1
|
Javier López Rivera J, Gomez-Lopera N, Moreno-Garcia DJ, Orduz-Rodriguez R, Combariza-Vallejo JF, Isaza-Ruget M. Plasma Cell Enrichment and New Genomic Approaches in Multiple Myeloma: A Scoping Review. J Appl Lab Med 2025:jfaf044. [PMID: 40248905 DOI: 10.1093/jalm/jfaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/12/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Multiple myeloma (MM) is a genetically heterogeneous disease where specific genetic abnormalities have a significant impact on a patient's prognosis. Diagnostic and prognostic tools like fluorescence in situ hybridization (FISH), PCR, microarrays, and next-generation sequencing (NGS) have transformed MM management. However, the effectiveness of these techniques is often limited by the low concentration of plasma cells in bone marrow samples, which makes enrichment methods necessary. This review aims to clarify how these techniques enhance the detection of genetic abnormalities, reduce false-negative results, and facilitate more precise risk stratification for MM patients. CONTENT Following Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Review (PRISMA-ScR) guidelines, the literature on plasma cell separation methods used in genetic studies of MM was systematically identified and mapped. Searches were conducted in the Medline and Embase databases using a structured strategy, supplemented by manual searches on Google Scholar. Of 399 publications evaluated, 69 met the inclusion criteria; 37% utilized FISH and 19% demonstrated an increasing use of NGS. Plasma cell enrichment significantly improved diagnostic accuracy, increasing the detection rates of genetic abnormalities from 61% in non-enriched samples to 95.5% in enriched samples. While FISH remains the gold standard, emerging technologies such as NGS offer superior sensitivity and the ability to identify critical genetic alterations to refine molecular subtypes. SUMMARY Clinically significant genetic alterations are detected more frequently with plasma cell enrichment techniques, contributing to improved prognosis and treatment strategies for MM patients.
Collapse
Affiliation(s)
- Juan Javier López Rivera
- Laboratorio Especializado en Biología Molecular, Clínica Colsanitas, Grupo Keralty, Bogotá, Colombia
- Grupo de Genética Médica, Clínica Universitaria Colombia, Clínica Colsanitas, Grupo Keralty, Bogotá, Colombia
| | - Natalia Gomez-Lopera
- Laboratorio Clínico y de Patología, Clínica Colsanitas, Grupo Keralty, Bogotá, Colombia
| | | | - Rocío Orduz-Rodriguez
- Laboratorio Clínico y de Patología, Clínica Colsanitas, Grupo Keralty, Bogotá, Colombia
| | - Juan F Combariza-Vallejo
- Servicio de Hematología, Clínica Universitaria Colombia, Clínica Colsanitas S.A., Grupo Keralty, Bogotá, Colombia
| | - Mario Isaza-Ruget
- Laboratorio Clínico y de Patología, Clínica Colsanitas, Grupo Keralty, Bogotá, Colombia
- Unidad de Investigación, Fundación Universitaria Sanitas, Grupo de investigación INPAC, Grupo Keralty, Bogotá, Colombia
| |
Collapse
|
2
|
Rengifo LY, Smits S, Boeckx N, Michaux L, Vandenberghe P, Dewaele B. Shallow whole-genome sequencing of bone marrow aspirates in myelodysplastic neoplasms: A retrospective comparison with cytogenetics. Genes Chromosomes Cancer 2023; 62:663-671. [PMID: 37293982 DOI: 10.1002/gcc.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Copy number alterations (CNA) are powerful prognostic markers in myelodysplastic neoplasms (MDS) and are routinely analyzed by conventional cytogenetic analysis (CCA) on bone marrow (BM). Although CCA is still the gold standard, it requires extensive hands-on time and highly trained staff for the analysis, making it a laborious technique. To reduce turn-around-time per case, shallow whole genome sequencing (sWGS) technologies offer new perspectives for the diagnostic work-up of this disorder. We compared sWGS with CCA for the detection of CNAs in 33 retrospective BM samples of patients with MDS. Using sWGS, CNAs were detected in all cases and additionally allowed the analysis of three cases for which CCA failed. The prognostic stratification (IPSS-R score) of 27 out of 30 patients was the same with both techniques. In the remaining cases, discrepancies were caused by the presence of balanced translocations escaping sWGS detection in two cases, a subclonal aberration reported with CCA that could not be confirmed by FISH or sWGS, and the presence of an isodicentric chromosome idic(17)(p11) missed by CCA. Since sWGS can almost entirely be automated, our findings indicate that sWGS is valuable in a routine setting validating it as a cost-efficient tool.
Collapse
Affiliation(s)
| | - Sanne Smits
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucienne Michaux
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, KU Leuven, Leuven, Belgium
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Rengifo LY, Smits S, Buedts L, Delforge M, Dehaspe L, Tousseyn T, Boeckx N, Lehnert S, Michaux L, Vermeesch JR, Vandenberghe P, Dewaele B. Ultra-low coverage whole genome sequencing of ccfDNA in multiple myeloma: A tool for laboratory routine? Cancer Treat Res Commun 2021; 28:100380. [PMID: 33962213 DOI: 10.1016/j.ctarc.2021.100380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Multiple myeloma (MM), is a heterogeneous disease in which chromosomal abnormalities are important for prognostic risk stratification. Cytogenetic profiling with FISH on plasma cells from bone marrow samples (BM-PCs) is the current gold standard, but variable infiltration of plasma cells or failed aspiration can hamper this process. Ultra-low coverage sequencing (ULCS) of circulating cell-free DNA (ccfDNA) may offer a minimally invasive alternative for the work-up of these cases. We compared ULCS, aCGH and FISH on selected BM-PCs in a routine setting with ULCS of ccfDNA for the detection of somatic copy number aberrations (CNAs) in MM. METHODS Purified CD138+ BM-PCs of 23 MM patients at initiation of their treatment were subjected to aCGH, FISH and ULCS. Paired samples of peripheral blood-ccfDNA obtained at diagnosis were analyzed by ULCS and compared to the results found in BM-PCs. RESULTS Using ULCS of ccfDNA, cytogenetic markers were identified in 18 out of 23 patients; five cases could not be analyzed due to low (≤3%) tumor fraction (TF). High similarity between CNA profiles of BM-PCs and ccfDNA was found. Moreover, 78% of the ccfDNA profiles resulted in the same risk classification as the routine FISH and/or BM-PCs ULCS and aCGH. Chromothripsis was detected in five patients; these had the highest TF values (range 7.1% to 42%) in our series and their profiles showed other high-risk anomalies. CONCLUSION This proof-of-principle study indicates that ULCS of ccfDNA can reveal CNAs in MM and should be explored further as a cost-efficient alternative, especially in cases where BM-PC purification fails.
Collapse
Affiliation(s)
| | - Sanne Smits
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Michel Delforge
- Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Luc Dehaspe
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Thomas Tousseyn
- Laboratory for Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Nancy Boeckx
- Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | | | - Peter Vandenberghe
- Department of Human Genetics, KU Leuven, Leuven, Belgium; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
| | - Barbara Dewaele
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|