1
|
Dąbrowska J, Biedziak B, Szponar-Żurowska A, Budner M, Jagodziński PP, Płoski R, Mostowska A. Identification of novel susceptibility genes for non-syndromic cleft lip with or without cleft palate using NGS-based multigene panel testing. Mol Genet Genomics 2022; 297:1315-1327. [PMID: 35778651 DOI: 10.1007/s00438-022-01919-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/12/2022] [Indexed: 01/02/2023]
Abstract
For non-syndromic cleft lip with or without cleft palate (ns-CL/P), the proportion of heritability explained by the known risk loci is estimated to be about 30% and is captured mainly by common variants identified in genome-wide association studies. To contribute to the explanation of the "missing heritability" problem for orofacial clefts, a candidate gene approach was taken to investigate the potential role of rare and private variants in the ns-CL/P risk. Using the next-generation sequencing technology, the coding sequence of a set of 423 candidate genes was analysed in 135 patients from the Polish population. After stringent multistage filtering, 37 rare coding and splicing variants of 28 genes were identified. 35% of these genetic alternations that may play a role of genetic modifiers influencing an individual's risk were detected in genes not previously associated with the ns-CL/P susceptibility, including COL11A1, COL17A1, DLX1, EFTUD2, FGF4, FGF8, FLNB, JAG1, NOTCH2, SHH, WNT5A and WNT9A. Significant enrichment of rare alleles in ns-CL/P patients compared with controls was also demonstrated for ARHGAP29, CHD7, COL17A1, FGF12, GAD1 and SATB2. In addition, analysis of panoramic radiographs of patients with identified predisposing variants may support the hypothesis of a common genetic link between orofacial clefts and dental abnormalities. In conclusion, our study has confirmed that rare coding variants might contribute to the genetic architecture of ns-CL/P. Since only single predisposing variants were identified in novel cleft susceptibility genes, future research will be required to confirm and fully understand their role in the aetiology of ns-CL/P.
Collapse
Affiliation(s)
- Justyna Dąbrowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Barbara Biedziak
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Szponar-Żurowska
- Department of Orthodontics and Craniofacial Anomalies, Poznan University of Medical Sciences, Poznan, Poland
| | - Margareta Budner
- Eastern Poland Burn Treatment and Reconstructive Center, Leczna, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Warsaw Medical University, Warsaw, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 6 Swiecickiego Street, 60-781, Poznan, Poland.
| |
Collapse
|
2
|
Leslie EJ. Genetic models and approaches to study orofacial clefts. Oral Dis 2021; 28:1327-1338. [PMID: 34923716 DOI: 10.1111/odi.14109] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Orofacial clefts (OFCs) are common craniofacial birth defects with heterogeneous phenotype and etiology. Geneticists have applied nearly every available method and technology to further our understanding of the genetic architectures of OFCs. OBJECTIVE This review describes the evidence for a genetic etiology in OFCs, statistical genetic approaches employed to identify genetic causes, and how the results have shaped our current understanding of the genetic architectures of syndromic and nonsyndromic OFCs. CONCLUSION There has been rapid progress towards elucidating the genetic architectures of OFCs due to the availability of large collections of DNA samples from cases, controls, and families with OFCs and the consistent adoption of new methodologies and novel statistical approaches as they are developed. Genetic studies have identified rare and common variants influencing risk of OFCs in both Mendelian and complex forms of OFCs, blurring the distinctions traditional categories used in genetic studies and clinical medicine.
Collapse
|
3
|
Sood A, Shamim U, Kharbanda OP, Kabra M, Gupta N, Mathur A, Joshi A, Parveen S, Zahra S, Sharma P, Seth M, Khan A, Faruq M, Mishra D. Next Generation Sequencing and Cytogenetic Based Evaluation of Indian Pierre Robin Sequence Families Reveals CNV Regions of Modest Effect and a Novel LOXL3 Mutation. Cleft Palate Craniofac J 2021; 59:1329-1339. [PMID: 34787502 DOI: 10.1177/10556656211052781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Pierre Robin Sequence (PRS) affects approximately 1 per 8500 to 14000 new-borns worldwide. Although the clinical entity is well defined, the pathogenesis of PRS is debated. The present study aims to understand the contribution of genomic imbalances and genetic variants in patients clinically diagnosed of PRS. METHODOLOGY A total of 7 independent patients with nonsyndromic PRS thoroughly evaluated by a medical geneticist at a tertiary care hospital, were included in the study. Blood samples were collected from these patients and their family members. Array CGH was performed on all 7 patients and their respective family members for detection of underlying cytogenetic defects. Whole exome sequencing (WES) was performed for 5 families to capture single nucleotide variants or small indels. RESULTS Cytogenetic analyses did not detect any previously reported gross chromosomal aberrations for PRS in the patient cohort. However, copy number variations (CNVs) of size <1 Mb were detected in patients which may have implications in PRS. The present study provided evidence for the occurrence of de novo deletions at 7p14.1 locus in PRS patients: further validating the candidate loci susceptibility in oral clefts. WES data identified LOXL3 as candidate gene, carrying novel deleterious variant, which is suggestive of the role of point mutations in the pathogenesis of PRS. CONCLUSION The present study offered considerable insight into the contribution of cytogenetic defects and novel point mutation in the etiology of nonsyndromic PRS. Studies comprising large number of cases are required to fully elucidate the genetic mechanisms underlying the PRS phenotype.
Collapse
Affiliation(s)
- Anubhuti Sood
- Centre for Dental Education and Research, 28730All India Institute of Medical Sciences, Delhi, India
| | - Uzma Shamim
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Om P Kharbanda
- Centre for Dental Education and Research, 28730All India Institute of Medical Sciences, Delhi, India
| | | | - Neerja Gupta
- 28730All India Institute of Medical Sciences, Delhi, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Aditi Joshi
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Shaista Parveen
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Sana Zahra
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Malika Seth
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Afreen Khan
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, 28840CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | - Deepika Mishra
- Centre for Dental Education and Research, 28730All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
4
|
Curtis SW, Chang D, Lee MK, Shaffer JR, Indencleef K, Epstein MP, Cutler DJ, Murray JC, Feingold E, Beaty TH, Claes P, Weinberg SM, Marazita ML, Carlson JC, Leslie EJ. The PAX1 locus at 20p11 is a potential genetic modifier for bilateral cleft lip. HGG ADVANCES 2021; 2:100025. [PMID: 33817668 PMCID: PMC8018676 DOI: 10.1016/j.xhgg.2021.100025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Nonsyndromic orofacial clefts (OFCs) are a common birth defect and are phenotypically heterogenous in the structure affected by the cleft - cleft lip (CL) and cleft lip and palate (CLP) - as well as other features, such as the severity of the cleft. Here, we focus on bilateral and unilateral clefts as one dimension of OFC severity, because the genetic architecture of these subtypes is not well understood. We tested for subtype-specific genetic associations in 44 bilateral CL (BCL) cases, 434 unilateral CL (UCL) cases, 530 bilateral CLP cases (BCLP), 1123 unilateral CLP (UCLP) cases, and unrelated controls (N = 1626), using a mixed-model approach. While no novel loci were found, the genetic architecture of UCL was distinct compared to BCL, with 44.03% of suggestive loci having different effects between the two subtypes. To further understand the subtype-specific genetic risk factors, we performed a genome-wide scan for modifiers and found a significant modifier locus on 20p11 (p=7.53×10-9), 300kb downstream of PAX1, that associated with higher odds of BCL vs. UCL, and replicated in an independent cohort (p=0.0018) with no effect in BCLP (p>0.05). We further found that this locus was associated with normal human nasal shape. Taken together, these results suggest bilateral and unilateral clefts may have different genetic architectures. Moreover, our results suggest BCL, the rarest form of OFC, may be genetically distinct from the other OFC subtypes. This expands our understanding of modifiers for OFC subtypes and further elucidates the genetic mechanisms behind the phenotypic heterogeneity in OFCs.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Daniel Chang
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John R. Shaffer
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Karlijne Indencleef
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | | | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Peter Claes
- Medical Imaging Research Center, University Hospitals Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
| | - Jenna C. Carlson
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15621, USA
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
5
|
Bishop MR, Diaz Perez KK, Sun M, Ho S, Chopra P, Mukhopadhyay N, Hetmanski JB, Taub MA, Moreno-Uribe LM, Valencia-Ramirez LC, Restrepo Muñeton CP, Wehby G, Hecht JT, Deleyiannis F, Weinberg SM, Wu-Chou YH, Chen PK, Brand H, Epstein MP, Ruczinski I, Murray JC, Beaty TH, Feingold E, Lipinski RJ, Cutler DJ, Marazita ML, Leslie EJ. Genome-wide Enrichment of De Novo Coding Mutations in Orofacial Cleft Trios. Am J Hum Genet 2020; 107:124-136. [PMID: 32574564 PMCID: PMC7332647 DOI: 10.1016/j.ajhg.2020.05.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Although de novo mutations (DNMs) are known to increase an individual's risk of congenital defects, DNMs have not been fully explored regarding orofacial clefts (OFCs), one of the most common human birth defects. Therefore, whole-genome sequencing of 756 child-parent trios of European, Colombian, and Taiwanese ancestry was performed to determine the contributions of coding DNMs to an individual's OFC risk. Overall, we identified a significant excess of loss-of-function DNMs in genes highly expressed in craniofacial tissues, as well as genes associated with known autosomal dominant OFC syndromes. This analysis also revealed roles for zinc-finger homeobox domain and SOX2-interacting genes in OFC etiology.
Collapse
Affiliation(s)
- Madison R. Bishop
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kimberly K. Diaz Perez
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Miranda Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Samantha Ho
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nandita Mukhopadhyay
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA
| | - Jacqueline B. Hetmanski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Margaret A. Taub
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lina M. Moreno-Uribe
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - George Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA 52242, USA
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry, UT Health at Houston, Houston, TX 77030, USA
| | | | - Seth M. Weinberg
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Yah Huei Wu-Chou
- Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Philip K. Chen
- Craniofacial Centre, Taipei Medical University Hospital and Taipei Medical University, Taipei, Taiwan
| | - Harrison Brand
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michael P. Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Terri H. Beaty
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - David J. Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mary L. Marazita
- Department of Oral Biology, University of Pittsburgh School of Dental Medicine, Pittsburgh, PA 15219, USA,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA,Corresponding author
| |
Collapse
|
6
|
Sherman T, Fu J, Scharpf RB, Bureau A, Ruczinski I. Detection of rare disease variants in extended pedigrees using RVS. Bioinformatics 2020; 35:2509-2511. [PMID: 30500888 PMCID: PMC6612888 DOI: 10.1093/bioinformatics/bty976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 09/20/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022] Open
Abstract
Summary Family-based sequencing studies enable researchers to identify highly penetrant genetic variants too rare to be tested in conventional case-control studies, by studying co-segregation of variant and disease phenotypes. When multiple affected subjects in a family are sequenced, the probability that a variant or a set of variants is shared identical-by-descent by some or all affected relatives provides evidence against the null hypothesis of complete absence of linkage and association. The Rare Variant Sharing software package RVS implements a suite of tools to assess association and linkage between rare genetic variants and a dichotomous disease indicator in family pedigrees. Availability and Implementation RVS is available as open source software from the Bioconductor webpage at https://bioconductor.org/packages/release/bioc/html/RVS.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas Sherman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Jack Fu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| | - Robert B Scharpf
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Alexandre Bureau
- Département de Médecine Sociale et Préventive, Université Laval, Québec, QC, Canada.,Centre de Recherche CERVO, Québec, QC, Canada
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health
| |
Collapse
|
7
|
Yang Y, Peng X, Ying P, Tian J, Li J, Ke J, Zhu Y, Gong Y, Zou D, Yang N, Wang X, Mei S, Zhong R, Gong J, Chang J, Miao X. AWESOME: a database of SNPs that affect protein post-translational modifications. Nucleic Acids Res 2020; 47:D874-D880. [PMID: 30215764 PMCID: PMC6324025 DOI: 10.1093/nar/gky821] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Protein post-translational modifications (PTMs), including phosphorylation, ubiquitination, methylation, acetylation, glycosylation et al, are very important biological processes. PTM changes in some critical genes, which may be induced by base-pair substitution, are shown to affect the risk of diseases. Recently, large-scale exome-wide association studies found that missense single nucleotide polymorphisms (SNPs) play an important role in the susceptibility for complex diseases or traits. One of the functional mechanisms of missense SNPs is that they may affect PTMs and leads to a protein dysfunction and its downstream signaling pathway disorder. Here, we constructed a database named AWESOME (A Website Exhibits SNP On Modification Event, http://www.awesome-hust.com), which is an interactive web-based analysis tool that systematically evaluates the role of SNPs on nearly all kinds of PTMs based on 20 available tools. We also provided a well-designed scoring system to compare the performance of different PTM prediction tools and help users to get a better interpretation of results. Users can search SNPs, genes or position of interest, filter with specific modifications or prediction methods, to get a comprehensive PTM change induced by SNPs. In summary, our database provides a convenient way to detect PTM-related SNPs, which may potentially be pathogenic factors or therapeutic targets.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiating Peng
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Pingting Ying
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jianbo Tian
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jiaoyuan Li
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Juntao Ke
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Ying Zhu
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Yajie Gong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Danyi Zou
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Nan Yang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiaoyang Wang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Shufang Mei
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Rong Zhong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jing Gong
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Jiang Chang
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| | - Xiaoping Miao
- Key Laboratory for Environment and Health (Ministry of Education), Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, 430030, China
| |
Collapse
|
8
|
Rodriguez N, Maili L, Chiquet BT, Blanton SH, Hecht JT, Letra A. BRCA1 and BRCA2 gene variants and nonsyndromic cleft lip/palate. Birth Defects Res 2018; 110:1043-1048. [PMID: 29921024 DOI: 10.1002/bdr2.1346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCL/P) is a debilitating condition that not only affects the individual, but the entire family. The purpose of this study was to investigate the association of BRCA1 and BRCA2 genes with NSCL/P. METHODS Twelve polymorphisms in/nearby BRCA1 and BRCA2 were genotyped using Taqman chemistry. Our data set consisted of 3,473 individuals including 2,191 nonHispanic white (NHW) individuals (from 151 multiplex and 348 simplex families) and 1,282 Hispanic individuals (from 92 multiplex and 216 simplex families). Data analysis was performed using Family-Based Association Test (FBAT), stratified by ethnicity and family history of NSCL/P. RESULTS Nominal associations were found between NSCL/P and BRCA1 in Hispanics and BRCA2 in NHW and Hispanics (p < .05). Significant haplotype associations were found between NSCL/P and both BRCA1 and BRCA2 (p ≤ .004). CONCLUSIONS Our results suggest a modest association between BRCA1 and BRCA2 and NSCL/P. Further studies in additional populations and functional studies are needed to elucidate the role of these genes in developmental processes and signaling pathways contributing to NSCL/P.
Collapse
Affiliation(s)
- Nicholas Rodriguez
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA
| | - Lorena Maili
- Department of Pediatrics, UTHealth McGovern Medical School, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Brett T Chiquet
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Pediatric Dentistry, UTHealth School of Dentistry at Houston, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami FL, USA
| | - Jacqueline T Hecht
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Pediatrics, UTHealth McGovern Medical School, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| | - Ariadne Letra
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston TX, USA.,Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston TX, USA.,Pediatric Research Center, UTHealth McGovern Medical School, Houston TX, USA
| |
Collapse
|
9
|
Beaty TH, Marazita ML, Leslie EJ. Genetic factors influencing risk to orofacial clefts: today's challenges and tomorrow's opportunities. F1000Res 2016; 5:2800. [PMID: 27990279 PMCID: PMC5133690 DOI: 10.12688/f1000research.9503.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Orofacial clefts include cleft lip (CL), cleft palate (CP), and cleft lip and palate (CLP), which combined represent the largest group of craniofacial malformations in humans with an overall prevalence of one per 1,000 live births. Each of these birth defects shows strong familial aggregation, suggesting a major genetic component to their etiology. Genetic studies of orofacial clefts extend back centuries, but it has proven difficult to define any single etiologic mechanism because many genes appear to influence risk. Both linkage and association studies have identified several genes influencing risk, but these differ across families and across populations. Genome-wide association studies have identified almost two dozen different genes achieving genome-wide significance, and there are broad classes of 'causal genes' for orofacial clefts: a few genes strongly associated with risk and possibly directly responsible for Mendelian syndromes which include orofacial clefts as a key phenotypic feature of the syndrome, and multiple genes with modest individual effects on risk but capable of disrupting normal craniofacial development under the right circumstances (which may include exposure to environmental risk factors). Genomic sequencing studies are now underway which will no doubt reveal additional genes/regions where variants (sequence and structural) can play a role in controlling risk to orofacial clefts. The real challenge to medicine and public health is twofold: to identify specific genes and other etiologic factors in families with affected members and then to devise effective interventions for these different biological mechanisms controlling risk to complex and heterogeneous birth defects such as orofacial clefts.
Collapse
Affiliation(s)
- Terri H Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mary L Marazita
- Department of Oral Biology and Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Elizabeth J Leslie
- Department of Oral Biology and Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| |
Collapse
|