AML groups. Drug sensitivity and molecular docking studies revealed top 5 drugs, including carboplatin and austocystin-D that may significantly affect the DHRGs in AML. Conclusion: The findings from the current study identified a set of high-risk genes that may be used as prognostic and therapeutic markers for AML patients. In addition, significant use of the ML algorithms in constructing and validating the prognostic models in AML was demonstrated. Although our study used extensive bioinformatics and machine learning methods to identify the hub genes in AML, their experimental validations using knock-out/-in methods would strengthen our findings.
Collapse
Affiliation(s)
- Boyu Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Haiyan Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fengxia Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yuhong Ding
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jiarun Wu
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lu Lu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Mengmeng Sang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinfeng Wang
- Department of Hematology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Rosli AA, Azlan A, Rajasegaran Y, Mot YY, Heidenreich O, Yusoff NM, Moses EJ. Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications. Clin Exp Med 2023; 23:1137-1159. [PMID: 36229751 DOI: 10.1007/s10238-022-00913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
Chromosomal abnormalities in acute myeloid leukemia (AML) have significantly contributed to scientific understanding of its molecular pathogenesis, which has aided in the development of therapeutic strategies and enhanced management of AML patients. The diagnosis, prognosis and treatment of AML have also rapidly transformed in recent years, improving initial response to treatment, remission rates, risk stratification and overall survival. Hundreds of rare chromosomal abnormalities in AML have been discovered thus far using chromosomal analysis and next-generation sequencing. As a result, the World Health Organization (WHO) has categorized AML into subgroups based on genetic, genomic and molecular characteristics, to complement the existing French-American classification which is solely based on morphology. In this review, we aim to highlight the most clinically relevant chromosomal aberrations in AML together with the technologies employed to detect these aberrations in laboratory settings.
Collapse
Affiliation(s)
- Aliaa Arina Rosli
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Adam Azlan
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Yee Yik Mot
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Prinses Máxima Centrum Voor Kinderoncologie, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Emmanuel Jairaj Moses
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
BCOR gene alterations in hematological diseases. Blood 2021; 138:2455-2468. [PMID: 33945606 DOI: 10.1182/blood.2021010958] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/14/2021] [Indexed: 11/20/2022] Open
Abstract
The BCL6 co-repressor (BCOR) is a transcription factor involved in the control of embryogenesis, mesenchymal stem cells function, hematopoiesis and lymphoid development. Recurrent somatic clonal mutations of the BCOR gene and its homologue BCORL1 have been detected in several hematological malignancies and aplastic anemia. They are scattered across the whole gene length and mostly represent frameshifts (deletions, insertions), nonsense and missence mutations. These disruptive events lead to the loss of full-length BCOR protein and to the lack or low expression of a truncated form of the protein, both consistent with the tumor suppressor role of BCOR. BCOR and BCORL1 mutations are similar to those causing two rare X-linked diseases: the oculo-facio-cardio-dental (OFCD) and the Shukla-Vernon syndromes, respectively. Here, we focus on the structure and function of normal BCOR and BCORL1 in normal hematopoietic and lymphoid tissues and review the frequency and clinical significance of the mutations of these genes in malignant and non-malignant hematological diseases. Moreover, we discuss the importance of mouse models to better understand the role of Bcor loss, alone and combined with alterations of other genes (e.g. Dnmt3a and Tet2), in promoting hematological malignancies and in providing a useful platform for the development of new targeted therapies.
Collapse
|
4
|
Giaimo BD, Robert-Finestra T, Oswald F, Gribnau J, Borggrefe T. Chromatin Regulator SPEN/SHARP in X Inactivation and Disease. Cancers (Basel) 2021; 13:cancers13071665. [PMID: 33916248 PMCID: PMC8036811 DOI: 10.3390/cancers13071665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Carcinogenesis is a multistep process involving not only the activation of oncogenes and disabling tumor suppressor genes, but also epigenetic modulation of gene expression. X chromosome inactivation (XCI) is a paradigm to study heterochromatin formation and maintenance. The double dosage of X chromosomal genes in female mammals is incompatible with early development. XCI is an excellent model system for understanding the establishment of facultative heterochromatin initiated by the expression of a 17,000 nt long non-coding RNA, known as Xinactivespecifictranscript (Xist), on the X chromosome. This review focuses on the molecular mechanisms of how epigenetic modulators act in a step-wise manner to establish facultative heterochromatin, and we put these in the context of cancer biology and disease. An in depth understanding of XCI will allow a better characterization of particular types of cancer and hopefully facilitate the development of novel epigenetic therapies. Abstract Enzymes, such as histone methyltransferases and demethylases, histone acetyltransferases and deacetylases, and DNA methyltransferases are known as epigenetic modifiers that are often implicated in tumorigenesis and disease. One of the best-studied chromatin-based mechanism is X chromosome inactivation (XCI), a process that establishes facultative heterochromatin on only one X chromosome in females and establishes the right dosage of gene expression. The specificity factor for this process is the long non-coding RNA Xinactivespecifictranscript (Xist), which is upregulated from one X chromosome in female cells. Subsequently, Xist is bound by the corepressor SHARP/SPEN, recruiting and/or activating histone deacetylases (HDACs), leading to the loss of active chromatin marks such as H3K27ac. In addition, polycomb complexes PRC1 and PRC2 establish wide-spread accumulation of H3K27me3 and H2AK119ub1 chromatin marks. The lack of active marks and establishment of repressive marks set the stage for DNA methyltransferases (DNMTs) to stably silence the X chromosome. Here, we will review the recent advances in understanding the molecular mechanisms of how heterochromatin formation is established and put this into the context of carcinogenesis and disease.
Collapse
Affiliation(s)
- Benedetto Daniele Giaimo
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| | - Teresa Robert-Finestra
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Franz Oswald
- Center for Internal Medicine, Department of Internal Medicine I, University Medical Center Ulm, Albert-Einstein-Allee 23, 89081 Ulm, Germany;
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Oncode Institute, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands; (T.R.-F.); (J.G.)
| | - Tilman Borggrefe
- Institute of Biochemistry, University of Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
- Correspondence: (B.D.G.); (T.B.); Tel.: +49-641-9947-400 (T.B.)
| |
Collapse
|
5
|
Venugopal K, Feng Y, Shabashvili D, Guryanova OA. Alterations to DNMT3A in Hematologic Malignancies. Cancer Res 2021; 81:254-263. [PMID: 33087320 PMCID: PMC7855745 DOI: 10.1158/0008-5472.can-20-3033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
In the last decade, large-scale genomic studies in patients with hematologic malignancies identified recurrent somatic alterations in epigenetic modifier genes. Among these, the de novo DNA methyltransferase DNMT3A has emerged as one of the most frequently mutated genes in adult myeloid as well as lymphoid malignancies and in clonal hematopoiesis. In this review, we discuss recent advances in our understanding of the biochemical and structural consequences of DNMT3A mutations on DNA methylation catalysis and binding interactions and summarize their effects on epigenetic patterns and gene expression changes implicated in the pathogenesis of hematologic malignancies. We then review the role played by mutant DNMT3A in clonal hematopoiesis, accompanied by its effect on immune cell function and inflammatory responses. Finally, we discuss how this knowledge informs therapeutic approaches for hematologic malignancies with mutant DNMT3A.
Collapse
Affiliation(s)
- Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Yang Feng
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Daniil Shabashvili
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida.
- University of Florida Health Cancer Center, Gainesville, Florida
| |
Collapse
|
6
|
Blecua P, Martinez‐Verbo L, Esteller M. The DNA methylation landscape of hematological malignancies: an update. Mol Oncol 2020; 14:1616-1639. [PMID: 32526054 PMCID: PMC7400809 DOI: 10.1002/1878-0261.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.
Collapse
Affiliation(s)
- Pedro Blecua
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Laura Martinez‐Verbo
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Manel Esteller
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaSpain
| |
Collapse
|
7
|
Zhang H, Ying H, Wang X. Methyltransferase DNMT3B in leukemia. Leuk Lymphoma 2020; 61:263-273. [PMID: 31547729 DOI: 10.1080/10428194.2019.1666377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 09/07/2019] [Indexed: 01/23/2023]
Abstract
DNA methyltransferases (DNMTs) are highly conserved DNA-modifying enzymes that play important roles in epigenetic regulation and they are involved in cell proliferation, differentiation, and apoptosis. In mammalian cells, three active DNMTs have been identified: DNMT1 acts as a maintenance methyltransferase to replicate preexisting methylation patterns, whereas DNMT3A and DNMT3B primarily act as de novo methyltransferases that are responsible for establishing DNA methylation patterns by adding a methyl group to cytosine bases. The expression of DNMT3B is widespread in a variety of hematological cells and it is altered in each type of leukemia, which is associated with its pathogenesis, progression, treatment, and prognosis. Here, we review current information on DNMT3B in leukemia, including its expression, single-nucleotide polymorphisms, mutations, regulation, function, and clinical value for anti-leukemic therapy and prognosis.
Collapse
Affiliation(s)
- Haibin Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Houqun Ying
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Balk B, Haferlach T, Meggendorfer M, Kern W, Haferlach C, Stengel A. Impact of 9q deletions on the classification of patients with acute myeloid leukemia. J Cancer Res Clin Oncol 2019; 145:2871-2874. [PMID: 30927073 DOI: 10.1007/s00432-019-02908-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Chromosome Deletion
- Chromosomes, Human, Pair 9/genetics
- Cohort Studies
- Female
- Follow-Up Studies
- Humans
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Male
- Middle Aged
- Nucleophosmin
- Prognosis
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Bettina Balk
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Manja Meggendorfer
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Wolfgang Kern
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Claudia Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany
| | - Anna Stengel
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377, Munich, Germany.
| |
Collapse
|
9
|
Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. JOURNAL OF ONCOLOGY 2019; 2019:7239206. [PMID: 31467542 PMCID: PMC6699387 DOI: 10.1155/2019/7239206] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023]
Abstract
The last two decades of genome-scale research revealed a complex molecular picture of acute myeloid leukemia (AML). On the one hand, a number of mutations were discovered and associated with AML diagnosis and prognosis; some of them were introduced into diagnostic tests. On the other hand, transcriptome studies, which preceded AML exome and genome sequencing, remained poorly translated into clinics. Nevertheless, gene expression studies significantly contributed to the elucidation of AML pathogenesis and indicated potential therapeutic directions. The power of transcriptomic approach lies in its comprehensiveness; we can observe how genome manifests its function in a particular type of cells and follow many genes in one test. Moreover, gene expression measurement can be combined with mutation detection, as high-impact mutations are often present in transcripts. This review sums up 20 years of transcriptome research devoted to AML. Gene expression profiling (GEP) revealed signatures distinctive for selected AML subtypes and uncovered the additional within-subtype heterogeneity. The results were particularly valuable in the case of AML with normal karyotype which concerns up to 50% of AML cases. With the use of GEP, new classes of the disease were identified and prognostic predictors were proposed. A plenty of genes were detected as overexpressed in AML when compared to healthy control, including KIT, BAALC, ERG, MN1, CDX2, WT1, PRAME, and HOX genes. High expression of these genes constitutes usually an unfavorable prognostic factor. Upregulation of FLT3 and NPM1 genes, independent on their mutation status, was also reported in AML and correlated with poor outcome. However, transcriptome is not limited to the protein-coding genes; other types of RNA molecules exist in a cell and regulate genome function. It was shown that microRNA (miRNA) profiles differentiated AML groups and predicted outcome not worse than protein-coding gene profiles. For example, upregulation of miR-10a, miR-10b, and miR-196b and downregulation of miR-192 were found as typical of AML with NPM1 mutation whereas overexpression of miR-155 was associated with FLT3-internal tandem duplication (FLT3-ITD). Development of high-throughput technologies and microarray replacement by next generation sequencing (RNA-seq) enabled uncovering a real variety of leukemic cell transcriptomes, reflected by gene fusions, chimeric RNAs, alternatively spliced transcripts, miRNAs, piRNAs, long noncoding RNAs (lncRNAs), and their special type, circular RNAs. Many of them can be considered as AML biomarkers and potential therapeutic targets. The relations between particular RNA puzzles and other components of leukemic cells and their microenvironment, such as exosomes, are now under investigation. Hopefully, the results of this research will shed the light on these aspects of AML pathogenesis which are still not completely understood.
Collapse
|
10
|
Takenaka M, Köbel M, Garsed DW, Fereday S, Pandey A, Etemadmoghadam D, Hendley J, Kawabata A, Noguchi D, Yanaihara N, Takahashi H, Kiyokawa T, Ikegami M, Takano H, Isonishi S, Ochiai K, Traficante N, Gadipally S, Semple T, Vassiliadis D, Amarasinghe K, Li J, Mir Arnau G, Okamoto A, Friedlander M, Bowtell DDL. Survival Following Chemotherapy in Ovarian Clear Cell Carcinoma Is Not Associated with Pathological Misclassification of Tumor Histotype. Clin Cancer Res 2019; 25:3962-3973. [PMID: 30967419 DOI: 10.1158/1078-0432.ccr-18-3691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/24/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Although ovarian clear cell carcinomas (OCCC) are commonly resistant to platinum-based chemotherapy, good clinical outcomes are observed in a subset of patients. The explanation for this is unknown but may be due to misclassification of high-grade serous ovarian cancer (HGSOC) as OCCC or mixed histology. EXPERIMENTAL DESIGN To discover potential biomarkers of survival benefit following platinum-based chemotherapy, we ascertained a cohort of 68 Japanese and Australian patients in whom progression-free survival (PFS) and overall survival (OS) could be assessed. We performed IHC reclassification of tumors, and targeted sequencing and immunohistochemistry of known driver genes. Exome sequencing was performed in 10 patients who had either unusually long survival (N = 5) or had a very short time to progression (N = 5). RESULTS The majority of mixed OCCC (N = 6, 85.7%) and a small proportion of pure OCCC (N = 3, 4.9%) were reclassified as likely HGSOC. However, the PFS and OS of patients with misclassified samples were similar to that of patients with pathologically validated OCCC. Absent HNF1B expression was significantly correlated with longer PFS and OS (P = 0.0194 and 0.0395, respectively). Mutations in ARID1A, PIK3CA, PPP2R1A, and TP53 were frequent, but did not explain length of PFS and OS. An exploratory exome analysis of patients with favorable and unfavorable outcomes did not identify novel outcome-associated driver mutations. CONCLUSIONS Survival benefit following chemotherapy in OCCC was not associated with pathological misclassification of tumor histotype. HNF1B loss may help identify the subset of patients with OCCC with a more favorable outcome.
Collapse
Affiliation(s)
- Masataka Takenaka
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Martin Köbel
- Department of Pathology and Laboratory Medicine, Foothill Medical Center, University of Calgary, Calgary, Canada
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Sian Fereday
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Dariush Etemadmoghadam
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Victoria, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ayako Kawabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Daito Noguchi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takahashi
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takako Kiyokawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masahiro Ikegami
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Seiji Isonishi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiko Ochiai
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | | | | | - Timothy Semple
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | | | - Jason Li
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | | | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia.
| | - David D L Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia.,Department of Pathology, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
11
|
Hartmann L, Haferlach T, Meggendorfer M, Kern W, Haferlach C, Stengel A. Comprehensive molecular characterization of myeloid malignancies with 9q deletion. Leuk Lymphoma 2019; 60:2591-2593. [PMID: 30844315 DOI: 10.1080/10428194.2019.1585840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | | | | | | | | | - Anna Stengel
- MLL Munich Leukemia Laboratory , Munich , Germany
| |
Collapse
|
12
|
Characterization of acute myeloid leukemia with del(9q) - Impact of the genes in the minimally deleted region. Leuk Res 2018; 76:15-23. [PMID: 30476680 DOI: 10.1016/j.leukres.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 02/06/2023]
Abstract
Acute myeloid leukemia is an aggressive disease that arises from clonal expansion of malignant hematopoietic precursor cells of the bone marrow. Deletions on the long arm of chromosome 9 (del(9q)) are observed in 2% of acute myeloid leukemia patients. Our deletion analysis in a cohort of 31 del(9q) acute myeloid leukemia patients further supports the importance of a minimally deleted region composed of seven genes potentially involved in leukemogenesis: GKAP1, KIF27, C9ORF64, HNRNPK, RMI1, SLC28A3 and NTRK2. Importantly, among them HNRNPK, encoding heterogeneous nuclear ribonucleoprotein K is proposed to function in leukemogenesis. We show that expression of HNRNPK and the other genes of the minimally deleted region is significantly reduced in patients with del(9q) compared with normal karyotype acute myeloid leukemia. Also, two mRNAs interacting with heterogeneous nuclear ribonucleoprotein K, namely CDKN1A and CEBPA are significantly downregulated. While the deletion size is not correlated with outcome, associated genetic aberrations are important. Patients with an additional t(8;21) show a good prognosis. RUNX1-RUNX1T1, which emerges from the t(8;21) leads to transcriptional down-regulation of CEBPA. Acute myeloid leukemia patients with mutations in CEBPA have a good prognosis as well. Interestingly, in del(9q) patients with CEBPA mutation mRNA levels of HNRNPK and the other genes located in the minimally deleted region is restored to normal karyotype level. Our data indicate that a link between CEBPA and the genes of the minimally deleted region, among them HNRNPK contributes to leukemogenesis in acute myeloid leukemia with del(9q).
Collapse
|
13
|
Zhang C, Bai G, Zhu W, Bai D, Bi G. Identification of miRNA-mRNA Network Associated with Acute Myeloid Leukemia Survival. Med Sci Monit 2017; 23:4705-4714. [PMID: 28965123 PMCID: PMC5634225 DOI: 10.12659/msm.903989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematologic malignancy of adults. The pathophysiological mechanism of AML is not well understood. The purpose of this study was to examine the crucial miRNAs and mRNAs associated with AML survival. Material/Methods The full clinical dataset of miRNA and mRNA expression profiling of AML patients was downloaded from The Cancer Genome Atlas database. Univariate Cox regression analysis was performed to obtain those miRNAs and mRNAs associated with AML survival. A miRNA-mRNA interaction network was constructed. The underlying functions of mRNAs were predicted through Kyoto Encyclopedia of Genes and Genomes (KEEG) pathway enrichment. The expression levels of miRNAs and mRNAs were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Results Fourteen miRNAs and 830 mRNAs associated with AML survival were identified. Of the 14 miRNAs, hsa-mir-425, hsa-mir-1201, and hsa-mir-1978 were identified as risk factors and the other 11 miRNAs were identified as protective factors of AML survival. For target-genes of miRNAs, GTSF1, RTN4R, and CD44 were the top risk factor target-genes associated with AML survival. An interaction network was constructed that including 607 miRNA-target gene pairs associated with AML survival. Target-genes associated with AML survival were significantly enriched in several pathways including pancreatic secretion, calcium signaling pathway, natural killer cell mediated cytotoxicity, and Alzheimer’s disease. The qRT-PCR results were consistent with our bioinformatics analyses. Conclusions The miRNA hsa-mir-425 was identified as the top risk factor miRNA of AML survival and CD44 was identified as one of the top three risk factor target-genes associated with AML survival. Both hsa-mir-425 and CD44 may play key roles in progression and development of AML through calcium signaling pathway and natural killer cell mediated cytotoxicity.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Guanchen Bai
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Weijie Zhu
- Clinical Medicine Major (the Experimental Class of Excellent Doctor) Class 1 of Year 2013, Department of Basic Medicine, Taishan Medicine University, Taian, Shangdong, China (mainland)
| | - Dongfang Bai
- Department of Endocrinology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| | - Gaofeng Bi
- Department of Hematology, Taian City Central Hospital, Taian, Shandong, China (mainland)
| |
Collapse
|