2
|
Duncan MS, Diaz-Zabala H, Jaworski J, Tindle HA, Greevy RA, Lipworth L, Hung RJ, Freiberg MS, Aldrich MC. Interaction between Continuous Pack-Years Smoked and Polygenic Risk Score on Lung Cancer Risk: Prospective Results from the Framingham Heart Study. Cancer Epidemiol Biomarkers Prev 2024; 33:500-508. [PMID: 38227004 PMCID: PMC10988206 DOI: 10.1158/1055-9965.epi-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer risk attributable to smoking is dose dependent, yet few studies examining a polygenic risk score (PRS) by smoking interaction have included comprehensive lifetime pack-years smoked. METHODS We analyzed data from participants of European ancestry in the Framingham Heart Study Original (n = 454) and Offspring (n = 2,470) cohorts enrolled in 1954 and 1971, respectively, and followed through 2018. We built a PRS for lung cancer using participant genotyping data and genome-wide association study summary statistics from a recent study in the OncoArray Consortium. We used Cox proportional hazards regression models to assess risk and the interaction between pack-years smoked and genetic risk for lung cancer adjusting for European ancestry, age, sex, and education. RESULTS We observed a significant submultiplicative interaction between pack-years and PRS on lung cancer risk (P = 0.09). Thus, the relative risk associated with each additional 10 pack-years smoked decreased with increasing genetic risk (HR = 1.56 at one SD below mean PRS, HR = 1.48 at mean PRS, and HR = 1.40 at one SD above mean PRS). Similarly, lung cancer risk per SD increase in the PRS was highest among those who had never smoked (HR = 1.55) and decreased with heavier smoking (HR = 1.32 at 30 pack-years). CONCLUSIONS These results suggest the presence of a submultiplicative interaction between pack-years and genetics on lung cancer risk, consistent with recent findings. Both smoking and genetics were significantly associated with lung cancer risk. IMPACT These results underscore the contributions of genetics and smoking on lung cancer risk and highlight the negative impact of continued smoking regardless of genetic risk.
Collapse
Affiliation(s)
- Meredith S. Duncan
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Diaz-Zabala
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James Jaworski
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilary A. Tindle
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Internal Medicine, Vanderbilt University Medical Center, Nashville Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
3
|
Du M, Xin J, Zheng R, Yuan Q, Wang Z, Liu H, Liu H, Cai G, Albanes D, Lam S, Tardon A, Chen C, Bojesen SE, Landi MT, Johansson M, Risch A, Bickeböller H, Wichmann HE, Rennert G, Arnold S, Brennan P, Field JK, Shete SS, Marchand LL, Liu G, Andrew AS, Kiemeney LA, Zienolddiny S, Grankvist K, Johansson M, Caporaso NE, Cox A, Hong YC, Yuan JM, Schabath MB, Aldrich MC, Wang M, Shen H, Chen F, Zhang Z, Hung RJ, Amos CI, Wei Q, Lazarus P, Christiani DC. CYP2A6 Activity and Cigarette Consumption Interact in Smoking-Related Lung Cancer Susceptibility. Cancer Res 2024; 84:616-625. [PMID: 38117513 PMCID: PMC11184964 DOI: 10.1158/0008-5472.can-23-0900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
Cigarette smoke, containing both nicotine and carcinogens, causes lung cancer. However, not all smokers develop lung cancer, highlighting the importance of the interaction between host susceptibility and environmental exposure in tumorigenesis. Here, we aimed to delineate the interaction between metabolizing ability of tobacco carcinogens and smoking intensity in mediating genetic susceptibility to smoking-related lung tumorigenesis. Single-variant and gene-based associations of 43 tobacco carcinogen-metabolizing genes with lung cancer were analyzed using summary statistics and individual-level genetic data, followed by causal inference of Mendelian randomization, mediation analysis, and structural equation modeling. Cigarette smoke-exposed cell models were used to detect gene expression patterns in relation to specific alleles. Data from the International Lung Cancer Consortium (29,266 cases and 56,450 controls) and UK Biobank (2,155 cases and 376,329 controls) indicated that the genetic variant rs56113850 C>T located in intron 4 of CYP2A6 was significantly associated with decreased lung cancer risk among smokers (OR = 0.88, 95% confidence interval = 0.85-0.91, P = 2.18 × 10-16), which might interact (Pinteraction = 0.028) with and partially be mediated (ORindirect = 0.987) by smoking status. Smoking intensity accounted for 82.3% of the effect of CYP2A6 activity on lung cancer risk but entirely mediated the genetic effect of rs56113850. Mechanistically, the rs56113850 T allele rescued the downregulation of CYP2A6 caused by cigarette smoke exposure, potentially through preferential recruitment of transcription factor helicase-like transcription factor. Together, this study provides additional insights into the interplay between host susceptibility and carcinogen exposure in smoking-related lung tumorigenesis. SIGNIFICANCE The causal pathway connecting CYP2A6 genetic variability and activity, cigarette consumption, and lung cancer susceptibility in smokers highlights the need for behavior modification interventions based on host susceptibility for cancer prevention.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Junyi Xin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Rui Zheng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Qianyu Yuan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Zhihui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hanting Liu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Lam
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Adonina Tardon
- University of Oviedo, ISPA and CIBERESP, Faculty of Medicine, Oviedo, Spain
| | - Chu Chen
- Program in Epidemiology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Mattias Johansson
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Angela Risch
- University of Salzburg and Cancer Cluster Salzburg, Salzburg, Austria
- Translational Lung Research Center Heidelberg (TLRC-H), Heidelberg, Germany
- German Center for Lung Research (DZL), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg August University Göttingen, Göttingen, Germany
| | - H-Erich Wichmann
- Institute of Medical Informatics, Biometry and Epidemiology, Ludwig Maximilians University, Munich, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Medical Statistics and Epidemiology, Technical University of Munich, Munich, Germany
| | - Gad Rennert
- Clalit National Cancer Control Center at Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Susanne Arnold
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Paul Brennan
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sanjay S. Shete
- Department of Epidemiology, Division of Cancer Prevention and Population Science, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Angeline S. Andrew
- Norris Cotton Cancer Center, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | - Kjell Grankvist
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jian-Min Yuan
- UPMC Hillman Cancer Center and Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Melinda C. Aldrich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Rayjean J. Hung
- Lunenfeld-Tanenbuaum Research Institute, Sinai Health System, University of Toronto, Toronto, Ontario, Canada
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor Medical College, Houston, Texas, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, 99210, USA
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
4
|
Bray M, Chang Y, Baker TB, Jorenby D, Carney RM, Fox L, Pham G, Stoneking F, Smock N, Amos CI, Bierut L, Chen LS. The Promise of Polygenic Risk Prediction in Smoking Cessation: Evidence From Two Treatment Trials. Nicotine Tob Res 2022; 24:1573-1580. [PMID: 35170738 PMCID: PMC9575976 DOI: 10.1093/ntr/ntac043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Tobacco use disorder is a complex behavior with a strong genetic component. Genome-wide association studies (GWAS) on smoking behaviors allow for the creation of polygenic risk scores (PRSs) to approximate genetic vulnerability. However, the utility of smoking-related PRSs in predicting smoking cessation in clinical trials remains unknown. AIMS AND METHODS We evaluated the association between polygenic risk scores and bioverified smoking abstinence in a meta-analysis of two randomized, placebo-controlled smoking cessation trials. PRSs of smoking behaviors were created using the GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN) consortium summary statistics. We evaluated the utility of using individual PRS of specific smoking behavior versus a combined genetic risk that combines PRS of all four smoking behaviors. Study participants came from the Transdisciplinary Tobacco Use Research Centers (TTURCs) Study (1091 smokers of European descent), and the Genetically Informed Smoking Cessation Trial (GISC) Study (501 smokers of European descent). RESULTS PRS of later age of smoking initiation (OR [95% CI]: 1.20, [1.04-1.37], p = .0097) was significantly associated with bioverified smoking abstinence at end of treatment. In addition, the combined PRS of smoking behaviors also significantly predicted bioverified smoking abstinence (OR [95% CI] 0.71 [0.51-0.99], p = .045). CONCLUSIONS PRS of later age at smoking initiation may be useful in predicting smoking cessation at the end of treatment. A combined PRS may be a useful predictor for smoking abstinence by capturing the genetic propensity for multiple smoking behaviors. IMPLICATIONS There is a potential for polygenic risk scores to inform future clinical medicine, and a great need for evidence on whether these scores predict clinically meaningful outcomes. Our meta-analysis provides early evidence for potential utility of using polygenic risk scores to predict smoking cessation amongst smokers undergoing quit attempts, informing further work to optimize the use of polygenic risk scores in clinical care.
Collapse
Affiliation(s)
- Michael Bray
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetic Counseling, Bay Path University, Longmeadow, MA, USA
| | - Yoonhoo Chang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy B Baker
- Department of Medicine, School of Medicine and Public Health, Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI, USA
| | - Douglas Jorenby
- Department of Medicine, School of Medicine and Public Health, Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI, USA
| | - Robert M Carney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Louis Fox
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Giang Pham
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Faith Stoneking
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Nina Smock
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Institute for Clinical and Translational Research, Houston, TX, USA
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- The Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, Ma X. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022; 43:393-404. [PMID: 34994389 DOI: 10.1093/carcin/bgac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-β1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-β1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-β1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-β1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Jia
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Pan Pan
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuping Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaowei Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guiyu Kang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China.,Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
7
|
Diabasana Z, Perotin JM, Belgacemi R, Ancel J, Mulette P, Delepine G, Gosset P, Maskos U, Polette M, Deslée G, Dormoy V. Nicotinic Receptor Subunits Atlas in the Adult Human Lung. Int J Mol Sci 2020; 21:ijms21207446. [PMID: 33050277 PMCID: PMC7588933 DOI: 10.3390/ijms21207446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels responsible for rapid neural and neuromuscular signal transmission. Although it is well documented that 16 subunits are encoded by the human genome, their presence in airway epithelial cells (AECs) remains poorly understood, and contribution to pathology is mainly discussed in the context of cancer. We analysed nAChR subunit expression in the human lungs of smokers and non-smokers using transcriptomic data for whole-lung tissues, isolated large AECs, and isolated small AECs. We identified differential expressions of nAChRs in terms of detection and repartition in the three modalities. Smoking-associated alterations were also unveiled. Then, we identified an nAChR transcriptomic print at the single-cell level. Finally, we reported the localizations of detectable nAChRs in bronchi and large bronchioles. Thus, we compiled the first complete atlas of pulmonary nAChR subunits to open new avenues to further unravel the involvement of these receptors in lung homeostasis and respiratory diseases.
Collapse
Affiliation(s)
- Zania Diabasana
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Jeanne-Marie Perotin
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Randa Belgacemi
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
| | - Julien Ancel
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Pauline Mulette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gonzague Delepine
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Thoracic Surgery, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Philippe Gosset
- CNRS UMR9017, Inserm U1019, University of Lille, Centre Hospitalier Régional Universitaire de Lille, Institut Pasteur, CIIL—Center for Infection and Immunity of Lille, 59000 Lille, France;
| | - Uwe Maskos
- Integrative Neurobiology of Cholinergic Systems, Institut Pasteur, CNRS UMR 3571, 75015 Paris, France;
| | - Myriam Polette
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Biopathology, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Gaëtan Deslée
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Department of Respiratory Diseases, Centre Hospitalier Universitaire de Reims, Hôpital Maison Blanche, 51092 Reims, France
| | - Valérian Dormoy
- Inserm UMR-S1250, P3Cell, University of Reims Champagne-Ardenne, SFR CAP-SANTE, 51092 Reims, France; (Z.D.); (J.-M.P.); (R.B.); (J.A.); (P.M.); (G.D.); (M.P.); (G.D.)
- Correspondence: ; Tel.: +33-(0)3-10-73-62-28; Fax: +33-(0)3-26-06-58-61
| |
Collapse
|