1
|
Bizen N, Takebayashi H. Diverse functions of DEAD-box proteins in oligodendrocyte development, differentiation, and homeostasis. J Neurochem 2025; 169:e16238. [PMID: 39374171 DOI: 10.1111/jnc.16238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Oligodendrocytes, a type of glial cell in the central nervous system, have a critical role in the formation of myelin around axons, facilitating saltatory conduction, and maintaining the integrity of nerve axons. The dysregulation of oligodendrocyte differentiation and homeostasis have been implicated in a wide range of neurological diseases, including dysmyelinating disorders (e.g., Pelizaeus-Merzbacher disease), demyelinating diseases (e.g., multiple sclerosis), Alzheimer's disease, and psychiatric disorders. Therefore, unraveling the mechanisms of oligodendrocyte development, differentiation, and homeostasis is essential for understanding the pathogenesis of these diseases and the development of therapeutic interventions. Numerous studies have identified and analyzed the functions of transcription factors, RNA metabolic factors, translation control factors, and intracellular and extracellular signals involved in the series of processes from oligodendrocyte fate determination to terminal differentiation. DEAD-box proteins, multifunctional RNA helicases that regulate various intracellular processes, including transcription, RNA processing, and translation, are increasingly recognized for their diverse roles in various aspects of oligodendrocyte development, differentiation, and maintenance of homeostasis. This review introduces the latest insights into the regulatory networks of oligodendrocyte biology mediated by DEAD-box proteins.
Collapse
Affiliation(s)
- Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Anatomical Studies, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
3
|
Zhang Y, Song Z, Wu R, Kong X, Zhang H, Li S, Gong X, Gong S, Cheng J, Yuan F, Wu H, Wang S, Yuan Z. PRRC2B modulates oligodendrocyte progenitor cell development and myelination by stabilizing Sox2 mRNA. Cell Rep 2024; 43:113930. [PMID: 38507412 DOI: 10.1016/j.celrep.2024.113930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) differentiate into myelin-producing cells and modulate neuronal activity. Defects in OPC development are associated with neurological diseases. N6-methyladenosine (m6A) contributes to neural development; however, the mechanism by which m6A regulates OPC development remains unclear. Here, we demonstrate that PRRC2B is an m6A reader that regulates OPC development and myelination. Nestin-Cre-mediated Prrc2b deletion affects neural stem cell self-renewal and glial differentiation. Moreover, the oligodendroglia lineage-specific deletion of Prrc2b reduces the numbers of OPCs and oligodendrocytes, causing hypomyelination and impaired motor coordination. Integrative methylated RNA immunoprecipitation sequencing, RNA sequencing, and RNA immunoprecipitation sequencing analyses identify Sox2 as the target of PRRC2B. Notably, PRRC2B, displaying separate and cooperative functions with PRRC2A, stabilizes mRNA by binding to m6A motifs in the coding sequence and 3' UTR of Sox2. In summary, we identify the posttranscriptional regulation of PRRC2B in OPC development, extending the understanding of PRRC2 family proteins and providing a therapeutic target for myelin-related disorders.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Zhihong Song
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Rong Wu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xiangxi Kong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221004, China
| | - Hongye Zhang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shuoshuo Li
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuanwei Gong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shenghui Gong
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China; Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang 050000, China
| | - Fang Yuan
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100071, China
| | - Haitao Wu
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Shukun Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Zengqiang Yuan
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| |
Collapse
|
4
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
5
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
6
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|