1
|
Henao JD, Lauber M, Azevedo M, Grekova A, Theis F, List M, Ogris C, Schubert B. Multi-omics regulatory network inference in the presence of missing data. Brief Bioinform 2023; 24:bbad309. [PMID: 37670505 PMCID: PMC10516394 DOI: 10.1093/bib/bbad309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 09/07/2023] Open
Abstract
A key problem in systems biology is the discovery of regulatory mechanisms that drive phenotypic behaviour of complex biological systems in the form of multi-level networks. Modern multi-omics profiling techniques probe these fundamental regulatory networks but are often hampered by experimental restrictions leading to missing data or partially measured omics types for subsets of individuals due to cost restrictions. In such scenarios, in which missing data is present, classical computational approaches to infer regulatory networks are limited. In recent years, approaches have been proposed to infer sparse regression models in the presence of missing information. Nevertheless, these methods have not been adopted for regulatory network inference yet. In this study, we integrated regression-based methods that can handle missingness into KiMONo, a Knowledge guided Multi-Omics Network inference approach, and benchmarked their performance on commonly encountered missing data scenarios in single- and multi-omics studies. Overall, two-step approaches that explicitly handle missingness performed best for a wide range of random- and block-missingness scenarios on imbalanced omics-layers dimensions, while methods implicitly handling missingness performed best on balanced omics-layers dimensions. Our results show that robust multi-omics network inference in the presence of missing data with KiMONo is feasible and thus allows users to leverage available multi-omics data to its full extent.
Collapse
Affiliation(s)
- Juan D Henao
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Michael Lauber
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising
| | - Manuel Azevedo
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Anastasiia Grekova
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Fabian Theis
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
- Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| | - Markus List
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354 Freising
| | - Christoph Ogris
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Benjamin Schubert
- Helmholtz Zentrum München, Computational Health Department, Ingolstädter Landstraße 1, 85764 Munich, Germany, Member of the German Center for Lung Research (DZL)
- Department of Mathematics, Technical University of Munich, 85748 Garching bei München, Germany
| |
Collapse
|
2
|
Lu T, Forgetta V, Richards JB, Greenwood CMT. Genetic determinants of polygenic prediction accuracy within a population. Genetics 2022; 222:6762086. [PMID: 36250789 PMCID: PMC9713421 DOI: 10.1093/genetics/iyac158] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Genomic risk prediction is on the emerging path toward personalized medicine. However, the accuracy of polygenic prediction varies strongly in different individuals. Based on up to 352,277 European ancestry participants in the UK Biobank, we constructed polygenic risk scores for 15 physiological and biochemical quantitative traits. We identified a total of 185 polygenic prediction variability quantitative trait loci for 11 traits by Levene's test among 254,376 unrelated individuals. We validated the effects of prediction variability quantitative trait loci using an independent test set of 58,927 individuals. For instance, a score aggregating 51 prediction variability quantitative trait locus variants for triglycerides had the strongest Spearman correlation of 0.185 (P-value <1.0 × 10-300) with the squared prediction errors. We found a strong enrichment of complex genetic effects conferred by prediction variability quantitative trait loci compared to risk loci identified in genome-wide association studies, including 89 prediction variability quantitative trait loci exhibiting dominance effects. Incorporation of dominance effects into polygenic risk scores significantly improved polygenic prediction for triglycerides, low-density lipoprotein cholesterol, vitamin D, and platelet. In conclusion, we have discovered and profiled genetic determinants of polygenic prediction variability for 11 quantitative biomarkers. These findings may assist interpretation of genomic risk prediction in various contexts and encourage novel approaches for constructing polygenic risk scores with complex genetic effects.
Collapse
Affiliation(s)
- Tianyuan Lu
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.,Quantitative Life Sciences Program, McGill University, Montreal, QC H3A 0G4, Canada
| | - Vincenzo Forgetta
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - John Brent Richards
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada.,Department of Twin Research and Genetic Epidemiology, King's College London, London WC2R 2LS, UK
| | - Celia M T Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada.,Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|