1
|
Ye W, Ou WB. Genomic landscaping of receptor tyrosine kinase ALK with highly frequent rearrangements in cancers. IUBMB Life 2025; 77:e70003. [PMID: 39917830 DOI: 10.1002/iub.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
Anaplastic lymphoma kinase (ALK) fusion tyrosine kinases (TKs) are commonly found in various cancers and are considered as promising targets for therapy due to their intricate biological processes. However, the reasons for the higher frequency of ALKs fusion compared to other TKs are not well elucidated. Physicochemical properties, secondary and tertiary structures, and phylogenetic trees, along with protein sequence alignments of receptor tyrosine kinases (RTKs) and ALK fused partner genes, were examined using the resources provided by the National Center for Biotechnology Information (NCBI) and the Catalogue of Somatic Mutations in Cancer (COSMIC). Sequence alignments were performed to identify common sequences between partner genes and search for common breakpoints within the COSMIC database. ALK is a large, unstable, acidic protein with similarly conservation among RTKs. ALK fusion partners are mostly acidic, unstable proteins, mostly consisting of α-helices and random coil. However, EML4 and NPM1 are the most frequently occurring partner genes and have their own unique structural characteristics. By functional domain analysis, we found that the functions of the first half of the ALK partner gene (the part fused to ALK) are mostly focused on signaling. ALK is identified as a large hydrophilic protein,exhibits a higher proportion of random coils. Compared to other RTKs, ALK has fewer structural domains (PTKC_ALK_LTK domain). Pairwise comparison with fusion partner genes revealed a conserved sequence predicted to have structural stability and act as a common binding site for nucleases. Exon 20 of ALK is a fusion frequent site according to COSMIC database analysis. The structural instability of ALK and partner genes, coupled with the inherent variability of breakpoint sequences, leads to the formation of potent kinase-activated oncogenes, which play a critical role in tumorigenesis. While the occurrence of ALK fusions with partner genes is random, specific combinations lead to the generation of oncogenes.
Collapse
Affiliation(s)
- Wei Ye
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen-Bin Ou
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Garimberti E, Federico C, Ragusa D, Bruno F, Saccone S, Bridger JM, Tosi S. Alterations in Genome Organization in Lymphoma Cell Nuclei due to the Presence of the t(14;18) Translocation. Int J Mol Sci 2024; 25:2377. [PMID: 38397052 PMCID: PMC10889133 DOI: 10.3390/ijms25042377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Chromosomal rearrangements have been shown to alter genome organization, consequently having an impact on gene expression. Studies on certain types of leukemia have shown that gene expression can be exacerbated by the altered nuclear positioning of fusion genes arising from chromosomal translocations. However, studies on lymphoma have been, so far, very limited. The scope of this study was to explore genome organization in lymphoma cells carrying the t(14;18)(q32;q21) rearrangement known to results in over-expression of the BCL2 gene. In order to achieve this aim, we used fluorescence in situ hybridization to carefully map the positioning of whole chromosome territories and individual genes involved in translocation in the lymphoma-derived cell line Pfeiffer. Our data show that, although there is no obvious alteration in the positioning of the whole chromosome territories, the translocated genes may take the nuclear positioning of either of the wild-type genes. Furthermore, the BCL2 gene was looping out in a proportion of nuclei with the t(14;18) translocation but not in control nuclei without the translocation, indicating that chromosome looping may be an essential mechanism for BCL2 expression in lymphoma cells.
Collapse
Affiliation(s)
- Elisa Garimberti
- Clinical Genomics Laboratory, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
| | - Concetta Federico
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Denise Ragusa
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
| | - Francesca Bruno
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Salvatore Saccone
- Department of Biological, Geological, and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy; (C.F.); (F.B.); (S.S.)
| | - Joanna Mary Bridger
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
| | - Sabrina Tosi
- Centre for Genome Engineering and Maintenance (CenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK; (D.R.); (J.M.B.)
- Leukaemia and Chromosome Research Laboratory, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge UB8 3PH, UK
| |
Collapse
|
3
|
Bencurova E, Akash A, Dobson RC, Dandekar T. DNA storage-from natural biology to synthetic biology. Comput Struct Biotechnol J 2023; 21:1227-1235. [PMID: 36817961 PMCID: PMC9932295 DOI: 10.1016/j.csbj.2023.01.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades).
Collapse
Affiliation(s)
- Elena Bencurova
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Aman Akash
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Renwick C.J. Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand,Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany,Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany,Corresponding author at: Department of Bioinformatics, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
4
|
Chromosome territory reorganization through artificial chromosome fusion is compatible with cell fate determination and mouse development. Cell Discov 2023; 9:11. [PMID: 36693846 PMCID: PMC9873915 DOI: 10.1038/s41421-022-00511-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/18/2022] [Indexed: 01/26/2023] Open
Abstract
Chromosomes occupy discrete spaces in the interphase cell nucleus, called chromosome territory. The structural and functional relevance of chromosome territory remains elusive. We fused chromosome 15 and 17 in mouse haploid embryonic stem cells (haESCs), resulting in distinct changes of territories in the cognate chromosomes, but with little effect on gene expression, pluripotency and gamete functions of haESCs. The karyotype-engineered haESCs were successfully implemented in generating heterozygous (2n = 39) and homozygous (2n = 38) mouse models. Mice containing the fusion chromosome are fertile, and their representative tissues and organs display no phenotypic abnormalities, suggesting unscathed development. These results indicate that the mammalian chromosome architectures are highly resilient, and reorganization of chromosome territories can be readily tolerated during cell differentiation and mouse development.
Collapse
|
5
|
Geometrical Properties of the Nucleus and Chromosome Intermingling Are Possible Major Parameters of Chromosome Aberration Formation. Int J Mol Sci 2022; 23:ijms23158638. [PMID: 35955776 PMCID: PMC9368922 DOI: 10.3390/ijms23158638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Ionizing radiation causes chromosome aberrations, which are possible biomarkers to assess space radiation cancer risks. Using the Monte Carlo codes Relativistic Ion Tracks (RITRACKS) and Radiation-Induced Tracks, Chromosome Aberrations, Repair and Damage (RITCARD), we investigated how geometrical properties of the cell nucleus, irradiated with ion beams of linear energy transfer (LET) ranging from 0.22 keV/μm to 195 keV/μm, influence the yield of simple and complex exchanges. We focused on the effect of (1) nuclear volume by considering spherical nuclei of varying radii; (2) nuclear shape by considering ellipsoidal nuclei of varying thicknesses; (3) beam orientation; and (4) chromosome intermingling by constraining or not constraining chromosomes in non-overlapping domains. In general, small nuclear volumes yield a higher number of complex exchanges, as compared to larger nuclear volumes, and a higher number of simple exchanges for LET < 40 keV/μm. Nuclear flattening reduces complex exchanges for high-LET beams when irradiated along the flattened axis. The beam orientation also affects yields for ellipsoidal nuclei. Reducing chromosome intermingling decreases both simple and complex exchanges. Our results suggest that the beam orientation, the geometry of the cell nucleus, and the organization of the chromosomes within are important parameters for the formation of aberrations that must be considered to model and translate in vitro results to in vivo risks.
Collapse
|
6
|
Cytogenomic Characterization of Giant Ring or Rod Marker Chromosome in Four Cases of Well-Differentiated and Dedifferentiated Liposarcoma. Case Rep Genet 2022; 2022:6341207. [PMID: 35450197 PMCID: PMC9018199 DOI: 10.1155/2022/6341207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Chromosome and array comparative genomic hybridization (aCGH) analyses were performed on two cases of well-differentiated liposarcoma (WDLPS) and two cases of dedifferentiated liposarcoma (DDLPS). The results revealed the characteristic giant ring (GR) or giant rod marker (GRM) chromosomes in all four cases and amplification of numerous somatic copy number alterations (SCNAs) involving a core segment of 12q14.1q15 and other chromosomal regions in three cases. The levels of amplification for oncogenes OS9, CDK4, HMGA2, NUP107, MDM2, YEATS4, and FRS2 at the core segment or other SCNAs should be characterized to facilitate pathologic correlation and prognostic prediction. Further studies for the initial cellular crisis event affecting chromosome intermingling regions for cell-type specific gene regulation may reveal the underlying mutagenesis mechanism for GR and GRM in WDLPS and DDLPS.
Collapse
|
7
|
Wei J, Tian H, Zhou R, Shao Y, Song F, Gao YQ. Topological Constraints with Optimal Length Promote the Formation of Chromosomal Territories at Weakened Degree of Phase Separation. J Phys Chem B 2021; 125:9092-9101. [PMID: 34351763 DOI: 10.1021/acs.jpcb.1c03523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is generally agreed that the nuclei of eukaryotic cells at interphase are partitioned into disjointed territories, with distinct regions occupied by certain chromosomes. However, the underlying mechanism for such territorialization is still under debate. Here we model chromosomes as coarse-grained block copolymers and to investigate the effect of loop domains (LDs) on the formation of compartments and territories based on dissipative particle dynamics. A critical length of LDs, which depends sensitively on the length of polymeric blocks, is obtained to minimize the degree of phase separation. This also applies to the two-polymer system: The critical length not only maximizes the degree of territorialization but also minimizes the degree of phase separation. Interestingly, by comparing with experimental data, we find the critical length for LDs and the corresponding length of blocks to be respectively very close to the mean length of topologically associating domains (TADs) and chromosomal segments with different densities of CpG islands for human chromosomes. The results indicate that topological constraints with optimal length can contribute to the formation of territories by weakening the degree of phase separation, which likely promotes the chromosomal flexibility in response to genetic regulations.
Collapse
Affiliation(s)
- Jiachen Wei
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China
| | - Hao Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Rui Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yingfeng Shao
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qin Gao
- Shenzhen Bay Laboratory, 5F, No. 9 Duxue Road, Nanshan District, 518055 Shenzhen, Guangdong, China.,Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
9
|
Guarnera E, Tan ZW, Berezovsky IN. Three-dimensional chromatin ensemble reconstruction via stochastic embedding. Structure 2021; 29:622-634.e3. [PMID: 33567266 DOI: 10.1016/j.str.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/17/2020] [Accepted: 01/13/2021] [Indexed: 01/04/2023]
Abstract
We propose a comprehensive method for reconstructing the whole-genome chromatin ensemble from the Hi-C data. The procedure starts from Markov state modeling (MSM), delineating the structural hierarchy of chromatin organization with partitioning and effective interactions archetypal for corresponding levels of hierarchy. The stochastic embedding procedure introduced in this work provides the 3D ensemble reconstruction, using effective interactions obtained by the MSM as the input. As a result, we obtain the structural ensemble of a genome, allowing one to model the functional and the cell-type variability in the chromatin structure. The whole-genome reconstructions performed on the human B lymphoblastoid (GM12878) and lung fibroblast (IMR90) Hi-C data unravel distinctions in their morphologies and in the spatial arrangement of intermingling chromosomal territories, paving the way to studies of chromatin dynamics, developmental changes, and conformational transitions taking place in normal cells and during potential pathological developments.
Collapse
Affiliation(s)
- Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zhen Wah Tan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117597, Singapore.
| |
Collapse
|
10
|
Pentzold C, Kokal M, Pentzold S, Weise A. Sites of chromosomal instability in the context of nuclear architecture and function. Cell Mol Life Sci 2020; 78:2095-2103. [PMID: 33219838 PMCID: PMC7966619 DOI: 10.1007/s00018-020-03698-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/02/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
Chromosomal fragile sites are described as areas within the tightly packed mitotic chromatin that appear as breaks or gaps mostly tracing back to a loosened structure and not a real nicked break within the DNA molecule. Most facts about fragile sites result from studies in mitotic cells, mainly during metaphase and mainly in lymphocytes. Here, we synthesize facts about the genomic regions that are prone to form gaps and breaks on metaphase chromosomes in the context of interphase. We conclude that nuclear architecture shapes the activity profile of the cell, i.e. replication timing and transcriptional activity, thereby influencing genomic integrity during interphase with the potential to cause fragility in mitosis. We further propose fragile sites as examples of regions specifically positioned in the interphase nucleus with putative anchoring points at the nuclear lamina to enable a tightly regulated replication–transcription profile and diverse signalling functions in the cell. Consequently, fragility starts before the actual display as chromosomal breakage in metaphase to balance the initial contradiction of cellular overgrowth or malfunctioning and maintaining diversity in molecular evolution.
Collapse
Affiliation(s)
- Constanze Pentzold
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany.
| | - Miriam Kokal
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| | - Stefan Pentzold
- Research Center Lobeda, Jena University Hospital, 07747, Jena, Germany
| | - Anja Weise
- Institute of Human Genetics, University Hospital, Friedrich Schiller University Jena, 07747, Jena, Germany
| |
Collapse
|
11
|
Rovina D, La Vecchia M, Cortesi A, Fontana L, Pesant M, Maitz S, Tabano S, Bodega B, Miozzo M, Sirchia SM. Profound alterations of the chromatin architecture at chromosome 11p15.5 in cells from Beckwith-Wiedemann and Silver-Russell syndromes patients. Sci Rep 2020; 10:8275. [PMID: 32427849 PMCID: PMC7237657 DOI: 10.1038/s41598-020-65082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are imprinting-related disorders associated with genetic/epigenetic alterations of the 11p15.5 region, which harbours two clusters of imprinted genes (IGs). 11p15.5 IGs are regulated by the methylation status of imprinting control regions ICR1 and ICR2. 3D chromatin structure is thought to play a pivotal role in gene expression control; however, chromatin architecture models are still poorly defined in most cases, particularly for IGs. Our study aimed at elucidating 11p15.5 3D structure, via 3C and 3D FISH analyses of cell lines derived from healthy, BWS or SRS children. We found that, in healthy cells, IGF2/H19 and CDKN1C/KCNQ1OT1 domains fold in complex chromatin conformations, that facilitate the control of IGs mediated by distant enhancers. In patient-derived cell lines, we observed a profound impairment of such a chromatin architecture. Specifically, we identified a cross-talk between IGF2/H19 and CDKN1C/KCNQ1OT1 domains, consisting in in cis, monoallelic interactions, that are present in healthy cells but lost in patient cell lines: an inter-domain association that sees ICR2 move close to IGF2 on one allele, and to H19 on the other. Moreover, an intra-domain association within the CDKN1C/KCNQ1OT1 locus seems to be crucial for maintaining the 3D organization of the region.
Collapse
Affiliation(s)
- Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy
| | - Alice Cortesi
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Laura Fontana
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Matthieu Pesant
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Silvia Maitz
- Clinical Pediatric, Genetics Unit, MBBM Foundation, San Gerardo di Monza, 20900, Monza, Italy
| | - Silvia Tabano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Beatrice Bodega
- Genome Biology Unit, Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" (INGM), 20122, Milano, Italy
| | - Monica Miozzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milano, Italy.,Medical Genetics, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142, Milano, Italy.
| |
Collapse
|
12
|
Meiotic Chromosome Contacts as a Plausible Prelude for Robertsonian Translocations. Genes (Basel) 2020; 11:genes11040386. [PMID: 32252399 PMCID: PMC7230836 DOI: 10.3390/genes11040386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.
Collapse
|
13
|
Hummel G, Warren J, Drouard L. The multi-faceted regulation of nuclear tRNA gene transcription. IUBMB Life 2019; 71:1099-1108. [PMID: 31241827 DOI: 10.1002/iub.2097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022]
Abstract
Transfer RNAs are among the most ancient molecules of life on earth. Beyond their crucial role in protein synthesis as carriers of amino acids, they are also important players in a plethora of other biological processes. Many debates in term of biogenesis, regulation and function persist around these fascinating non-coding RNAs. Our review focuses on the first step of their biogenesis in eukaryotes, i.e. their transcription from nuclear genes. Numerous and complementary ways have emerged during evolution to regulate transfer RNA gene transcription. Here, we will summarize the different actors implicated in this process: cis-elements, trans-factors, genomic contexts, epigenetic environments and finally three-dimensional organization of nuclear genomes. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1099-1108, 2019.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| | - Jessica Warren
- Department of biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Laurence Drouard
- Institut de biologie moléculaire des plantes-CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67084 Strasbourg, France
| |
Collapse
|
14
|
Mai S. Introduction to the special issue "3D nuclear architecture of the genome". Genes Chromosomes Cancer 2019; 58:405-406. [PMID: 30851140 DOI: 10.1002/gcc.22747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Sabine Mai
- Department of Cell Biology, Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Canada
| |
Collapse
|