1
|
Peil J, Bock F, Kiefer F, Schmidt R, Heindl LM, Cursiefen C, Schlereth SL. New Therapeutic Approaches for Conjunctival Melanoma-What We Know So Far and Where Therapy Is Potentially Heading: Focus on Lymphatic Vessels and Dendritic Cells. Int J Mol Sci 2022; 23:1478. [PMID: 35163401 PMCID: PMC8835854 DOI: 10.3390/ijms23031478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Conjunctival melanoma (CM) accounts for 5% of all ocular melanomas and arises from malignantly transformed melanocytes in the conjunctival epithelium. Current therapies using surgical excision in combination with chemo- or cryotherapy still have high rates for recurrences and metastatic disease. Lately, novel signal transduction-targeted and immune checkpoint inhibitors like cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, programmed cell death protein-1 (PD-1) receptor inhibitors, BRAF- or MEK-inhibitors for systemic treatment of melanoma have improved the outcome even for unresectable cutaneous melanoma, improving patient survival dramatically. The use of these therapies is now also recommended for CM; however, the immunological background of CM is barely known, underlining the need for research to better understand the immunological basics when treating CM patients with immunomodulatory therapies. Immune checkpoint inhibitors activate tumor defense by interrupting inhibitory interactions between tumor cells and T lymphocytes at the so-called checkpoints. The tumor cells exploit these inhibitory targets on T-cells that are usually used by dendritic cells (DCs). DCs are antigen-presenting cells at the forefront of immune response induction. They contribute to immune tolerance and immune defense but in the case of tumor development, immune tolerance is often prevalent. Enhancing the immune response via DCs, interfering with the lymphatic pathways during immune cell migration and tumor development and specifically targeting tumor cells is a major therapeutic opportunity for many tumor entities including CM. This review summarizes the current knowledge on the function of lymphatic vessels in tumor growth and immune cell transport and continues to compare DC subsets in CM with related melanomas, such as cutaneous melanoma and mucosal melanoma.
Collapse
Affiliation(s)
- Jennifer Peil
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Felix Bock
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149 Münster, Germany;
| | - Rebecca Schmidt
- Department of Oral, Maxillofacial and Plastic Facial Surgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Ludwig M. Heindl
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Simona L. Schlereth
- Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (J.P.); (F.B.); (L.M.H.); (C.C.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
2
|
Ah-Pine F, Casas D, Menei P, Boisselier B, Garcion E, Rousseau A. RNA-sequencing of IDH-wild-type glioblastoma with chromothripsis identifies novel gene fusions with potential oncogenic properties. Transl Oncol 2021; 14:100884. [PMID: 33074125 PMCID: PMC7569239 DOI: 10.1016/j.tranon.2020.100884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and most aggressive form of glioma. It is characterized by marked genomic instability, which suggests that chromothripsis (CT) might be involved in GBM initiation. Recently, CT has emerged as an alternative mechanism of cancer development, involving massive chromosome rearrangements in a one-step catastrophic event. The aim of the study was to detect CT in GBM and identify novel gene fusions in CT regions. One hundred and seventy IDH-wild-type GBM were screened for CT patterns using whole-genome single nucleotide polymorphism (SNP) arrays. RNA sequencing was performed in 52 GBM with CT features to identify gene fusions within CT regions. Forty tumors (40/52, 77%) harbored at least one gene fusion within CT regions. We identified 120 candidate gene fusions, 30 of which with potential oncogenic activities. We validated 11 gene fusions, which involved the most recurrent fusion partners (EGFR, SEPT14, VOPP1 and CPM), by RT-PCR and Sanger sequencing. The occurrence of CT points to underlying gene fusions in IDH-wild-type GBM. CT provides exciting new research avenues in this highly aggressive cancer.
Collapse
Key Words
- baf, b-allele frequency
- chr, chromosome
- cna, copy number alteration
- cns, central nervous system
- ct, chromothripsis
- fpkm, fragments per kilobase of exon per million fragments mapped
- gbm, glioblastoma multiform
- hd, homozygous deletion
- loh, loss of heterozygosity
- rna-seq, rna sequencing
- rt-pcr, reverse transcriptase – polymerase chain reaction
- snp, single nucleotide polymorphism
- who, world health organization
Collapse
Affiliation(s)
- Franck Ah-Pine
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, 4 rue Larrey, 49100 Angers, France
| | - Déborah Casas
- CRCINA, INSERM, Université de Nantes, Université d'Angers, 4 rue Larrey, 49100 Angers, France.
| | - Philippe Menei
- Département de Neurochirurgie, CHU Angers, 4 rue Larrey, 49100 Angers, France.
| | - Blandine Boisselier
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, 4 rue Larrey, 49100 Angers, France; CRCINA, INSERM, Université de Nantes, Université d'Angers, 4 rue Larrey, 49100 Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, 4 rue Larrey, 49100 Angers, France.
| | - Audrey Rousseau
- Département de Pathologie Cellulaire et Tissulaire, CHU Angers, 4 rue Larrey, 49100 Angers, France; CRCINA, INSERM, Université de Nantes, Université d'Angers, 4 rue Larrey, 49100 Angers, France.
| |
Collapse
|
3
|
Mikkelsen LH. Molecular biology in conjunctival melanoma and the relationship to mucosal melanoma. Acta Ophthalmol 2020; 98 Suppl 115:1-27. [PMID: 32749776 DOI: 10.1111/aos.14536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lauge Hjorth Mikkelsen
- Eye Pathology Section; Departments of Pathology and Ophthalmology, Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
4
|
|
5
|
van Poppelen NM, Yavuzyigitoglu S, Smit KN, Vaarwater J, Eussen B, Brands T, Paridaens D, Kiliç E, de Klein A. Chromosomal rearrangements in uveal melanoma: Chromothripsis. Genes Chromosomes Cancer 2018; 57:452-458. [PMID: 29726589 PMCID: PMC6175119 DOI: 10.1002/gcc.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 12/22/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular malignancy in the Western world. Recurrent mutations in GNAQ, GNA11, CYSLTR2, PLCB4, BAP1, EIF1AX, and SF3B1 are described as well as non-random chromosomal aberrations. Chromothripsis is a rare event in which chromosomes are shattered and rearranged and has been reported in a variety of cancers including UM. SNP arrays of 249 UM from patients who underwent enucleation, biopsy or endoresection were reviewed for the presence of chromothripsis. Chromothripsis was defined as ten or more breakpoints per chromosome involved. Genetic analysis of GNAQ, GNA11, BAP1, SF3B1, and EIF1AX was conducted using Sanger and next-generation sequencing. In addition, immunohistochemistry for BAP1 was performed. Chromothripsis was detected in 7 out of 249 tumors and the affected chromosomes were chromosomes 3, 5, 6, 8, 12, and 13. The mean total of fragments per chromosome was 39.8 (range 12-116). In 1 UM, chromothripsis was present in 2 different chromosomes. GNAQ, GNA11 or CYSLTR2 mutations were present in 6 of these tumors and 5 tumors harbored a BAP1 mutation and/or lacked BAP1 protein expression by immunohistochemistry. Four of these tumors metastasized and for the fifth only short follow-up data are available. One of these metastatic tumors harbored an SF3B1 mutation. No EIF1AX mutations were detected in any of the tumors. To conclude, chromothripsis is a rare event in UM, occurring in 2.8% of samples and without significant association with mutations in any of the common UM driver genes.
Collapse
Affiliation(s)
- Natasha M van Poppelen
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Serdar Yavuzyigitoglu
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kyra N Smit
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda Vaarwater
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tom Brands
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Emine Kiliç
- Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Luijten MNH, Lee JXT, Crasta KC. Mutational game changer: Chromothripsis and its emerging relevance to cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 777:29-51. [PMID: 30115429 DOI: 10.1016/j.mrrev.2018.06.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
In recent years, the paradigm that genomic abnormalities in cancer cells arise through progressive accumulation of mutational events has been challenged by the discovery of single catastrophic events. One such phenomenon termed chromothripsis, involving massive chromosomal rearrangements arising all at once, has emerged as a major mutational game changer. The strong interest in this process stems from its widespread association with a range of cancer types and its potential as a mutational driver. In this review, we first describe chromothripsis detection and incidence in cancers. We then explore recently proposed underlying mechanistic origins, which explain the curious observations of the highly localised nature of the rearrangements on chromothriptic chromosomes. Detection of chromothriptic patterns following incorporation of single chromosomes into micronuclei or following telomere attrition have greatly contributed to our understanding of the reasons behind this chromosomal restriction. These underlying cellular events have been found to be participants in the tumourigenic process, strongly suggesting a potential role for chromothripsis in cancer development. Thus, we discuss potential implications of chromothripsis for cancer progression and therapy.
Collapse
Affiliation(s)
| | - Jeannie Xue Ting Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore.
| | - Karen Carmelina Crasta
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, 61 Biopolis Drive, 138673, Singapore; Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|