1
|
Hu L, Wang J, Wang H, Zhang Y, Han J. Gold-Promoted Electrodeposition of Metal Sulfides on Silicon Nanowire Photocathodes To Enhance Solar-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15449-15457. [PMID: 36921238 DOI: 10.1021/acsami.2c22423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Constructing composite structures is the key to breaking the dilemma of slow reaction kinetics and easy oxidation on the surface of lightly doped p-type silicon nanowire (SiNW) array photocathodes. Electrodeposition is a convenient and fast technique to prepare composite photocathodes. However, the low conductivity of SiNWs limits the application of the electrodeposition technique in constructing composite structures. Herein, SiNWs were loaded with Au nanoparticles by chemical deposition to decrease the interfacial charge transfer resistance and increase active sites for the electrodeposition. Subsequently, co-catalysts CoS, MoS2, and Ni3S2 with excellent hydrogen evolution activity were successfully composited by electrodeposition on the surface of SiNWs/Au. The obtained core-shell structures exhibited excellent photoelectrochemical hydrogen evolution activity, which was contributed by the plasma property of Au and the abundant hydrogen evolution active sites of the co-catalysts. This work provided a simple and efficient solution for the preparation of lightly doped SiNW-based composite structures by electrodeposition.
Collapse
Affiliation(s)
- Lang Hu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jiamin Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Honggui Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ya Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Raman S, A RS, M S. Advances in silicon nanowire applications in energy generation, storage, sensing, and electronics: a review. NANOTECHNOLOGY 2023; 34:182001. [PMID: 36640446 DOI: 10.1088/1361-6528/acb320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/14/2023] [Indexed: 06/17/2023]
Abstract
Nanowire-based technological advancements thrive in various fields, including energy generation and storage, sensors, and electronics. Among the identified nanowires, silicon nanowires (SiNWs) attract much attention as they possess unique features, including high surface-to-volume ratio, high electron mobility, bio-compatibility, anti-reflection, and elasticity. They were tested in domains of energy generation (thermoelectric, photo-voltaic, photoelectrochemical), storage (lithium-ion battery (LIB) anodes, super capacitors), and sensing (bio-molecules, gas, light, etc). These nano-structures were found to improve the performance of the system in terms of efficiency, stability, sensitivity, selectivity, cost, rapidity, and reliability. This review article scans and summarizes the significant developments that occurred in the last decade concerning the application of SiNWs in the fields of thermoelectric, photovoltaic, and photoelectrochemical power generation, storage of energy using LIB anodes, biosensing, and disease diagnostics, gas and pH sensing, photodetection, physical sensing, and electronics. The functionalization of SiNWs with various nanomaterials and the formation of heterostructures for achieving improved characteristics are discussed. This article will be helpful to researchers in the field of nanotechnology about various possible applications and improvements that can be realized using SiNW.
Collapse
Affiliation(s)
- Srinivasan Raman
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| | - Ravi Sankar A
- Centre for Innovation and Product Development (CIPD), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| | - Sindhuja M
- School of Electronics Engineering (SENSE), Vellore Institute of Technology (VIT), Chennai Campus, Chennai, Tamil Nadu 600127, India
| |
Collapse
|
3
|
Van Trinh P, Anh NN, Cham NT, Tu LT, Van Hao N, Thang BH, Van Chuc N, Thanh CT, Minh PN, Fukata N. Enhanced power conversion efficiency of an n-Si/PEDOT:PSS hybrid solar cell using nanostructured silicon and gold nanoparticles. RSC Adv 2022; 12:10514-10521. [PMID: 35424997 PMCID: PMC8981491 DOI: 10.1039/d2ra01246d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/23/2022] [Indexed: 01/30/2023] Open
Abstract
Herein, the effect of nanostructured silicon and gold nanoparticles (AuNPs) on the power conversion efficiency (PCE) of an n-type silicon/poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (n-Si/PEDOT:PSS) hybrid solar cell was investigated. The Si surface modified with different nanostructures including Si nanopyramids (SiNPs), Si nanoholes (SiNHs) and Si nanowires (SiNWs) was utilized to improve light trapping and photo-carrier collection. The highest power conversion efficiency (PCE) of 8.15% was obtained with the hybrid solar cell employing SiNWs, which is about 8%, 20% and 40% higher compared to the devices using SiNHs, SiNPs and planar Si, respectively. The enhancement is attributed to the low reflectance of the SiNW structures and large PEDOT:PSS/Si interfacial area. In addition, the influence of AuNPs on the hybrid solar cell's performance was examined. The PCE of the SiNW/PEDOT:PSS hybrid solar cell with 0.5 wt% AuNP is 8.89%, which is ca. 9% higher than that of the device without AuNPs (8.15%). This is attributed to the increase in the electrical conductivity and localized surface plasmon resonance of the AuNP-incorporated PEDOT:PSS coating layer.
Collapse
Affiliation(s)
- Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam
| | - Nguyen Ngoc Anh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
| | - Nguyen Thi Cham
- VNU University of Science, Vietnam National University 334 Nguyen Trai Str., Thanh Xuan Distr. Hanoi Vietnam
| | - Le Tuan Tu
- VNU University of Science, Vietnam National University 334 Nguyen Trai Str., Thanh Xuan Distr. Hanoi Vietnam
| | - Nguyen Van Hao
- Faculty of Physics and Technology, TNU-University of Sciences Tan Thinh Ward Thai Nguyen City Vietnam
| | - Bui Hung Thang
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
| | - Nguyen Van Chuc
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
| | - Cao Thi Thanh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
| | - Phan Ngoc Minh
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam +84 943190301
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Str., Cau Giay Distr. Hanoi Vietnam
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science 1-1 Namiki, Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
4
|
Mdluli SB, Ramoroka ME, Yussuf ST, Modibane KD, John-Denk VS, Iwuoha EI. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers (Basel) 2022; 14:716. [PMID: 35215629 PMCID: PMC8877693 DOI: 10.3390/polym14040716] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
The evolution and emergence of organic solar cells and hybrid organic-silicon heterojunction solar cells have been deemed as promising sustainable future technologies, owing to the use of π-conjugated polymers. In this regard, the scope of this review article presents a comprehensive summary of the applications of π-conjugated polymers as hole transporting layers (HTLs) or emitters in both organic solar cells and organic-silicon hybrid heterojunction solar cells. The different techniques used to synthesize these polymers are discussed in detail, including their electronic band structure and doping mechanisms. The general architecture and principle of operating heterojunction solar cells is addressed. In both discussed solar cell types, incorporation of π-conjugated polymers as HTLs have seen a dramatic increase in efficiencies attained by these devices, owing to the high transmittance in the visible to near-infrared region, reduced carrier recombination, high conductivity, and high hole mobilities possessed by the p-type polymeric materials. However, these cells suffer from long-term stability due to photo-oxidation and parasitic absorptions at the anode interface that results in total degradation of the polymeric p-type materials. Although great progress has been seen in the incorporation of conjugated polymers in the various solar cell types, there is still a long way to go for cells incorporating polymeric materials to realize commercialization and large-scale industrial production due to the shortcomings in the stability of the polymers. This review therefore discusses the progress in using polymeric materials as HTLs in organic solar cells and hybrid organic-silicon heterojunction solar cells with the intention to provide insight on the quest of producing highly efficient but less expensive solar cells.
Collapse
Affiliation(s)
- Siyabonga B. Mdluli
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Morongwa E. Ramoroka
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Sodiq T. Yussuf
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Kwena D. Modibane
- Department of Chemistry, School of Physical and Mineral Science, University of Limpopo, Sovenga, Polokwane 0727, South Africa;
| | - Vivian S. John-Denk
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| | - Emmanuel I. Iwuoha
- Sensor Laboratories (SensorLab), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa; (M.E.R.); (S.T.Y.); (V.S.J.-D.)
| |
Collapse
|
5
|
Van Tu N, Anh NN, Van Hau T, Van Hao N, Huyen NT, Thang BH, Minh PN, Van Chuc N, Fukata N, Van Trinh P. Improving the efficiency of n-Si/PEDOT:PSS hybrid solar cells by incorporating AuNP-decorated graphene oxide as a nanoadditive for conductive polymers. RSC Adv 2022; 12:27625-27632. [PMID: 36276048 PMCID: PMC9516359 DOI: 10.1039/d2ra05184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022] Open
Abstract
A gold nanoparticle-decorated graphene oxide (GO-AuNP) hybrid material was prepared by using the chemical reduction method. The obtained results showed that the AuNPs of about of 15 nm are well bound on the surface of GO. The GO-AuNP hybrid material was used for transparent conductive film (TCF) and organic/inorganic hybrid solar cells. The TCF based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) containing GO-AuNPs was fabricated at room temperature. The obtained results show that the TCF containing 0.5 wt% GO-AuNPs has a high transmittance of 69.7% at 550 nm, a low sheet resistance of 50.5 Ω □−1 and a conductivity that increased to 3960 S cm−1, which is three times higher than those of the PEDOT:PSS and PEDOT:PSS/GO film. The power conversion efficiency (PCE) of the n-Si/PEDOT:PSS hybrid solar cell containing GO-AuNPs was 8.39% and is higher than pristine PEDOT:PSS (5.81%) and PEDOT:PSS/GO (7.58%). This is a result of the increased electrical conductivity and localized surface plasmon resonance of the PEDOT:PSS coating layer containing the GO-AuNP hybrid material. A GO-AuNP hybrid material was successfully prepared and used for improving the performance of the optoelectronics devices.![]()
Collapse
Affiliation(s)
- Nguyen Van Tu
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Nguyen Ngoc Anh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Tran Van Hau
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Nguyen Van Hao
- Institute of Science and Technology, TNU-University of Science, Tan Thinh Ward, Thai Nguyen City, Vietnam
| | - Nguyen Thi Huyen
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Bui Hung Thang
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Phan Ngoc Minh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | - Nguyen Van Chuc
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Pham Van Trinh
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Str., Cau Giay Distr., Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| |
Collapse
|
6
|
Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell. ENERGIES 2020. [DOI: 10.3390/en13153797] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among various photovoltaic devices, the poly 3, 4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS) and silicon nanowire (SiNW)-based hybrid solar cell is getting momentum for the next generation solar cell. Although, the power-conversion efficiency of the PEDOT:PSS–SiNW hybrid solar cell has already been reported above 13% by many researchers, it is still at a primitive stage and requires comprehensive research and developments. When SiNWs interact with conjugate polymer PEDOT:PSS, the various aspects of SiNW array are required to optimize for high efficiency hybrid solar cell. Therefore, the designing of silicon nanowire (SiNW) array is a crucial aspect for an efficient PEDOT:PSS–SiNW hybrid solar cell, where PEDOT:PSS plays a role as a conductor with an transparent optical window just-like as metal-semiconductor Schottky solar cell. This short review mainly focuses on the current research trends for the general, electrical, optical and photovoltaic design issues associated with SiNW array for PEDOT:PSS–SiNW hybrid solar cells. The foremost features including the morphology, surface traps, doping of SiNW, which limit the efficiency of the PEDOT:PSS–SiNW hybrid solar cell, will be addressed and reviewed. Finally, the SiNW design issues for boosting up the fill-factor, short-circuit current and open-circuit voltage will be highlighted and discussed.
Collapse
|