1
|
George GV, Elsadawi M, Evans AG, Ali S, Zhang B, Iqbal MA. Utilization of RT-PCR and Optical Genome Mapping in Acute Promyelocytic Leukemia with Cryptic PML::RARA Rearrangement: A Case Discussion and Systemic Literature Review. Genes (Basel) 2024; 16:7. [PMID: 39858554 PMCID: PMC11765422 DOI: 10.3390/genes16010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) PML::RARA. Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early. METHODS We present the case of a 36-year-old male who presented with features concerning for disseminated intravascular coagulation. Although the initial diagnostic work-up, including pathology and flow cytometry evaluation, suggested a diagnosis of APL, karyotype and fluorescence in situ hybridization (FISH), using the PML/RARA dual fusion and RARA breakapart probes, were negative. We performed real-time polymerase chain reaction (RT-PCR) and optical genome mapping (OGM) to further confirm the clinicopathological findings. RESULTS RT-PCR revealed a cryptic PML::RARA fusion transcript. OGM further confirmed the nature and orientation of a cryptic rearrangement with an insertion of RARA into PML at intron 3 (bcr3). In light of these findings, we performed a systematic literature review to understand the prevalence, diagnosis, and prognosis of APL with cryptic PML::RARA rearrangements. CONCLUSIONS This case, in conjunction with the results of our systematic literature review, highlights the importance of performing confirmatory testing in FISH-negative cases of suspected APL to enable prompt diagnosis and appropriate treatment.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/pathology
- Male
- Adult
- Oncogene Proteins, Fusion/genetics
- Retinoic Acid Receptor alpha/genetics
- Promyelocytic Leukemia Protein/genetics
- Gene Rearrangement
- In Situ Hybridization, Fluorescence
- Translocation, Genetic
- Chromosome Mapping/methods
Collapse
Affiliation(s)
- Giby V. George
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Murad Elsadawi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Andrew G. Evans
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Sarmad Ali
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| | - M. Anwar Iqbal
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA (S.A.)
| |
Collapse
|
2
|
Guarnera L, Fabiani E, Falconi G, Silvestrini G, Catanoso ML, Divona M, Voso MT. Acute Promyelocytic Leukemia-like AML: Genetic Perspective and Clinical Implications. Cancers (Basel) 2024; 16:4192. [PMID: 39766091 PMCID: PMC11674562 DOI: 10.3390/cancers16244192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Acute promyelocytic leukemia (APL) is a rare type of AML, characterized by the t(15;17) translocation and accounting for 8-15% of cases. The introduction of target therapies, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), radically changed the management of APL, making it the most curable AML subtype. However, a small percentage (estimated to be 2%) of AML presenting with APL-like morphology and/or immunophenotype lacks t(15;17). This rare APL-like AML group, whose first case was described in the early 1990s, now includes over 40 entities. These diseases present great heterogeneity in terms of genetic lesions, clinical presentation, sensitivity to targeted agents and chemotherapy, and prognosis. Furthermore, the diagnosis is very challenging. Thus, in this paper, we aim to comprehensively review the literature reports and studies addressing APL-like entities, investigate the biological mechanisms of leukemogenesis, evaluate the clinical characteristics, and discuss future lines of research and possible clinical approaches.
Collapse
Affiliation(s)
- Luca Guarnera
- PhD in Immunology, Molecular Medicine and Applied Biotechnology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy or (L.G.); or (G.S.)
| | - Emiliano Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); or (G.F.); or (M.L.C.)
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giulia Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); or (G.F.); or (M.L.C.)
- Policlinico Universitario Tor Vergata, 00133 Rome, Italy;
| | - Giorgia Silvestrini
- PhD in Immunology, Molecular Medicine and Applied Biotechnology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy or (L.G.); or (G.S.)
| | - Maria Luigia Catanoso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); or (G.F.); or (M.L.C.)
| | | | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (E.F.); or (G.F.); or (M.L.C.)
- Neuro-Oncohematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, 00142 Rome, Italy
| |
Collapse
|
3
|
Zhang X, Wang T, Chen P, Chen Y, Wang Z, Xu T, Yu P, Liu P. Spinal myeloid sarcoma presenting as initial symptom in acute promyelocytic leukemia with a rare cryptic PLZF::RARα fusion gene: a case report and literature review. Front Oncol 2024; 14:1375737. [PMID: 38835381 PMCID: PMC11148225 DOI: 10.3389/fonc.2024.1375737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Background Acute promyelocytic leukemia (APL) is rarely caused by the PLZF::RARα fusion gene. While APL patients with PLZF::RARα fusion commonly exhibit diverse hematologic symptoms, the presentation of myeloid sarcoma (MS) as an initial manifestation is infrequent. Case presentation A 61-year-old patient was referred to our hospital with 6-month history of low back pain and difficulty walking. Before this admission, spine magnetic resonance imaging (MRI) conducted at another hospital revealed multiple abnormal signals in the left iliac bone and vertebral bodies spanning the thoracic (T11-T12), lumbar (L1-L4), and sacral (S1/S3) regions. This led to a provisional diagnosis of bone tumors with an unknown cause. On admission, complete blood count (CBC) test and peripheral blood smear revealed a slightly increased counts of monocytes. Immunohistochemical staining of both spinal and bone marrow (BM) biopsy revealed positive expression for CD117, myeloperoxidase (MPO), and lysozyme. BM aspirate showed a significant elevation in the percentage of promyelocytes (21%), which were morphologically characterized by round nuclei and hypergranular cytoplasm. Multiparameter flow cytometry of BM aspirate revealed that blasts were positive for CD13, CD33, CD117, and MPO. Through the integrated application of chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and Sanger sequencing, it was determined that the patient possessed a normal karyotype and a rare cryptic PLZF::RARα fusion gene, confirming the diagnosis of APL. Conclusion In the present study, we report the clinical features and outcome of a rare APL patient characterized by a cryptic PLZF::RARα fusion and spinal myeloid sarcoma (MS) as the initial presenting symptom. Our study not only offers valuable insights into the heterogeneity of APL clinical manifestations but also emphasizes the crucial need to promptly consider the potential link between APL and MS for ensuring a timely diagnosis and personalized treatments.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Tao Wang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang, China
| | - Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Chen
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang, China
| | - Zhimei Wang
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianhong Xu
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Pengfei Yu
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| | - Peng Liu
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Hematology, Zhongshan Hospital (Minhang Meilong Branch), Fudan University and Shanghai Geriatric Medical Center, Shanghai, China
| |
Collapse
|
4
|
Du R, Li K, Guo K, Chen Z, Zhao X, Han L, Bian H. Two decades of a protooncogene TBL1XR1: from a transcription modulator to cancer therapeutic target. Front Oncol 2024; 14:1309687. [PMID: 38347836 PMCID: PMC10859502 DOI: 10.3389/fonc.2024.1309687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Transducin beta-like 1X-related protein 1 (TBL1XR1) was discovered two decades ago and was implicated as part of the nuclear transcription corepressor complex. Over the past 20 years, the emerging oncogenic function of TBL1XR1 in cancer development has been discovered. Recent studies have highlighted that the genetic aberrations of TBL1XR1 in cancers, especially in hematologic tumors, are closely associated with tumorigenesis. In solid tumors, TBL1XR1 is proposed to be a promising prognostic biomarker due to the correlation between abnormal expression and clinicopathological parameters. Post-transcriptional and post-translational modification are responsible for the expression and function of TBL1XR1 in cancer. TBL1XR1 exerts its functional role in various processes that involves cell cycle and apoptosis, cell proliferation, resistance to chemotherapy and radiotherapy, cell migration and invasion, stemness and angiogenesis. Multitude of cancer-related signaling cascades like Wnt-β-catenin, PI3K/AKT, ERK, VEGF, NF-κB, STAT3 and gonadal hormone signaling pathways are tightly modulated by TBL1XR1. This review provided a comprehensive overview of TBL1XR1 in tumorigenesis, shedding new light on TBL1XR1 as a promising diagnostic biomarker and druggable target in cancer.
Collapse
Affiliation(s)
- Ruijuan Du
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Kai Li
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - KeLei Guo
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Zhiguo Chen
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xulin Zhao
- Oncology Department, Nanyang First People’s Hospital, Nan Yang, Henan, China
| | - Li Han
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Hua Bian
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
5
|
Krivdova G, Voisin V, Schoof EM, Marhon SA, Murison A, McLeod JL, Gabra MM, Zeng AGX, Aigner S, Yee BA, Shishkin AA, Van Nostrand EL, Hermans KG, Trotman-Grant AC, Mbong N, Kennedy JA, Gan OI, Wagenblast E, De Carvalho DD, Salmena L, Minden MD, Bader GD, Yeo GW, Dick JE, Lechman ER. Identification of the global miR-130a targetome reveals a role for TBL1XR1 in hematopoietic stem cell self-renewal and t(8;21) AML. Cell Rep 2022; 38:110481. [PMID: 35263585 PMCID: PMC11185845 DOI: 10.1016/j.celrep.2022.110481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation. Enforced expression of miR-130a impairs B lymphoid differentiation and expands long-term HSCs. Integration of protein mass spectrometry and chimeric AGO2 crosslinking and immunoprecipitation (CLIP) identifies TBL1XR1 as a primary miR-130a target, whose loss of function phenocopies miR-130a overexpression. Moreover, we report that miR-130a is highly expressed in t(8;21) acute myeloid leukemia (AML), where it is critical for maintaining the oncogenic molecular program mediated by the AML1-ETO complex. Our study establishes that identification of the comprehensive miRNA targetome within primary cells enables discovery of genes and molecular networks underpinning stemness properties of normal and leukemic cells.
Collapse
Affiliation(s)
- Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Veronique Voisin
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Erwin M Schoof
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Sajid A Marhon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Jessica L McLeod
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Martino M Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada
| | - Stefan Aigner
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexander A Shishkin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Karin G Hermans
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Program of Developmental & Stem Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G0A4, Canada
| | - Aaron C Trotman-Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - James A Kennedy
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Division of Medical Oncology and Hematology, Sunnybrook Health Sciences Centre, Toronto, ON M4N3M5, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Daniel D De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leonardo Salmena
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Gary D Bader
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S1A5, Canada.
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
6
|
Vitamin D3, arsenic trioxide, or combination therapy for acute promyelocytic leukemia. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Li L, Yu S, Liu S, Meng F, Ren X, Liu Z, Fu R. The expression and clinical significance of CD59 and FLAER in Chinese adult AML patients. J Clin Lab Anal 2021; 36:e24145. [PMID: 34935195 PMCID: PMC8761415 DOI: 10.1002/jcla.24145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/28/2021] [Accepted: 11/13/2021] [Indexed: 11/06/2022] Open
Abstract
Background The role of CD59 and fluorescently labeled aerolysin (FLAER) in acute myeloid leukemia (AML) remains unclear and requires further investigation. To explore the relationship between CD59, FLAER, and AML, we investigated CD59 and FLAER expression in AML and analyzed their relationship with clinical characteristics of AML patients. Methods We employed flow cytometry (FCM) to analyze CD59 and FLAER expression in 161 AML patients at Tianjin Medical University General Hospital and evaluated its association with sex, white blood cell (WBC) count, platelet (PLT) count, thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), D‐Dimer(D‐D), and lactate dehydrogenase (LDH), followed by analyzing its connection with disease progression and complete remission (CR). Results CD59 and FLAER deficiencies were identified in AML patients. Compared with CR group, non‐CR group patients revealed more CD59 and FLAER deficiency. Compared with non‐acute promyelocytic leukemia (M3) group, M3 group patients had more CD59 and FLAER deficiency. CD59− level in primordial cells of M3 patients was positively correlated with primordial cell ratio (r = 0.660, p = 0.003). Additionally, we discovered that the decline in CD59 and FLAER levels might be linked to higher D‐D and LDH in AML patients. The difference was statistically significant (p < 0.05). Conclusions We demonstrated that the decline in CD59 and FLAER levels was associated with leukemia cell proliferation and abnormal coagulation function in AML, suggesting that they could serve as a predictor of AML coagulation dysfunction, particularly in M3.
Collapse
Affiliation(s)
- Lijuan Li
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Shunjie Yu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Shanshan Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Fanqiao Meng
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Rong Fu
- Department of Hematology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Wang Y, Rui Y, Shen Y, Li J, Liu P, Lu Q, Fang Y. Myeloid Sarcoma Type of Acute Promyelocytic Leukemia With a Cryptic Insertion of RARA Into FIP1L1: The Clinical Utility of NGS and Bioinformatic Analyses. Front Oncol 2021; 11:688203. [PMID: 34249738 PMCID: PMC8264125 DOI: 10.3389/fonc.2021.688203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background Acute promyelocytic leukemia (APL) is characterized by the presence of coagulopathy at onset and translocation t (15; 17) (q22; 21), meanwhile, other translocation variants of APL have also been reported. The FIP1L1-RARA fusion gene has recently been reported as a novel RARA-associated fusion gene. Objectives We report a case of de novo myeloid sarcoma (MS) type of APL with FIP1L1-RARA found by next-generation sequencing (NGS) that was not detected by conventional analyze analysis for RARA translocations. Methods We performed typical morphological, magnetic resonance imaging (MRI), conventional tests for PML-RARA dual-fusion translocation probe, high-through sequencing and NGS. Meanwhile, bioinformatics analyses were done by using public repositories, including ONCOMINE, COSMIC, and GeneMANIA analysis. Results A 28-month-old girl with a complex karyotype that includes 46,XX,t(4;17)(q12;q22)[9]/46,idem,del(16)(q22)[3]/45,idem,-x,-4,-9,-15,del(16)(q22),+marl,+mar2,+mar3[7]/46,xx[3], c.38G>A (p.Gly13Asp) in the KRAS gene, and a cryptic insertion of RARA gene into the FIP1L1 gene was diagnosed with APL complicated by the de novo MS. Conclusion We report a FIP1L1-RARA fusion in a child with APL who presented with an extramedullary tumor in the skull without the classic karyotype using NGS, whom we treated with good results. NGS analysis should be considered for APL variant cases. Further experimental studies to the association between the mutation in KRAS gene and FIP1L1-RARA fusion on the clinical phenotype and progression of APL are needed to identify more effective therapeutic targets for APL.
Collapse
Affiliation(s)
- Yongren Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yaoyao Rui
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Poning Liu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Qin Lu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Mahmud W, Brown R, Buckingham L, Tira A, Katz DA. Cryptic partial insertion of the RARA gene into the PML gene without reciprocal RARA-PML fusion: a case report and review of literature. Acta Oncol 2020; 59:1496-1499. [PMID: 32924730 DOI: 10.1080/0284186x.2020.1817551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Waqas Mahmud
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Rachel Brown
- Department of Medical Laboratory Science, Rush University Medical Center, Chicago, IL, USA
| | - Lela Buckingham
- Department of Medical Laboratory Science, Rush University Medical Center, Chicago, IL, USA
| | - Adrian Tira
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Deborah A. Katz
- Division of Hematology, Oncology and Cellular Therapy, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
10
|
TBL1XR1-JAK2: a novel fusion in a pediatric T cell acute lymphoblastic leukemia patient with increased absolute eosinophil count. J Hematop 2020. [DOI: 10.1007/s12308-020-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Mannan A, Muhsen IN, Barragán E, Sanz MA, Mohty M, Hashmi SK, Aljurf M. Genotypic and Phenotypic Characteristics of Acute Promyelocytic Leukemia Translocation Variants. Hematol Oncol Stem Cell Ther 2020; 13:189-201. [PMID: 32473106 DOI: 10.1016/j.hemonc.2020.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Acute promyelocytic leukemia (APL) is a special disease entity of acute myeloid leukemia (AML). The clinical use of all-trans retinoic acid (ATRA) has transformed APL into the most curable form of AML. The majority of APL cases are characterized by the fusion gene PML-RARA. Although the PML-RARA fusion gene can be detected in almost all APL cases, translocation variants of APL have been reported. To date, this is the most comprehensive review of these translocations, discussing 15 different variants. Reviewed genes involved in APL variants include: ZBTB16, NPM, NuMA, STAT5b, PRKAR1A, FIP1L1, BCOR, NABP1, TBLR1, GTF2I, IRF2BP2, FNDC3B, ADAMDTS17, STAT3, and TFG. The genotypic and phenotypic features of APL translocations are summarized. All reported studies were either case reports or case series indicating the rarity of these entities and limiting the ability to drive conclusions regarding their characteristics. However, reported variants have shown variable clinical and morphological features, with diverse responsiveness to ATRA.
Collapse
Affiliation(s)
- Abdul Mannan
- Betsi Cadwaladr University Health Board, Bangor, UK
| | - Ibrahim N Muhsen
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA.
| | - Eva Barragán
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | - Miguel A Sanz
- Department of Hematology, Hospital Universitari i Politecnic La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer, Instituto Carlos III, Madrid, Spain
| | | | - Shahrukh K Hashmi
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Sobas M, Talarn-Forcadell MC, Martínez-Cuadrón D, Escoda L, García-Pérez MJ, Mariz J, Mela-Osorio MJ, Fernández I, Alonso-Domínguez JM, Cornago-Navascués J, Rodríguez-Macias G, Amutio ME, Rodríguez-Medina C, Esteve J, Sokół A, Murciano-Carrillo T, Calasanz MJ, Barrios M, Barragán E, Sanz MA, Montesinos P. PLZF-RAR α, NPM1-RAR α, and Other Acute Promyelocytic Leukemia Variants: The PETHEMA Registry Experience and Systematic Literature Review. Cancers (Basel) 2020; 12:cancers12051313. [PMID: 32455804 PMCID: PMC7281281 DOI: 10.3390/cancers12051313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
It has been suggested that 1–2% of acute promyelocytic leukemia (APL) patients present variant rearrangements of retinoic acid receptor alpha (RARα) fusion gene, with the promyelocytic leukaemia zinc finger (PLZF)/RARα being the most frequent. Resistance to all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO) has been suggested in PLZF/RARα and other variant APLs. Herein, we analyze the incidence, characteristics, and outcomes of variant APLs reported to the multinational PETHEMA (Programa para el Tratamiento de Hemopatias Malignas) registry, and we perform a systematic review in order to shed light on strategies to improve management of these extremely rare diseases. Of 2895 patients with genetically confirmed APL in the PETHEMA registry, 11 had variant APL (0.4%) (9 PLZF-RARα and 2 NPM1-RARα), 9 were men, with median age of 44.6 years (3 months to 76 years), median leucocytes (WBC) 16.8 × 109/L, and frequent coagulopathy. Eight patients were treated with ATRA plus chemotherapy-based regimens, and 3 with chemotherapy-based. As compared to previous reports, complete remission and survival was slightly better in our cohort, with 73% complete remission (CR) and 73% survival despite a high relapse rate (43%). After analyzing our series and performing a comprehensive and critical review of the literature, strong recommendations on appropriate management of variant APL are not possible due to the low number and heterogeneity of patients reported so far.
Collapse
Affiliation(s)
- Marta Sobas
- Blood Neoplasms and Bone Marrow Transplantation, Department of Hematology, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | | | - David Martínez-Cuadrón
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
| | - Lourdes Escoda
- Hospital of Tarragona “Joan XXIII”, Hematology-ICO, 43-005 Tarragona, Spain; (M.C.T.-F.); (L.E.)
| | | | - Jose Mariz
- Department of Hematology, Istituto Portugues de Oncologi IPO, 4200-072 Porto, Portugal;
| | - María J. Mela-Osorio
- Fundaleu, Department of Hematology, Buenos Aires 1114, Argentina; (M.J.M.-O.); (I.F.)
| | - Isolda Fernández
- Fundaleu, Department of Hematology, Buenos Aires 1114, Argentina; (M.J.M.-O.); (I.F.)
| | - Juan M. Alonso-Domínguez
- Department of Hematology, University Hospital Universitario Fundacion Jimenez Diaz IIS-FJD, 28-040 Madrid, Spain; (J.M.A.-D.); (J.C.-N.)
| | - Javier Cornago-Navascués
- Department of Hematology, University Hospital Universitario Fundacion Jimenez Diaz IIS-FJD, 28-040 Madrid, Spain; (J.M.A.-D.); (J.C.-N.)
| | | | - María E. Amutio
- Department of Hematology, Hospital de Cruces, 48-903 Barakaldo, Spain;
| | - Carlos Rodríguez-Medina
- Department of Hematology, Hospital Universitario Dr. Negrin, 35-010 Las Palmas de Gran Canaria, Spain;
| | - Jordi Esteve
- Department of Hematology, Hospital Clinic, 08-036 Barcelona, Spain;
| | - Agnieszka Sokół
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | | | - María J. Calasanz
- Department of Hematology, Clinica Universitaria de Navarra, 31-008 Pamplona, Spain;
| | - Manuel Barrios
- Department of Hematology, Hospital Carlos Haya, 29-014 Málaga, Spain;
| | - Eva Barragán
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
- Department of Molecular Biology Laboratory, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain
| | - Miguel A. Sanz
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
| | - Pau Montesinos
- Department of Hematology, Hospital Universitari I Politècnic La Fe, 46-009 Valencia, Spain; (D.M.-C.); (M.A.S.)
- CIBERONC Instituto de Salud Carlos III, 28-020 Madrid, Spain;
- Correspondence:
| |
Collapse
|
13
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
14
|
Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute Promyelocytic Leukemia: A Constellation of Molecular Events around a Single PML-RARA Fusion Gene. Cancers (Basel) 2020; 12:cancers12030624. [PMID: 32182684 PMCID: PMC7139833 DOI: 10.3390/cancers12030624] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/27/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
Although acute promyelocytic leukemia (APL) is one of the most characterized forms of acute myeloid leukemia (AML), the molecular mechanisms involved in the development and progression of this disease are still a matter of study. APL is defined by the PML-RARA rearrangement as a consequence of the translocation t(15;17)(q24;q21). However, this abnormality alone is not able to trigger the whole leukemic phenotype and secondary cooperating events might contribute to APL pathogenesis. Additional somatic mutations are known to occur recurrently in several genes, such as FLT3, WT1, NRAS and KRAS, whereas mutations in other common AML genes are rarely detected, resulting in a different molecular profile compared to other AML subtypes. How this mutational spectrum, including point mutations in the PML-RARA fusion gene, could contribute to the 10%–15% of relapsed or resistant APL patients is still unknown. Moreover, due to the uncertain impact of additional mutations on prognosis, the identification of the APL-specific genetic lesion is still the only method recommended in the routine evaluation/screening at diagnosis and for minimal residual disease (MRD) assessment. However, the gene expression profile of genes, such as ID1, BAALC, ERG, and KMT2E, once combined with the molecular events, might improve future prognostic models, allowing us to predict clinical outcomes and to categorize APL patients in different risk subsets, as recently reported. In this review, we will focus on the molecular characterization of APL patients at diagnosis, relapse and resistance, in both children and adults. We will also describe different standardized molecular approaches to study MRD, including those recently developed. Finally, we will discuss how novel molecular findings can improve the management of this disease.
Collapse
Affiliation(s)
- Alessandro Liquori
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Mariam Ibañez
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Claudia Sargas
- Accredited Research Group in Hematology and Hemotherapy, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.L.); (C.S.)
| | - Miguel Ángel Sanz
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Eva Barragán
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - José Cervera
- Department of Hematology, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain; (M.I.); (M.Á.S.); (E.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence:
| |
Collapse
|