1
|
Jiménez-Balado J, Habeck C, Stern Y, Eich T. The relationship between cortical thickness and white matter hyperintensities in mid to late life. Neurobiol Aging 2024; 141:129-139. [PMID: 38909430 PMCID: PMC11313098 DOI: 10.1016/j.neurobiolaging.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024]
Abstract
White matter hyperintensities (WMH) are associated with cortical thinning. Although they are primarily detected in older participants, these lesions can appear in younger and midlife individuals. Here, we tested whether WMH are associated with cortical thinning in relatively younger (26-50 years) and relatively older (58-84) participants who were free of dementia, and how these associations are moderated by WMH localization. WMH were automatically quantified and categorized according to the localization of three classes of white matter tracts: association, commissural and projection fibers. Mediation analyses were used to infer whether differences in cortical thickness between younger and older participants were explained by WMH. Our results revealed that total WMH explained between 20.6 % and 65.5 % of the effect of age on cortical thickness in AD-signature regions including the lateral temporal lobes and supramarginal gyrus, among others. This mediation was slightly stronger for projection WMH, although it was still significant for association and commissural WMH. These results suggest that there is an interplay between vascular and AD causes of cognitive impairment that starts at younger ages.
Collapse
Affiliation(s)
- Joan Jiménez-Balado
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Neurovascular Research Group, IMIM-Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Barcelona 08003, Spain
| | - Christian Habeck
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yaakov Stern
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Teal Eich
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Fiford CM, Manning EN, Bartlett JW, Cash DM, Malone IB, Ridgway GR, Lehmann M, Leung KK, Sudre CH, Ourselin S, Biessels GJ, Carmichael OT, Fox NC, Cardoso MJ, Barnes J. White matter hyperintensities are associated with disproportionate progressive hippocampal atrophy. Hippocampus 2017; 27:249-262. [PMID: 27933676 PMCID: PMC5324634 DOI: 10.1002/hipo.22690] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023]
Abstract
This study investigates relationships between white matter hyperintensity (WMH) volume, cerebrospinal fluid (CSF) Alzheimer's disease (AD) pathology markers, and brain and hippocampal volume loss. Subjects included 198 controls, 345 mild cognitive impairment (MCI), and 154 AD subjects with serial volumetric 1.5‐T MRI. CSF Aβ42 and total tau were measured (n = 353). Brain and hippocampal loss were quantified from serial MRI using the boundary shift integral (BSI). Multiple linear regression models assessed the relationships between WMHs and hippocampal and brain atrophy rates. Models were refitted adjusting for (a) concurrent brain/hippocampal atrophy rates and (b) CSF Aβ42 and tau in subjects with CSF data. WMH burden was positively associated with hippocampal atrophy rate in controls (P = 0.002) and MCI subjects (P = 0.03), and with brain atrophy rate in controls (P = 0.03). The associations with hippocampal atrophy rate remained following adjustment for concurrent brain atrophy rate in controls and MCIs, and for CSF biomarkers in controls (P = 0.007). These novel results suggest that vascular damage alongside AD pathology is associated with disproportionately greater hippocampal atrophy in nondemented older adults. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cassidy M Fiford
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Emily N Manning
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | | | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Ian B Malone
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Gerard R Ridgway
- Nuffield Department of Clinical Neurosciences, FMRIB Centre, University of Oxford, United Kingdom.,Wellcome Trust Centre for Neuroimaging, London, United Kingdom
| | - Manja Lehmann
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Kelvin K Leung
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - Carole H Sudre
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus University Medical Center Utrecht, The Netherlands
| | | | - Nick C Fox
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | - M Jorge Cardoso
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Josephine Barnes
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
3
|
Peres R, De Guio F, Chabriat H, Jouvent E. Alterations of the cerebral cortex in sporadic small vessel disease: A systematic review of in vivo MRI data. J Cereb Blood Flow Metab 2016; 36:681-95. [PMID: 26787108 PMCID: PMC4821027 DOI: 10.1177/0271678x15625352] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/10/2015] [Indexed: 11/16/2022]
Abstract
Cerebral small vessel diseases of the brain are a major determinant of cognitive impairment in the elderly. In small vessel diseases, the most easily identifiable lesions, both at post-mortem evaluation and magnetic resonance imaging, lie in subcortical areas. However, recent results obtained post-mortem, particularly in severe cases, have highlighted the burden of cortex lesions such as microinfarcts and diffuse neuronal loss. The recent development of image post-processing methods allows now assessing in vivo multiple aspects of the cerebral cortex. This systematic review aimed to analyze in vivo magnetic resonance imaging studies evaluating cortex alterations at different stages of small vessel diseases. Studies assessing the relationships between small vessel disease magnetic resonance imaging markers obtained at the subcortical level and cortex estimates were reviewed both in community-dwelling elderly and in patients with symptomatic small vessel diseases. Thereafter, studies analyzing cortex estimates in small vessel disease patients compared with healthy subjects were evaluated. The results support that important cortex alterations develop along the course of small vessel diseases independently of concomitant neurodegenerative processes. Easy detection and quantification of cortex changes in small vessel diseases as well as understanding their underlying mechanisms are challenging tasks for better understanding cognitive decline in small vessel diseases.
Collapse
Affiliation(s)
- Roxane Peres
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France DHU NeuroVasc Sorbonne Paris Cité, Paris, France
| | - François De Guio
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France DHU NeuroVasc Sorbonne Paris Cité, Paris, France
| | - Hugues Chabriat
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France DHU NeuroVasc Sorbonne Paris Cité, Paris, France Department of Neurology, AP-HP, Lariboisière Hosp, F-75475 Paris, France
| | - Eric Jouvent
- Univ Paris Diderot, Sorbonne Paris Cité, UMR-S 1161 INSERM, Paris, France DHU NeuroVasc Sorbonne Paris Cité, Paris, France Department of Neurology, AP-HP, Lariboisière Hosp, F-75475 Paris, France
| |
Collapse
|
4
|
Eckert MA. Slowing down: age-related neurobiological predictors of processing speed. Front Neurosci 2011; 5:25. [PMID: 21441995 PMCID: PMC3061488 DOI: 10.3389/fnins.2011.00025] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/15/2011] [Indexed: 11/21/2022] Open
Abstract
Processing speed, or the rate at which tasks can be performed, is a robust predictor of age-related cognitive decline and an indicator of independence among older adults. This review examines evidence for neurobiological predictors of age-related changes in processing speed, which is guided in part by our source based morphometry findings that unique patterns of frontal and cerebellar gray matter predict age-related variation in processing speed. These results, together with the extant literature on morphological predictors of age-related changes in processing speed, suggest that specific neural systems undergo declines and as a result slow processing speed. Future studies of processing speed – dependent neural systems will be important for identifying the etiologies for processing speed change and the development of interventions that mitigate gradual age-related declines in cognitive functioning and enhance healthy cognitive aging.
Collapse
Affiliation(s)
- Mark A Eckert
- Hearing Research Program, Department of Otolaryngology - Head and Neck Surgery, Medical University of South Carolina Charleston, SC, USA
| |
Collapse
|