1
|
Xie H, Cao X, Zhang S, Sha Q. Joint analysis of multiple phenotypes for extremely unbalanced case-control association studies using multi-layer network. Bioinformatics 2023; 39:btad707. [PMID: 37991852 PMCID: PMC10697735 DOI: 10.1093/bioinformatics/btad707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 09/29/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
MOTIVATION Genome-wide association studies is an essential tool for analyzing associations between phenotypes and single nucleotide polymorphisms (SNPs). Most of binary phenotypes in large biobanks are extremely unbalanced, which leads to inflated type I error rates for many widely used association tests for joint analysis of multiple phenotypes. In this article, we first propose a novel method to construct a Multi-Layer Network (MLN) using individuals with at least one case status among all phenotypes. Then, we introduce a computationally efficient community detection method to group phenotypes into disjoint clusters based on the MLN. Finally, we propose a novel approach, MLN with Omnibus (MLN-O), to jointly analyse the association between phenotypes and a SNP. MLN-O uses the score test to test the association of each merged phenotype in a cluster and a SNP, then uses the Omnibus test to obtain an overall test statistic to test the association between all phenotypes and a SNP. RESULTS We conduct extensive simulation studies to reveal that the proposed approach can control type I error rates and is more powerful than some existing methods. Meanwhile, we apply the proposed method to a real data set in the UK Biobank. Using phenotypes in Chapter XIII (Diseases of the musculoskeletal system and connective tissue) in the UK Biobank, we find that MLN-O identifies more significant SNPs than other methods we compare with. AVAILABILITY AND IMPLEMENTATION https://github.com/Hongjing-Xie/Multi-Layer-Network-with-Omnibus-MLN-O.
Collapse
Affiliation(s)
- Hongjing Xie
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, United States
| |
Collapse
|
2
|
A clustering linear combination method for multiple phenotype association studies based on GWAS summary statistics. Sci Rep 2023; 13:3389. [PMID: 36854754 PMCID: PMC9975197 DOI: 10.1038/s41598-023-30415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
There is strong evidence showing that joint analysis of multiple phenotypes in genome-wide association studies (GWAS) can increase statistical power when detecting the association between genetic variants and human complex diseases. We previously developed the Clustering Linear Combination (CLC) method and a computationally efficient CLC (ceCLC) method to test the association between multiple phenotypes and a genetic variant, which perform very well. However, both of these methods require individual-level genotypes and phenotypes that are often not easily accessible. In this research, we develop a novel method called sCLC for association studies of multiple phenotypes and a genetic variant based on GWAS summary statistics. We use the LD score regression to estimate the correlation matrix among phenotypes. The test statistic of sCLC is constructed by GWAS summary statistics and has an approximate Cauchy distribution. We perform a variety of simulation studies and compare sCLC with other commonly used methods for multiple phenotype association studies using GWAS summary statistics. Simulation results show that sCLC can control Type I error rates well and has the highest power in most scenarios. Moreover, we apply the newly developed method to the UK Biobank GWAS summary statistics from the XIII category with 70 related musculoskeletal system and connective tissue phenotypes. The results demonstrate that sCLC detects the most number of significant SNPs, and most of these identified SNPs can be matched to genes that have been reported in the GWAS catalog to be associated with those phenotypes. Furthermore, sCLC also identifies some novel signals that were missed by standard GWAS, which provide new insight into the potential genetic factors of the musculoskeletal system and connective tissue phenotypes.
Collapse
|
3
|
Fontana F, Alessandri G, Tarracchini C, Bianchi MG, Rizzo SM, Mancabelli L, Lugli GA, Argentini C, Vergna LM, Anzalone R, Longhi G, Viappiani A, Taurino G, Chiu M, Turroni F, Bussolati O, van Sinderen D, Milani C, Ventura M. Designation of optimal reference strains representing the infant gut bifidobacterial species through a comprehensive multi-omics approach. Environ Microbiol 2022; 24:5825-5839. [PMID: 36123315 PMCID: PMC10092070 DOI: 10.1111/1462-2920.16205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.
Collapse
Affiliation(s)
- Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Laura Maria Vergna
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | | | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- GenProbio srlParmaItaly
| | | | - Giuseppe Taurino
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Martina Chiu
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Ovidio Bussolati
- Laboratory of General Pathology, Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
4
|
Liang X, Cao X, Sha Q, Zhang S. HCLC-FC: A novel statistical method for phenome-wide association studies. PLoS One 2022; 17:e0276646. [PMID: 36350801 PMCID: PMC9645610 DOI: 10.1371/journal.pone.0276646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of genetic data coupled to longitudinal electronic medical records (EMRs) offers the possibility of phenome-wide association studies (PheWAS). In PheWAS, the whole phenome can be divided into numerous phenotypic categories according to the genetic architecture across phenotypes. Currently, statistical analyses for PheWAS are mainly univariate analyses, which test the association between one genetic variant and one phenotype at a time. In this article, we derived a novel and powerful multivariate method for PheWAS. The proposed method involves three steps. In the first step, we apply the bottom-up hierarchical clustering method to partition a large number of phenotypes into disjoint clusters within each phenotypic category. In the second step, the clustering linear combination method is used to combine test statistics within each category based on the phenotypic clusters and obtain p-values from each phenotypic category. In the third step, we propose a new false discovery rate (FDR) control approach. We perform extensive simulation studies to compare the performance of our method with that of other existing methods. The results show that our proposed method controls FDR very well and outperforms other methods we compared with. We also apply the proposed approach to a set of EMR-based phenotypes across more than 300,000 samples from the UK Biobank. We find that the proposed approach not only can well-control FDR at a nominal level but also successfully identify 1,244 significant SNPs that are reported to be associated with some phenotypes in the GWAS catalog. Our open-access tools and instructions on how to implement HCLC-FC are available at https://github.com/XiaoyuLiang/HCLCFC.
Collapse
Affiliation(s)
- Xiaoyu Liang
- Department of Preventive Medicine, Division of Biostatistics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|
5
|
Wang M, Zhang S, Sha Q. A computationally efficient clustering linear combination approach to jointly analyze multiple phenotypes for GWAS. PLoS One 2022; 17:e0260911. [PMID: 35482827 PMCID: PMC9049312 DOI: 10.1371/journal.pone.0260911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
There has been an increasing interest in joint analysis of multiple phenotypes in genome-wide association studies (GWAS) because jointly analyzing multiple phenotypes may increase statistical power to detect genetic variants associated with complex diseases or traits. Recently, many statistical methods have been developed for joint analysis of multiple phenotypes in genetic association studies, including the Clustering Linear Combination (CLC) method. The CLC method works particularly well with phenotypes that have natural groupings, but due to the unknown number of clusters for a given data, the final test statistic of CLC method is the minimum p-value among all p-values of the CLC test statistics obtained from each possible number of clusters. Therefore, a simulation procedure needs to be used to evaluate the p-value of the final test statistic. This makes the CLC method computationally demanding. We develop a new method called computationally efficient CLC (ceCLC) to test the association between multiple phenotypes and a genetic variant. Instead of using the minimum p-value as the test statistic in the CLC method, ceCLC uses the Cauchy combination test to combine all p-values of the CLC test statistics obtained from each possible number of clusters. The test statistic of ceCLC approximately follows a standard Cauchy distribution, so the p-value can be obtained from the cumulative density function without the need for the simulation procedure. Through extensive simulation studies and application on the COPDGene data, the results demonstrate that the type I error rates of ceCLC are effectively controlled in different simulation settings and ceCLC either outperforms all other methods or has statistical power that is very close to the most powerful method with which it has been compared.
Collapse
Affiliation(s)
- Meida Wang
- Mathematical Sciences, Michigan Technological University, Houghton, MI, United States of America
| | - Shuanglin Zhang
- Mathematical Sciences, Michigan Technological University, Houghton, MI, United States of America
| | - Qiuying Sha
- Mathematical Sciences, Michigan Technological University, Houghton, MI, United States of America
| |
Collapse
|
6
|
Fu L, Wang Y, Li T, Yang S, Hu YQ. A Novel Hierarchical Clustering Approach for Joint Analysis of Multiple Phenotypes Uncovers Obesity Variants Based on ARIC. Front Genet 2022; 13:791920. [PMID: 35391794 PMCID: PMC8981031 DOI: 10.3389/fgene.2022.791920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/27/2022] [Indexed: 12/02/2022] Open
Abstract
Genome-wide association studies (GWASs) have successfully discovered numerous variants underlying various diseases. Generally, one-phenotype one-variant association study in GWASs is not efficient in identifying variants with weak effects, indicating that more signals have not been identified yet. Nowadays, jointly analyzing multiple phenotypes has been recognized as an important approach to elevate the statistical power for identifying weak genetic variants on complex diseases, shedding new light on potential biological mechanisms. Therefore, hierarchical clustering based on different methods for calculating correlation coefficients (HCDC) is developed to synchronously analyze multiple phenotypes in association studies. There are two steps involved in HCDC. First, a clustering approach based on the similarity matrix between two groups of phenotypes is applied to choose a representative phenotype in each cluster. Then, we use existing methods to estimate the genetic associations with the representative phenotypes rather than the individual phenotypes in every cluster. A variety of simulations are conducted to demonstrate the capacity of HCDC for boosting power. As a consequence, existing methods embedding HCDC are either more powerful or comparable with those of without embedding HCDC in most scenarios. Additionally, the application of obesity-related phenotypes from Atherosclerosis Risk in Communities via existing methods with HCDC uncovered several associated variants. Among these, UQCC1-rs1570004 is reported as a significant obesity signal for the first time, whose differential expression in subcutaneous fat, visceral fat, and muscle tissue is worthy of further functional studies.
Collapse
Affiliation(s)
- Liwan Fu
- Center for Non-communicable Disease Management, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuquan Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Tingting Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Siqian Yang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Yue-Qing Hu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Liu F, Zhou Z, Cai M, Wen Y, Zhang J. AGNEP: An Agglomerative Nesting Clustering Algorithm for Phenotypic Dimension Reduction in Joint Analysis of Multiple Phenotypes. Front Genet 2021; 12:648831. [PMID: 33981331 PMCID: PMC8107386 DOI: 10.3389/fgene.2021.648831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association study (GWAS) has identified thousands of genetic variants associated with complex traits and diseases. Compared with analyzing a single phenotype at a time, the joint analysis of multiple phenotypes can improve statistical power by taking into account the information from phenotypes. However, most established joint algorithms ignore the different level of correlations between multiple phenotypes; instead of that, they simultaneously analyze all phenotypes in a genetic model. Thus, they may fail to capture the genetic structure of phenotypes and consequently reduce the statistical power. In this study, we develop a novel method agglomerative nesting clustering algorithm for phenotypic dimension reduction analysis (AGNEP) to jointly analyze multiple phenotypes for GWAS. First, AGNEP uses an agglomerative nesting clustering algorithm to group correlated phenotypes and then applies principal component analysis (PCA) to generate representative phenotypes for each group. Finally, multivariate analysis is employed to test associations between genetic variants and the representative phenotypes rather than all phenotypes. We perform three simulation experiments with various genetic structures and a real dataset analysis for 19 Arabidopsis phenotypes. Compared to established methods, AGNEP is more powerful in terms of statistical power, computing time, and the number of quantitative trait nucleotides (QTNs). The analysis of the Arabidopsis real dataset further illustrates the efficiency of AGNEP for detecting QTNs, which are confirmed by The Arabidopsis Information Resource gene bank.
Collapse
Affiliation(s)
- Fengrong Liu
- College of Science, Nanjing Agricultural University, Nanjing, China.,School of Data Science, University of Science and Technology of China, Hefei, China
| | - Ziyang Zhou
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Mingzhi Cai
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Yangjun Wen
- College of Science, Nanjing Agricultural University, Nanjing, China
| | - Jin Zhang
- College of Science, Nanjing Agricultural University, Nanjing, China.,Postdoctoral Research Station of Crop Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Li Y, Wang F, Wu M, Ma S. Integrative functional linear model for genome-wide association studies with multiple traits. Biostatistics 2020; 23:574-590. [PMID: 33040145 DOI: 10.1093/biostatistics/kxaa043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/30/2020] [Accepted: 09/12/2020] [Indexed: 11/14/2022] Open
Abstract
In recent biomedical research, genome-wide association studies (GWAS) have demonstrated great success in investigating the genetic architecture of human diseases. For many complex diseases, multiple correlated traits have been collected. However, most of the existing GWAS are still limited because they analyze each trait separately without considering their correlations and suffer from a lack of sufficient information. Moreover, the high dimensionality of single nucleotide polymorphism (SNP) data still poses tremendous challenges to statistical methods, in both theoretical and practical aspects. In this article, we innovatively propose an integrative functional linear model for GWAS with multiple traits. This study is the first to approximate SNPs as functional objects in a joint model of multiple traits with penalization techniques. It effectively accommodates the high dimensionality of SNPs and correlations among multiple traits to facilitate information borrowing. Our extensive simulation studies demonstrate the satisfactory performance of the proposed method in the identification and estimation of disease-associated genetic variants, compared to four alternatives. The analysis of type 2 diabetes data leads to biologically meaningful findings with good prediction accuracy and selection stability.
Collapse
Affiliation(s)
- Yang Li
- Center For Applied Statistics, School Of Statistics, And Statistical Consulting Center, Renmin University Of China, Beijing 100872, China
| | - Fan Wang
- Center For Applied Statistics, School Of Statistics, And Statistical Consulting Center, Renmin University Of China, Beijing 100872, China
| | - Mengyun Wu
- School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven 06520, USA
| |
Collapse
|
9
|
Nikolaou V, Massaro S, Fakhimi M, Stergioulas L, Price D. COPD phenotypes and machine learning cluster analysis: A systematic review and future research agenda. Respir Med 2020; 171:106093. [PMID: 32745966 DOI: 10.1016/j.rmed.2020.106093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a highly heterogeneous condition projected to become the third leading cause of death worldwide by 2030. To better characterize this condition, clinicians have classified patients sharing certain symptomatic characteristics, such as symptom intensity and history of exacerbations, into distinct phenotypes. In recent years, the growing use of machine learning algorithms, and cluster analysis in particular, has promised to advance this classification through the integration of additional patient characteristics, including comorbidities, biomarkers, and genomic information. This combination would allow researchers to more reliably identify new COPD phenotypes, as well as better characterize existing ones, with the aim of improving diagnosis and developing novel treatments. Here, we systematically review the last decade of research progress, which uses cluster analysis to identify COPD phenotypes. Collectively, we provide a systematized account of the extant evidence, describe the strengths and weaknesses of the main methods used, identify gaps in the literature, and suggest recommendations for future research.
Collapse
Affiliation(s)
- Vasilis Nikolaou
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK.
| | - Sebastiano Massaro
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK; The Organizational Neuroscience Laboratory, London, WC1N 3AX, UK
| | - Masoud Fakhimi
- Surrey Business School, University of Surrey, Guildford, GU2 7HX, UK
| | | | - David Price
- Observational and Pragmatic Research Institute, Singapore, Singapore; Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
10
|
Abstract
Objectives To investigate the neuroprotective effects of six natural compounds
(caffeine, gallic acid, resveratrol, epigallocatechin gallate [EGCG],
L-ascorbic acid and alpha tocopherol [Vitamin E] on heavy metal-induced cell
damage in rat PC12 cells. Methods In this in vitro experiment, rat PC12 cells were exposed to
four heavy metals (CdCl2, HgCl2, CoCl2 and
PbCl2) at different concentrations and cell apoptosis,
necrosis and oxidative stress were assessed with and without the addition of
the six natural compounds. Results The metals decreased cell viability but the natural compounds attenuated
their effects on apoptosis, necrosis and reactive oxygen species (ROS)
levels. Mitochondrial protein changes were involved in the regulation. Conclusion Overall, the natural compounds did provide protection against the
metal-induced PC12 cell damage. These data suggest that natural compounds
may have therapeutic potential against metal-induced neurodegenerative
disease.
Collapse
Affiliation(s)
- Lina Yang
- Changchun Medical College, Changchun, China
| | - Keshu Shen
- Hepatology Department, Jilin Hepatobiliary Hospital, Changchun, China
| | | |
Collapse
|
11
|
Li X, Zhang S, Sha Q. Joint analysis of multiple phenotypes using a clustering linear combination method based on hierarchical clustering. Genet Epidemiol 2020; 44:67-78. [PMID: 31541490 PMCID: PMC7480017 DOI: 10.1002/gepi.22263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
Abstract
Emerging evidence suggests that a genetic variant can affect multiple phenotypes, especially in complex human diseases. Therefore, joint analysis of multiple phenotypes may offer new insights into disease etiology. Recently, many statistical methods have been developed for joint analysis of multiple phenotypes, including the clustering linear combination (CLC) method. Due to the unknown number of clusters for a given data, a simulation procedure must be used to evaluate the p-value of the final test statistic of CLC. This makes the CLC method computationally demanding. In this paper, we use a stopping criterion to determine the number of clusters in the CLC method. We have named our method, hierarchical clustering CLC (HCLC). HCLC has an asymptotic distribution, which is very computationally efficient and makes it applicable for genome-wide association studies. Extensive simulations together with the COPDGene data analysis have been used to assess the type I error rates and power of our proposed method. Our simulation results demonstrate that the type I error rates of HCLC are effectively controlled in different realistic settings. HCLC either outperforms all other methods or has statistical power that is very close to the most powerful method with which it has been compared.
Collapse
Affiliation(s)
- Xueling Li
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Shuanglin Zhang
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
| |
Collapse
|