1
|
Herwig G, Batt T, Clement P, Wick P, Rossi RM. Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives. Macromol Rapid Commun 2024:e2400867. [PMID: 39731334 DOI: 10.1002/marc.202400867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters. After establishing a general overview over face mask filters and machine washing parameters required for successful decontamination, respective changes in filter performance and structure are presented. Sustainably manufactured, highly efficient, but also more fragile electrospun membranes not only offer competitive performance as well as a more environment-friendly production and degradation process, but also support a subsequent sterilization and recharging approach via alcohol exposition and drying in an electric field. It is further elaborated on the prospective sustainability of each material to offer a clear outlook on electrospun membranes as the most promising filter membranes of the future.
Collapse
Affiliation(s)
- Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland
| | - Till Batt
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland
| |
Collapse
|
2
|
Thirugnanasampanthar M, Tian L, Rhem RG, Libera DD, Gomez M, Jackson K, Fox-Robichaud AE, Dolovich MB, Hosseinidoust Z. Unraveling the impact of operational parameters and environmental conditions on the quality of viable bacterial aerosols. PNAS NEXUS 2024; 3:pgae473. [PMID: 39529911 PMCID: PMC11551483 DOI: 10.1093/pnasnexus/pgae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Viable pathogen-laden droplets of consistent quality are essential for reliably assessing the protection offered by facemasks against airborne infections. We identified a significant gap in guidance within standardized tests for evaluating the filtration efficiencies of facemask materials using viable bacteria-laden aerosol droplets. An aerosol platform, built according to the American Society for Testing and Materials standard F2101-19, was used to validate and standardize facemask filtration test procedures. We utilized this platform to investigate the impact of varying five operating parameters, namely suspension media composition, relative humidity, pathogen concentration, and atomizer airflow and feed flow rates, on the aerosol quality of viable bacteria-laden aerosols. We achieved consistent generation of 1,700 to 3,000 viable bacteria-laden droplets sized between 2.7 and 3.3 µm under the following optimized test conditions: 1.5% w/v peptone water concentration, ≥80% relative humidity at 24 ± 2 °C, 1 × 105 CFU/mL bacterial concentration, 1.5 L/min atomizer airflow rate, and 170 μL/min feed flow rate. We also explored the consequence of deviating from these optimized test parameters on viable bacteria-laden aerosol quality. These results highlight the importance of controlling these parameters when studying airborne transmission and control.
Collapse
Affiliation(s)
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Rod G Rhem
- Affiliate, Research Institute of St Joseph's Hospital and Firestone Institute for Respiratory Health, 50 Charlton Ave East, Hamilton, ON, L8N 4A6, Canada
| | - Danielle D Libera
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Mellissa Gomez
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Kyle Jackson
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Alison E Fox-Robichaud
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Myrna B Dolovich
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Centre of Excellence in Protective Equipment and Materials, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| |
Collapse
|
3
|
Bulgarin H, Thomberg T, Lust A, Nerut J, Koppel M, Romann T, Palm R, Månsson M, Vana M, Junninen H, Külaviir M, Paiste P, Kirsimäe K, Punapart M, Viru L, Merits A, Lust E. Enhanced and copper concentration dependent virucidal effect against SARS-CoV-2 of electrospun poly(vinylidene difluoride) filter materials. iScience 2024; 27:109835. [PMID: 38799576 PMCID: PMC11126773 DOI: 10.1016/j.isci.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/11/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.
Collapse
Affiliation(s)
- Hanna Bulgarin
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Thomas Thomberg
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Andres Lust
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Jaak Nerut
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Miriam Koppel
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Tavo Romann
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Rasmus Palm
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
- Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Marko Vana
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411 Tartu, Estonia
| | - Heikki Junninen
- Institute of Physics, University of Tartu, W. Ostwald 1, 50411 Tartu, Estonia
| | - Marian Külaviir
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Päärn Paiste
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Kalle Kirsimäe
- Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| | - Marite Punapart
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Enn Lust
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu, Estonia
| |
Collapse
|
4
|
Mekapothula S, Chrysanthou E, Hall J, Nekkalapudi PD, McLean S, Cave GWV. Antipathogenic Applications of Copper Nanoparticles in Air Filtration Systems. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2664. [PMID: 38893928 PMCID: PMC11173455 DOI: 10.3390/ma17112664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical need for effective air filtration systems in healthcare environments to mitigate the spread of viral and bacterial pathogens. This study explores the utilization of copper nanoparticle-coated materials for air filtration, offering both antiviral and antimicrobial properties. Highly uniform spherical copper oxide nanoparticles (~10 nm) were synthesized via a spinning disc reactor and subsequently functionalized with carboxylated ligands to ensure colloidal stability in aqueous solutions. The functionalized copper oxide nanoparticles were applied as antipathogenic coatings on extruded polyethylene and melt-blown polypropylene fibers to assess their efficacy in air filtration applications. Notably, Type IIR medical facemasks incorporating the copper nanoparticle-coated polyethylene fibers demonstrated a >90% reduction in influenza virus and SARS-CoV-2 within 2 h of exposure. Similarly, heating, ventilation, and air conditioning (HVAC) filtration pre- (polyester) and post (polypropylene)-filtration media were functionalised with the copper nanoparticles and exhibited a 99% reduction in various viral and bacterial strains, including SARS-CoV-2, Pseudomonas aeruginosa, Acinetobacter baumannii, Salmonella enterica, and Escherichia coli. In both cases, this mitigates not only the immediate threat from these pathogens but also the risk of biofouling and secondary risk factors. The assessment of leaching properties confirmed that the copper nanoparticle coatings remained intact on the polymeric fiber surfaces without releasing nanoparticles into the solution or airflow. These findings highlight the potential of nanoparticle-coated materials in developing biocompatible and environmentally friendly air filtration systems for healthcare settings, crucial in combating current and future pandemic threats.
Collapse
Affiliation(s)
| | | | | | | | | | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (S.M.); (E.C.); (J.H.); (P.D.N.); (S.M.)
| |
Collapse
|
5
|
Environmental Decay of Single Use Surgical Face Masks as an Agent of Plastic Micro-Fiber Pollution. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Large numbers of Single Use Surgical-type Face Masks, used by the public as personal protective equipment during the 2020–2022 COVID-19 pandemic, have been lost or intentionally discarded and have entered the environment rather than the waste management stream. These masks, made from non-woven polypropylene fibers, will undergo environmental decay which will release fiber fragments as microplastics into the environment. While the photochemical process of the decay of polypropylene polymers (photo-oxidation) is well understood, and while there are numerous studies that investigate mask decay and micro-fiber shedding in laboratory settings, there are no observational data that describe the progress and speed of decay on polypropylene face masks in real-life environmental settings. This paper examines the breakdown of single use surgical-type face masks under natural conditions. Masks from three manufacturers were exposed to natural sunlight over a ten-week period and their state of decay was photographically recorded in situ at weekly intervals. Visible decay accelerated after three weeks, with masks made from thinner spunbond fabric decaying more rapidly. Among same-weight fabric, photo-oxidation affected fabric dyed light blue more than undyed fabric, leading to a total breakdown after six weeks. The results are novel as they demonstrate a differential decay between the spunbonded and the melt-blown fabric, which cracks and breaks down much faster due to thinner fibers of shorter length and the lack of thermal bonding points. The resultant extensive micro-fiber generation was accelerated by external physical forces such as wind. This experiment highlights the fact that municipal agencies have only a narrow window of time to remove stray face masks from the urban environment if micro-fiber pollution is to be prevented.
Collapse
|
6
|
Castellote M, Jiménez-Relinque E, Grande M, Rubiano FJ, Castillo Á. Face Mask Wastes as Cementitious Materials: A Possible Solution to a Big Concern. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1371. [PMID: 35207912 PMCID: PMC8879833 DOI: 10.3390/ma15041371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/25/2022]
Abstract
After more than two years wearing surgical masks due to the COVID-19 pandemic, used masks have become a significant risk for ecosystems, as they are producing wastes in huge amounts. They are a potential source of disturbance by themselves and as microplastic contamination in the water system. As 5500 tons of face masks are estimated to be used each year, there is an urgent need to manage them according to the circular economy principles and avoid their inadequate disposal. In this paper, surgical wear masks (WM), without any further pretreatment, have been introduced as addition to mortars up to 5% in the weight of cement. Mechanical and microstructural characterization have been carried out. The results indicate that adding MW to the cement supposes a decrease in the properties of the material, concerning both strength and durability behavior. However, even adding a 5% of WM in weight of cement, the aspect of the mortars is quite good, the flexural strength is not significantly affected, and the strength and durability parameters are maintained at levels that-even lower than the reference-are quite reasonable for use. Provided that the worldwide production of cement is around 4.1 Bt/year, the introduction of a 5% of WM in less than 1% of the cement produced, would make it possible to get rid of the mask waste being produced.
Collapse
Affiliation(s)
- Marta Castellote
- Institute of Construction Science Eduardo Torroja (IETcc-CSIC), 28050 Madrid, Spain; (E.J.-R.); (M.G.); (F.J.R.); (Á.C.)
| | | | | | | | | |
Collapse
|