1
|
Cheng X, Yeung PKK, Zhong K, Zilundu PLM, Zhou L, Chung SK. Astrocytic endothelin-1 overexpression promotes neural progenitor cells proliferation and differentiation into astrocytes via the Jak2/Stat3 pathway after stroke. J Neuroinflammation 2019; 16:227. [PMID: 31733648 PMCID: PMC6858703 DOI: 10.1186/s12974-019-1597-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background Endothelin-1 (ET-1) is synthesized and upregulated in astrocytes under stroke. We previously demonstrated that transgenic mice over-expressing astrocytic ET-1 (GET-1) displayed more severe neurological deficits characterized by a larger infarct after transient middle cerebral artery occlusion (tMCAO). ET-1 is a known vasoconstrictor, mitogenic, and a survival factor. However, it is unclear whether the observed severe brain damage in GET-1 mice post stroke is due to ET-1 dysregulation of neurogenesis by altering the stem cell niche. Methods Non-transgenic (Ntg) and GET-1 mice were subjected to tMCAO with 1 h occlusion followed by long-term reperfusion (from day 1 to day 28). Neurological function was assessed using a four-point scale method. Infarct area and volume were determined by 2,3,5-triphenyltetra-zolium chloride staining. Neural stem cell (NSC) proliferation and migration in subventricular zone (SVZ) were evaluated by immunofluorescence double labeling of bromodeoxyuridine (BrdU), Ki67 and Sox2, Nestin, and Doublecortin (DCX). NSC differentiation in SVZ was evaluated using the following immunofluorescence double immunostaining: BrdU and neuron-specific nuclear protein (NeuN), BrdU and glial fibrillary acidic protein (GFAP). Phospho-Stat3 (p-Stat3) expression detected by Western-blot and immunofluorescence staining. Results GET-1 mice displayed a more severe neurological deficit and larger infarct area after tMCAO injury. There was a significant increase of BrdU-labeled progenitor cell proliferation, which co-expressed with GFAP, at SVZ in the ipsilateral side of the GET-1 brain at 28 days after tMCAO. p-Stat3 expression was increased in both Ntg and GET-1 mice in the ischemia brain at 7 days after tMCAO. p-Stat3 expression was significantly upregulated in the ipsilateral side in the GET-1 brain than that in the Ntg brain at 7 days after tMCAO. Furthermore, GET-1 mice treated with AG490 (a JAK2/Stat3 inhibitor) sh owed a significant reduction in neurological deficit along with reduced infarct area and dwarfed astrocytic differentiation in the ipsilateral brain after tMCAO. Conclusions The data indicate that astrocytic endothelin-1 overexpression promotes progenitor stem cell proliferation and astr ocytic differentiation via the Jak2/Stat3 pathway.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, 111 Dade Road, Guangzhou, 510120, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China. .,The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou, 510405, China. .,Guangdong Provincial Chinese Emergency Key Laboratory, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Traditional Chinese Medicine, Guangzhou, 510120, China.
| | - Patrick K K Yeung
- School of Biomedical Sciences, The University of Hong Kong, HKSAR, China
| | - Ke Zhong
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Prince L M Zilundu
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Zhong Shan School of Medicine, Sun Yat-Sen University, Guangdong Province, Guangzhou, China
| | - Sookja K Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China. .,School of Biomedical Sciences, The University of Hong Kong, HKSAR, China.
| |
Collapse
|
2
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
3
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1068] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
4
|
Ranno E, D'Antoni S, Spatuzza M, Berretta A, Laureanti F, Bonaccorso CM, Pellitteri R, Longone P, Spalloni A, Iyer AM, Aronica E, Catania MV. Endothelin-1 is over-expressed in amyotrophic lateral sclerosis and induces motor neuron cell death. Neurobiol Dis 2014; 65:160-71. [PMID: 24423643 DOI: 10.1016/j.nbd.2014.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 12/13/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of motor neurons (MNs) and astrogliosis. Recent evidence suggests that factors secreted by activated astrocytes might contribute to degeneration of MNs. We focused on endothelin-1 (ET-1), a peptide which is strongly up-regulated in reactive astrocytes under different pathological conditions. We show that ET-1 is abundantly expressed by reactive astrocytes in the spinal cord of the SOD1-G93A mouse model and sporadic ALS patients. To test if ET-1 might play a role in degeneration of MNs, we investigated its effect on MN survival in an in vitro model of mixed rat spinal cord cultures (MSCs) enriched of astrocytes exhibiting a reactive phenotype. ET-1 exerted a toxic effect on MNs in a time- and concentration-dependent manner, with an exposure to 100-200nM ET-1 for 48h resulting in 40-50% MN cell death. Importantly, ET-1 did not induce MN degeneration when administered on cultures treated with AraC (5μM) or grown in a serum-free medium that did not favor astrocyte proliferation and reactivity. We found that both ETA and ETB receptors are enriched in astrocytes in MSCs. The ET-1 toxic effect was mimicked by ET-3 (100nM) and sarafotoxin S6c (10nM), two selective agonists of endothelin-B receptors, and was not additive with that of ET-3 suggesting the involvement of ETB receptors. Surprisingly, however, the ET-1 effect persisted in the presence of the ETB receptor antagonist BQ-788 (200nM-2μM) and was slightly reversed by the ETA receptor antagonist BQ-123 (2μM), suggesting an atypical pharmacological profile of the astrocytic receptors responsible for ET-1 toxicity. The ET-1 effect was not undone by the ionotropic glutamate receptor AMPA antagonist GYKI 52466 (20μM), indicating that it is not caused by an increased glutamate release. Conversely, a 48-hour ET-1 treatment increased MN cell death induced by acute exposure to AMPA (50μM), which is indicative of two distinct pathways leading to neuronal death. Altogether these results indicate that ET-1 exerts a toxic effect on cultured MNs through mechanisms mediated by reactive astrocytes and suggest that ET-1 may contribute to MN degeneration in ALS. Thus, a treatment aimed at lowering ET-1 levels or antagonizing its effect might be envisaged as a potential therapeutic strategy to slow down MN degeneration in this devastating disease.
Collapse
Affiliation(s)
- Eugenia Ranno
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; PhD Program in Neurobiology, University of Catania, Catania, Italy
| | - Simona D'Antoni
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Michela Spatuzza
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Antonio Berretta
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Floriana Laureanti
- Department of Biomedical Sciences, Section of Physiology, University of Catania, Catania, Italy
| | | | - Rosalia Pellitteri
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy
| | - Patrizia Longone
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Experimental Neurology, Fondazione Santa Lucia, Rome, Italy
| | - Anand M Iyer
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, National Research Council (ISN-CNR), Catania, Italy; IRCCS Oasi Maria SS, Troina (EN), Italy.
| |
Collapse
|
5
|
Glisic D, Lehmann C, Figiel M, Ödemis V, Lindner R, Engele J. A novel cross-talk between endothelin and ErbB receptors controlling glutamate transporter expression in astrocytes. J Neurochem 2012; 122:844-55. [PMID: 22671705 DOI: 10.1111/j.1471-4159.2012.07819.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The endothelin and epidermal growth factor (EGF) systems are central to the control of reactive brain processes and are thought to partly exert these tasks by endothelin-induced transactivation of the epidermal growth factor receptor (EGFR) Here we show that beyond EGFR transactivation, endothelins prevent the ligand-induced internalization of the EGFR. We unravel that endothelins abrogate internalization of the EGFR by either promoting the formation of "internalization-deficient" EGFR/ErB2-heterodimers or by activating c-Abl kinase, a negative regulator of EGFR internalization. We further provide evidence that this cross-talk is operational in the control of astrocytic glutamate transport. Specifically, we establish that the inhibitory effects exerted by endothelins on basal as well as EGF-induced expression of the major astroglial glutamate transporter subtype, glutamate transporter 1, are a direct consequence of the endothelin-dependent retention of the EGFR at the cell surface. Together our findings unravel a previously unknown cross-talk between endothelin and epidermal growth factor receptors, which may have implications for a variety of pathological conditions.
Collapse
Affiliation(s)
- Darko Glisic
- Institute of Anatomy, University of Leipzig, Medical Faculty, Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Valle-Casuso JC, González-Sánchez A, Medina JM, Tabernero A. HIF-1 and c-Src mediate increased glucose uptake induced by endothelin-1 and connexin43 in astrocytes. PLoS One 2012; 7:e32448. [PMID: 22384254 PMCID: PMC3285680 DOI: 10.1371/journal.pone.0032448] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
In previous work we showed that endothelin-1 (ET-1) increases the rate of glucose uptake in astrocytes, an important aspect of brain function since glucose taken up by astrocytes is used to supply the neurons with metabolic substrates. In the present work we sought to identify the signalling pathway responsible for this process in primary culture of rat astrocytes. Our results show that ET-1 promoted an increase in the transcription factor hypoxia-inducible factor-1α (HIF-1α) in astrocytes, as shown in other cell types. Furthermore, HIF-1α-siRNA experiments revealed that HIF-1α participates in the effects of ET-1 on glucose uptake and on the expression of GLUT-1, GLUT-3, type I and type II hexokinase. We previously reported that these effects of ET-1 are mediated by connexin43 (Cx43), the major gap junction protein in astrocytes. Indeed, our results show that silencing Cx43 increased HIF-1α and reduced the effect of ET-1 on HIF-1α, indicating that the effect of ET-1 on HIF-1α is mediated by Cx43. The activity of oncogenes such as c-Src can up-regulate HIF-1α. Since Cx43 interacts with c-Src, we investigated the participation of c-Src in this pathway. Interestingly, both the treatment with ET-1 and with Cx43-siRNA increased c-Src activity. In addition, when c-Src activity was inhibited neither ET-1 nor silencing Cx43 were able to up-regulate HIF-1α. In conclusion, our results suggest that ET-1 by down-regulating Cx43 activates c-Src, which in turn increases HIF-1α leading to the up-regulation of the machinery required to take up glucose in astrocytes. Cx43 expression can be reduced in response not only to ET-1 but also to various physiological and pathological stimuli. This study contributes to the identification of the signalling pathway evoked after Cx43 down-regulation that results in increased glucose uptake in astrocytes. Interestingly, this is the first evidence linking Cx43 to HIF-1, which is a master regulator of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | - Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
7
|
Gap junctions and memory: An investigation using a single trial discrimination avoidance task for the neonate chick. Neurobiol Learn Mem 2010; 93:189-95. [DOI: 10.1016/j.nlm.2009.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 07/21/2009] [Accepted: 09/22/2009] [Indexed: 11/15/2022]
|
8
|
Herrero-González S, Valle-Casuso JC, Sánchez-Alvarez R, Giaume C, Medina JM, Tabernero A. Connexin43 is involved in the effect of endothelin-1 on astrocyte proliferation and glucose uptake. Glia 2009; 57:222-33. [PMID: 18756537 DOI: 10.1002/glia.20748] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In previous studies, we showed that endothelin-1 increased astrocyte proliferation and glucose uptake. These effects were similar to those observed with other gap junction inhibitors, such as carbenoxolone (CBX). Because 24-h treatment with endothelin-1 or CBX downregulates the expression of connexin43, the main protein forming astrocytic gap junctions, which can also be involved in proliferation, in this study, we addressed the possible role of connexin43 in the effects of endothelin-1. To do so, connexin43 was silenced in astrocytes by siRNA. The knock down of connexin43 increased the rate of glucose uptake, characterized by the upregulation of GLUT-1 and type I hexokinase. Neither endothelin-1 nor CBX were able to further increase the rate of glucose uptake in connexin43-silenced astrocytes. In agreement, no effects of endothelin-1 and CBX on GLUT-1 and type I hexokinase were observed in connexin-43 silenced astrocytes or in astrocytes from connexin43 knock-out (KO) mice. Our previous studies suggested a close relationship between glucose uptake and astrocyte proliferation. Consistent with this, connexin43-silenced astrocytes exhibited an increase in Ki-67, a marker of proliferation. The effects of ET-1 on retinoblastoma phosphorylation on Ser780 and on the upregulation of cyclins D1 and D3 were affected by the levels of connexin43. In conclusion, our results indicate that connexin43 participates in the effects of endothelin-1 on glucose uptake and proliferation in astrocytes. Interestingly, although the rate of growth in connexin43 KO astrocytes has been reported to be reduced, we observed that an acute reduction in connexin43 by siRNA increased proliferation and glucose uptake.
Collapse
|
9
|
Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 2008; 28:2394-408. [PMID: 18322086 DOI: 10.1523/jneurosci.5652-07.2008] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reactive gliosis is characterized by enhanced glial fibrillary acidic protein (GFAP) expression, cellular hypertrophy, and astrocyte proliferation. The cellular and molecular mechanisms underlying this process are still largely undefined. We investigated the role of endothelin-1 (ET-1) in reactive gliosis in corpus callosum after lysolecithin (LPC)-induced focal demyelination and in cultured astrocytes. We show that ET-1 levels are upregulated in demyelinated lesions within 5 d after LPC injection, together with enhanced astrocyte proliferation, GFAP expression, and JNK phosphorylation. Infusion of the pan-ET-receptor (ET-R) antagonist Bosentan or the selective ET(B)-R antagonist BQ788 into the corpus callosum prevented postlesion astrocyte proliferation and JNK phosphorylation. In cultured astrocytes, ET-1-induced activation of ET(B)-Rs promotes a reactive phenotype by enhancing both GFAP expression and astrocyte proliferation. In the same cells, ET-1 activates both JNK and p38MAPK pathways, and induces c-Jun expression at the mRNA and protein levels. By using selective pharmacological inhibitors, we also provide evidence that ET-1 induces astrocyte proliferation and GFAP expression through activation of ERK- and JNK-dependent pathways, consistent with the previous observation of ET-1-induced activation of ERK (Schinelli et al., 2001). Finally, we show by gain and loss of function that increased c-Jun expression enhances the proliferative response of astrocytes to ET-1, whereas c-jun siRNA prevents ET-1-induced cell proliferation. Our results indicate that the effects of ET-1 on astrocyte proliferation depend on c-Jun induction and activation through ERK- and JNK-dependent pathways, and suggest that ET-R-associated pathways might represent important targets to control reactive gliosis.
Collapse
|
10
|
Sasaoka M, Taniguchi T, Shimazawa M, Ishida N, Shimazaki A, Hara H. Intravitreal injection of endothelin-1 caused optic nerve damage following to ocular hypoperfusion in rabbits. Exp Eye Res 2006; 83:629-37. [PMID: 16677631 DOI: 10.1016/j.exer.2006.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 03/02/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study was to investigate the time course of the ocular hypoperfusion, retinal damage, and optic nerve damage induced by intravitreal injection of endothelin-1 (ET-1) in rabbits. ET-1, at 5 pmol (20 microL, twice a week for 2 or 4 weeks), was injected from the pars plana into the posterior vitreous of the right eye. Optic nerve head (ONH) blood flow and retinal artery diameter, together with the neurofilament light chain (NF-L) content, retinal morphology, and axon density of the optic nerve, were evaluated at 2, 4, and 8 weeks after the first injection of ET-1 (n=7 or 8). Tissue blood velocity in ONH was measured using a laser speckle method, and the diameter of major retinal arteries on the rim of the ONH was calculated from fundus photographs by a masked observer. Histological analysis and immunoblot evaluation of NF-L in the optic nerve were performed to evaluate optic nerve damage. At 2 weeks after the first ET-1 injection, tissue blood velocity was decreased by approximately 20% (versus the contralateral eye), and the diameter of retinal arteries had decreased by approximately 40%. These changes were sustained at the same level until 8 weeks after the first ET-1 injection. At 4 and 8 weeks after the first ET-1 injection, the amount of NF-L in the optic nerve was significantly less in the ET-1 treated eyes than in the contralateral eyes. At 8 weeks after the first ET-1 injection, a loss of myelinated axons and increases in gliosis and connective tissue were noted in the optic nerve of the treated eye, and the optic nerve-axon number had decreased significantly (each, versus the untreated eye). Retinal ganglion cells in the retina were not observed any damage at 2, 4, and 8 weeks after ET-1 injection. In conclusion, intravitreal injection of ET-1 induced chronic hypoperfusion in the ONH and retina, which presumably caused decreases in NF-L content and axon number in the optic nerve noted in the later part of the observation period.
Collapse
Affiliation(s)
- Masaaki Sasaoka
- Glaucoma Group, Research and Development Center, Santen Pharmaceutical Co. Ltd., 8916-16 Takayama-cho, Ikoma 630-0101, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Tabernero A, Sánchez-Alvarez R, Medina JM. Increased levels of cyclins D1 and D3 after inhibition of gap junctional communication in astrocytes. J Neurochem 2006; 96:973-82. [PMID: 16412096 DOI: 10.1111/j.1471-4159.2005.03623.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We showed previously that the inhibition of gap junctional communication in astrocytes increased bromodeoxyuridine (BrdU) incorporation and promoted changes in the metabolic phenotype destined to fulfil the requirements of cell proliferation. In the present study we investigated the changes in the cell cycle of astrocytes promoted by the inhibition of intercellular communication through gap junctions. Thus, the presence of endothelin-1 and carbenoxolone, two gap junction uncouplers, promoted an increase in the percentage of astrocytes found in the S, G2 and M phases of the cell cycle, with a concomitant decrease in G0 and G1 phases. In addition, the levels of Ki-67, a protein present during all active phases of the cell cycle but absent from resting cells, increased after the inhibition of gap junctional communication. These effects were not observed when the inhibition of gap junctions was prevented with tolbutamide, indicating that the inhibition of gap junctional communication promotes the entry of astrocytes into the cell cycle. The passage of the cells from a quiescent state to the cell cycle is ultimately regulated by the degree of retinoblastoma phosphorylation. Inhibition of gap junctions increased the phosphorylation of retinoblastoma at Ser 780 but not at Ser 795 or Ser 807/811. In addition, the levels of cyclins D1 and D3 increased, whereas those of p21 and p27 were not significantly modified. Because D-type cyclins are key regulators of retinoblastoma protein phosphorylation, it is suggested that the phosphorylation of retinoblastoma protein at Ser 780, observed under our experimental conditions, is a consequence of the increase in the levels of cyclins D1 and D3. Our work provides evidence for the involvement of cyclins D1 and D3 as sensors of the inhibition of gap junctional communication in astrocytes.
Collapse
Affiliation(s)
- Arantxa Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto De Neurociencias De Castilla Y Leon, Universidad de Salamanca, Salamanca, Spain
| | | | | |
Collapse
|
12
|
Blomstrand F, Giaume C. Kinetics of endothelin-induced inhibition and glucose permeability of astrocyte gap junctions. J Neurosci Res 2006; 83:996-1003. [PMID: 16609958 DOI: 10.1002/jnr.20801] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gap junctions contribute to important functions of communicating glial cells in brain physiology and pathology. Endothelins (ETs), a vasoactive family of peptides present in the brain, have been described as potent inhibitors of astrocyte gap junctional communication. Through dye-coupling studies we demonstrate here that this inhibition occurs rapidly and then successively reverses and returns to control levels after 90 min of continuous ET1 or ET3 exposure. In addition, long-term exposure of cells to ET3, which acts mainly on ETB receptors, also desensitized the acute action of ET1, which was previously shown to act through either ETA or ETB receptor sites, or both. The gap junction blocker carbenoxolone did not show any time-dependent desensitization and was fully effective also in cultures treated with ETs for prolonged times. The ETs inhibitory effects were partially prevented when blocking pertussis toxin-sensitive G-proteins, chelating intracellular Ca2+, or omitting extracellular Ca2+. We further show that ETs modulate gap junction-mediated transfer of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-Y1)amino]-2-deoxyglucose (2-NBDG), a fluorescent glucose molecule, indicating a role of astrocyte gap junction coupling in metabolic trafficking and suggesting the importance of these peptides in the control of intercellular diffusion of energetic compounds. These findings might have particular relevance in early tissue reactions after various cerebral injuries, which commonly involve increased cerebral ET levels.
Collapse
Affiliation(s)
- F Blomstrand
- Neuropharmacologie, INSERM U587, Collège de France, Paris, France.
| | | |
Collapse
|
13
|
Fortin ME, Pelletier RM, Meilleur MA, Vitale ML. Modulation of GJA1 turnover and intercellular communication by proinflammatory cytokines in the anterior pituitary folliculostellate cell line TtT/GF. Biol Reprod 2005; 74:2-12. [PMID: 16135697 DOI: 10.1095/biolreprod.105.044313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Our previous studies have advanced the idea that the folliculostellate cell GJA1 (gap junction membrane channel protein alpha1; previously known as connexin 43)-mediated gap junctions contribute to the establishment of an intercellular network that regulates the paracrine messages and the endocrine response within the anterior pituitary. The folliculostellate cells are targets for growth factors and cytokines that modulate hormone secretion. Proinflammatory cytokines modulate the cell-to-cell communication in many tissues of the body. The present study measured the effect of the proinflammatory cytokines tumor necrosis factor and interleukin-1 on the GJA1-mediated intercellular communication, specifically the expression, localization, degradation, and phosphorylation status of GJA1 in the folliculostellate cell line TtT/GF. The GJA1 localized to the plasma membrane and to minute cytoplasmic vesicles in the perinuclear area. Using different antibodies that recognize distinctly the nonphosphorylated from the phosphorylated forms of GJA1, we showed that nonphosphorylated GJA1 in Ser-368 (NP-GJA1) localized chiefly in the cytoplasm, whereas GJA1 phosphorylated in Ser-368 (P-GJA1) localized to the plasma membrane in controls. The cytokine treatment transiently increased 1) GJA1, NP-GJA1, and P-GJA1 levels; 2) NP-GJA1 and P-GJA1 degradation by both the lysosomal and proteasomal pathways; and 3) cell-to-cell communication in TtT/GF cells. The results suggest that the cytokine-evoked, transient enhancement of folliculostellate cell-mediated intercellular communication contributes to the coordination of the response among folliculostellate cells.
Collapse
Affiliation(s)
- Marie-Eve Fortin
- Department de Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada.
| | | | | | | |
Collapse
|
14
|
Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Salustri C, Oliviero A, Pizzella V, Vernieri F, Rossini PM. Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. Neuroimage 2005; 28:72-83. [PMID: 16023869 DOI: 10.1016/j.neuroimage.2005.05.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 05/10/2005] [Accepted: 05/20/2005] [Indexed: 11/18/2022] Open
Abstract
In order to deepen our knowledge of the brain's ability to react to a cerebral insult, it is fundamental to obtain a "snapshot" of the acute phase, both for understanding the neural condition immediately after the insult and as a starting point for follow-up and clinical outcome prognosis. The characteristics of the brain's spontaneous neuronal activity in perirolandic cortical areas were investigated in 32 patients who had a stroke in the middle cerebral artery (MCA) territory of one hemisphere in the previous 10 days. Magnetic fields from both left and right rolandic areas were recorded at rest with open eyes. Total and band power properties, the individual alpha frequency (IAF) and the spectral entropy were analyzed and compared with a sex-age matched control group. In agreement with electroencephalographic literature, low frequency absolute powers were higher and high frequency were lower in the affected (AH) than in the unaffected hemisphere (UH), and also their values in both hemispheres differed from control values. An IAF reduction was found in AH with respect to UH. As new findings, the total power was higher in AH than in UH, after excluding 4 right-damaged patients with cortico-subcortical lesions, who showed a completely disorganized spectral pattern. Spectral entropy was lower in AH than in UH. Clinical severity correlated with the AH decrease of gamma band power, IAF and spectral entropy. Larger lesions were associated to worse clinical pictures and MEG alterations. A lesion affecting the MCA territory of one hemisphere induces a perilesional increase of the low-frequency rhythms' spectral power within the AH rolandic areas; the same effect was present also in the UH, indicating interhemispheric diaschisis. In the AH, results showed an increase of the total power and a reduction of the spectral entropy, suggesting a higher synchrony of local neuronal activity, a reduction of the intra-cortical inhibitory networks efficiency and an increase of neuronal excitability. Direct correlation linked gamma band activity preservation and less severe clinical status. Dependence of the clinical picture, and associated spectral alterations, on the lesion volume and not on the lesion level, suggests a diffuse neuronal impairment, rather than a selective structures damage, contributing to neurological status in the acute phase of stroke.
Collapse
Affiliation(s)
- Franca Tecchio
- Istituto di Scienze e Tecnologie della Cognizione (ISTC), CNR, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Guo CY, Wu JY, Wu YB, Zhong MZ, Lu HM. Effects of endothelin-1 on hepatic stellate cell proliferation, collagen synthesis and secretion, intracellular free calcium concentration. World J Gastroenterol 2004; 10:2697-700. [PMID: 15309721 PMCID: PMC4572195 DOI: 10.3748/wjg.v10.i18.2697] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To explore the effects of endothelin-1 (ET-1) on hepatic stellate cells (HSCs) DNA uptake, DNA synthesis, collagen synthesis and secretion, inward whole-cell calcium concentration ([Ca2+]i) as well as the blocking effect of verapamil on ET-1-stimulated release of inward calcium (Ca2+) of HSC in vitro.
METHODS: Rat hepatic stellate cells (HSCs) were isolated and cultivated. 3H-TdR and 3H-proline incorporation used for testing DNA uptake and synthesis, collagen synthesis and secretion of HSCs cultured in vitro; Fluorescent calcium indicator Fura-2/AM was used to measure [Ca2+]i inward HSCs.
RESULTS: ET-1 at the concentration of 5 × 10-8 mol/L, caused significant increase both in HSC DNA synthesis (2247 ± 344 cpm, P < 0.05) and DNA uptake (P < 0.05) when compared with the control group. ET-1 could also increase collagen synthesis (P < 0.05 vs control group) and collagen secretion (P < 0.05 vs control group). Besides, inward HSC [Ca2+] i reached a peak concentration (422 ± 98 mol/L, P < 0.001) at 2 min and then went down slowly to165 ± 51 mol/L (P < 0.01) at 25 min from resting state (39 ± 4 mol/L) after treated with ET-1. Verapamil (5 mol/L) blocked ET-1-activated [Ca2+]i inward HSCs compared with control group (P < 0.05). Fura-2/AM loaded HSC was suspended in no Ca2+ buffer containing 1 mol/L EGTA, 5 min later, 10-8 mol/L of ET-1 was added, [Ca2+]i inward HSCs rose from resting state to peak 399 ± 123 mol/L, then began to come down by the time of 20 min. It could also raise [Ca2+]i inward HSCs even without Ca2+ in extracellular fluid, and had a remarkable dose-effect relationship (P < 0.05). Meanwhile, verapamil could restrain the action of ET-1 (P < 0.05).
CONCLUSION: Actions of ET-1 on collagen metabolism of HSCs may depend on the transportation of inward whole-cell calcium.
Collapse
Affiliation(s)
- Chuan-Yong Guo
- Department of Gastroenterology, Shanghai Tenth People Hospital of Tongji University, Shanghai 200072, China.
| | | | | | | | | |
Collapse
|
16
|
Sánchez-Alvarez R, Tabernero A, Medina JM. Endothelin-1 stimulates the translocation and upregulation of both glucose transporter and hexokinase in astrocytes: relationship with gap junctional communication. J Neurochem 2004; 89:703-14. [PMID: 15086527 DOI: 10.1046/j.1471-4159.2004.02398.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that endothelin-1 increases glucose uptake in astrocytes. In the present work we investigate the mechanism through which endothelin-1 (ET-1) increases glucose uptake. Our results show that ET-1 activates a short-term and a long-term mechanism. Thus, ET-1 induced a rapid change in the localization of both GLUT-1 and type I hexokinase. These changes are probably aimed at rapidly increasing the entry and phosphorylation of glucose. In addition, ET-1 upregulated GLUT-1 and type I hexokinase and induced the expression of isoforms not normally expressed in astrocytes, such as GLUT-3 and type II hexokinase. These changes provide astrocytes with the machinery required to sustain a high rate of glucose uptake for a longer period of time. Our previous work had suggested that the effect of ET-1 on glucose uptake was associated with the inhibition of gap junctions. In this work, we compare the effect of ET-1 with that of carbenoxolone, a classical inhibitor of gap junction communication. Carbenoxolone increased glucose uptake to the same extent as ET-1 following the same mechanisms. Thus, carbenoxolone induced a rapid change in the localization of both GLUT-1 and type I hexokinase, upregulated GLUT-1 and type I hexokinase and induced the expression of GLUT-3 and type II hexokinase. When the inhibition of gap junction was prevented by tolbutamide, neither ET-1 nor carbenoxolone were able to increase the levels of GLUT-1, GLUT-3, type I hexokinase or type II hexokinase, indicating that these events are closely related to gap junctions.
Collapse
Affiliation(s)
- Rosa Sánchez-Alvarez
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Spain
| | | | | |
Collapse
|