1
|
Jensen KHR, Dam VH, Köhler-Forsberg K, Ozenne B, Stenbæk DS, Ganz M, Fisher PM, Frokjaer VG, Knudsen GM, Jørgensen MB. Changes in hippocampal volume, 5-HT 4 receptor binding, and verbal memory over the course of antidepressant treatment in major depressive disorder. J Psychiatr Res 2025; 181:197-205. [PMID: 39616866 DOI: 10.1016/j.jpsychires.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 01/22/2025]
Abstract
Serotonin reuptake inhibitors have been reported to increase hippocampal volume and improve memory function in patients with Major depressive disorder (MDD). The postsynaptic 5-HT4 receptor (5-HT4R) is involved in hippocampal development, familial risk for depression and depressive pathology. In an open-label trial with 91 patients (72% female, mean 27.2 years) with MDD, we investigated the relation between changes in hippocampal volume, 5-HT4R, and verbal memory during 12 weeks treatment with 10-20 mg escitalopram. Depression severity, verbal memory, MRI-determined hippocampus volume and PET-determined 5-HT4R were measured pretreatment. Forty-three patients were rescanned at week 8. HAMD17 was reassessed at week 8 and together with verbal memory at week 12. We used mixed-effects models and linear regressions. We estimated a 27 mm3 (p = 0.086) reduction in mean hippocampus volume over the course of eight weeks. In patients clinically responding to treatment, we estimated a 45 mm3 reduction (p = 0.019), 8 mm3 increase in non-responders (p = 0.78), and a 52 mm3 group difference (p = 0.12). Hippocampal 5-HT4 receptor binding before treatment and at week eight was negatively associated with hippocampal volume in females, regardless of treatment response (p-values≤0.006). However, no clear evidence for an association in males or sex interaction could be established (p-values≥0.16). Although the hippocampus volume did not increase with treatment, we found a decrease in clinically responsive patients. Our findings suggest an association between 5-HT4R signalling and changes in hippocampal volume in females with MDD during antidepressant treatment, highlighting the need for further investigation into the role of serotonergic mechanisms in hippocampal plasticity.
Collapse
Affiliation(s)
- Kristian H Reveles Jensen
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Vibeke H Dam
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kristin Köhler-Forsberg
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Dea S Stenbæk
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Patrick MacDonald Fisher
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vibe Gedsoe Frokjaer
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin Balslev Jørgensen
- Neurobiology Research Unit and BrainDrugs, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Mental Health Center Copenhagen, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang T, Shaw M, Cherbuin N. Association between Type 2 Diabetes Mellitus and Brain Atrophy: A Meta-Analysis. Diabetes Metab J 2022; 46:781-802. [PMID: 35255549 PMCID: PMC9532183 DOI: 10.4093/dmj.2021.0189] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is known to be associated with cognitive decline and brain structural changes. This study systematically reviews and estimates human brain volumetric differences and atrophy associated with T2DM. METHODS PubMed, PsycInfo and Cochrane Library were searched for brain imaging studies reporting on brain volume differences between individuals with T2DM and healthy controls. Data were examined using meta-analysis, and association between age, sex, diabetes characteristics and brain volumes were tested using meta-regression. RESULTS A total of 14,605 entries were identified; after title, abstract and full-text screening applying inclusion and exclusion criteria, 64 studies were included and 42 studies with compatible data contributed to the meta-analysis (n=31,630; mean age 71.0 years; 44.4% male; 26,942 control; 4,688 diabetes). Individuals with T2DM had significantly smaller total brain volume, total grey matter volume, total white matter volume and hippocampal volume (approximately 1% to 4%); meta-analyses of smaller samples focusing on other brain regions and brain atrophy rate in longitudinal investigations also indicated smaller brain volumes and greater brain atrophy associated with T2DM. Meta-regression suggests that diabetes-related brain volume differences start occurring in early adulthood, decreases with age and increases with diabetes duration. CONCLUSION T2DM is associated with smaller total and regional brain volume and greater atrophy over time. These effects are substantial and highlight an urgent need to develop interventions to reduce the risk of T2DM for brain health.
Collapse
Affiliation(s)
- Tianqi Zhang
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Marnie Shaw
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health and Wellbeing, The Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Sen ZD, Danyeli LV, Woelfer M, Lamers F, Wagner G, Sobanski T, Walter M. Linking atypical depression and insulin resistance-related disorders via low-grade chronic inflammation: Integrating the phenotypic, molecular and neuroanatomical dimensions. Brain Behav Immun 2021; 93:335-352. [PMID: 33359233 DOI: 10.1016/j.bbi.2020.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
Insulin resistance (IR) and related disorders, such as T2DM, increase the risk of major depressive disorder (MDD) and vice versa. Current evidence indicates that psychological stress and overeating can induce chronic low-grade inflammation that can interfere with glutamate metabolism in MDD as well as insulin signaling, particularly in the atypical subtype. Here we first review the interactive role of inflammatory processes in the development of MDD, IR and related metabolic disorders. Next, we describe the role of the anterior cingulate cortex in the pathophysiology of MDD and IR-related disorders. Furthermore, we outline how specific clinical features of atypical depression, such as hyperphagia, are more associated with inflammation and IR-related disorders. Finally, we examine the regional specificity of the effects of inflammation on the brain that show an overlap with the functional and morphometric brain patterns activated in MDD and IR-related disorders.
Collapse
Affiliation(s)
- Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Oldenaller 1, 1081 HJ Amsterdam, the Netherlands
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany
| | - Thomas Sobanski
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Thueringen-Kliniken "Georgius Agricola" GmbH, Rainweg 68, 07318 Saalfeld, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University Tuebingen, Calwerstraße 14, 72076 Tuebingen, Germany; Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, 07743 Jena, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Leipziger Str. 44, Building 65, 39120 Magdeburg, Germany; Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.
| |
Collapse
|
4
|
Jean MDK, Mihailescu DV, Ajilore O, Kumar A, Ajilore OA. Younger age negatively impacts depression-associated exacerbation of hemoglobin A1c levels in type 2 diabetes: Implications for intervention. Stress Health 2020; 36:11-18. [PMID: 31693291 DOI: 10.1002/smi.2904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 09/03/2019] [Accepted: 10/06/2019] [Indexed: 02/01/2023]
Abstract
Adults with type 2 diabetes (T2DM) and depression are associated with higher hemoglobin A1C (HbA1C ) compared to their nondepressed counterparts. Little is known about related clinical and demographic components contributing to these differences. We examined differences in HbA1C between adults who have T2DM with and without major depression. T tests and chi-square analyses measured differences in HbA1C and clinical/demographic variables. HbA1C was statistically higher in depressed participants compared to nondepressed participants. The difference was no longer statistically significant after controlling for age. Age and HbA1C were negatively correlated across the sample and were still correlated in each group independently. The interaction of age and HbA1C was moderated by depression status. Additionally, mechanisms for diabetes severity differences were assessed using moderation analyses and Blinder-Oaxaca decomposition technique. Seventy-four percent of the mean outcome HbA1C difference between depressed and nondepressed diabetic participants was explained by age. Furthermore, age was negatively correlated with clinical variables, such as diastolic blood pressure and cholesterol. Comparing age to smoking and nonsmoking participants, smokers were statistically younger. Younger adults with T2DM may require more attention regarding self-management, particularly in the context of depression. Depression should be screened and treated among individuals with diabetes since this exacerbates diabetes severity.
Collapse
Affiliation(s)
- Moïse-Denis K Jean
- School of Public Health, University of Illinois at Chicago, Chicago, Illinois
| | - Dan V Mihailescu
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Illinois at Chicago, Chicago, Illinois
| | | | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Olusola A Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 958] [Impact Index Per Article: 159.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
6
|
Rosenberg J, Lechea N, Pentang GN, Shah NJ. What magnetic resonance imaging reveals - A systematic review of the relationship between type II diabetes and associated brain distortions of structure and cognitive functioning. Front Neuroendocrinol 2019; 52:79-112. [PMID: 30392901 DOI: 10.1016/j.yfrne.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/19/2022]
Abstract
Due to its increasing prevalence, Type 2 diabetes mellitus (T2DM) represents a major health challenge for modern society. Despite it being of fundamental interest, only a few MRI studies have conducted statistical analyses to draw scientifically valid conclusions about the complex interplay of T2DM and its associated clinical, structural, functional, metabolite, as well as cognitive distortions. Therefore, a systematic review of 68 manuscripts, following the PRISMA guidelines, was conducted. Notably, although the associations between imaging, clinical, and cognitive variables are not fully homogeneous, findings show a clear trend towards a link between altered brain structure and a decline in cognitive processing ability. The results of the review highlight the heterogeneity of the methods used across manuscripts in terms of assessed clinical variables, imaging, and data analysis methods. This is particularly significant as, if the subjects' criteria are not carefully considered, results are easily prone to confounding factors.
Collapse
Affiliation(s)
- Jessica Rosenberg
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany.
| | - Nazim Lechea
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Gael N Pentang
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-4), Medical Imaging Physics, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; JARA - Translational Brain Medicine & INM-11, RWTH Aachen University, 52074 Aachen, Germany; Department of Neurology, University Clinic Aachen, 52074 Aachen, Germany; Department of Electrical and Computer Systems Engineering, and Monash Biomedical Imaging, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Peters AT, Smith RA, Kassel MT, Hagan M, Maki P, Van Meter A, Briceño EM, Ryan KA, Weldon AL, Weisenbach SL, Starkman MN, Langenecker SA. A pilot investigation of differential neuroendocrine associations with fronto-limbic activation during semantically-cued list learning in mood disorders. J Affect Disord 2018; 239:180-191. [PMID: 30014958 DOI: 10.1016/j.jad.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/18/2018] [Accepted: 07/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Decreased volume and disrupted function in neural structures essential for memory formation (e.g. medial temporal lobe and prefrontal cortex) are common among individuals with depression. Hypothalamic-pituitary-axis function, as reflected by measurement of cortisol levels, is linked to neural activity during memory encoding in healthy people. However, it is not as well understood whether cortisol is associated with alterations in fronto-temporal recruitment during memory encoding in depression. METHODS In this pilot study, we evaluated associations between cortisol and neural activation during memory encoding in 62 adults (18-65 years) with mood disorders (MD; n = 39, 66.7% female), including major depression (n = 28) and bipolar I disorder (n = 11), and healthy controls (HC; n = 23, 43.5% female). Participants provided salivary cortisol samples before and after completing a semantically-cued list-learning task during 3-Tesla fMRI. Links between pre-scan cortisol (and cortisol change) and activation during encoding were evaluated using block and event-related models. RESULTS Overall, pre-scan cortisol level was positively associated with greater engagement of fronto-limbic activation during the encoding block. However, in MD, pre-scan cortisol was associated with attenuated activation during encoding in medial frontal, superior and middle temporal gyri, insula, lingual gyrus, and claustrum relative to HCs. Cortisol-related attenuation of activation in MD was also observed during encoding of words subsequently recalled in the ventral anterior cingulate, hypothalamus, and middle temporal gyrus. By and large, cortisol change (pre/post scan) predicted the same pattern of findings in both block and event-related contrasts. LIMITATIONS Although analyses accounted for variations in scanner time of day, circadian alterations in cortisol may have introduced variability into the results. CONCLUSIONS Pre-scan cortisol may selectively interfere with recruitment of important fronto-temporal memory circuitry in mood disorders. The inverted associations between cortisol and neural function in MD relative to HC also elucidate potentially unique pathophysiological markers of mood disorders.
Collapse
Affiliation(s)
- A T Peters
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - R A Smith
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - M T Kassel
- Department of Psychology, University of Wisconsin-Milwaukee, USA
| | - M Hagan
- Department of Psychology, San Francisco State University, USA; Department of Psychiatry, University of California, San Francisco, USA
| | - P Maki
- Department of Psychiatry, University of Illinois at Chicago, USA
| | - A Van Meter
- Department of Psychiatry Research, The Feinstein Institute for Medical Research, Zucker Hillside Hospital, USA
| | - E M Briceño
- Department of Psychiatry, University of Michigan Medical Center, USA
| | - K A Ryan
- Department of Psychiatry, University of Michigan Medical Center, USA
| | - A L Weldon
- Department of Psychology, University of Illinois Urbana-Champaign, USA
| | - S L Weisenbach
- Department of Psychiatry, University of Utah, USA; VA Salt Lake City Healthcare System, USA
| | - M N Starkman
- Department of Psychiatry, University of Michigan Medical Center, USA
| | - S A Langenecker
- Department of Psychiatry, University of Illinois at Chicago, USA.
| |
Collapse
|
8
|
Black S, Kraemer K, Shah A, Simpson G, Scogin F, Smith A. Diabetes, Depression, and Cognition: a Recursive Cycle of Cognitive Dysfunction and Glycemic Dysregulation. Curr Diab Rep 2018; 18:118. [PMID: 30267224 DOI: 10.1007/s11892-018-1079-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The study aims to examine the effects of diabetes and depression on executive functioning (EF) and to review the effects of EF deficits on diabetes management. RECENT FINDINGS Both type 2 diabetes and depression influence EF, and in turn, EF has an impact on diabetes management. Individuals with both comorbidities (i.e., diabetes and depression) experience greater deficits in EF than individuals with just one of the morbidities (i.e., depression or diabetes). The disruption in EF results in poor diabetes management and poor emotion regulation which ultimately increases the probability of a recursive cycle of depression and hyperglycemia. This recursive cycle can ultimately lead to diabetes-related complications.
Collapse
Affiliation(s)
- Sheila Black
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA.
| | - Kyle Kraemer
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| | - Avani Shah
- School of Social Work, University of Alabama, Box 870314, Tuscaloosa, AL, 35401, USA
| | - Gaynell Simpson
- School of Social Work, University of Alabama, Box 870314, Tuscaloosa, AL, 35401, USA
| | - Forrest Scogin
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| | - Annie Smith
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
9
|
Lamar M, Rubin LH, Ajilore O, Charlton R, Zhang A, Yang S, Cohen J, Kumar A. What Metabolic Syndrome Contributes to Brain Outcomes in African American & Caucasian Cohorts. Curr Alzheimer Res 2016; 12:640-7. [PMID: 26239040 DOI: 10.2174/1567205012666150701102325] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/28/2015] [Indexed: 12/19/2022]
Abstract
Metabolic syndrome (MetS), i.e., meeting criteria for any three of the following: hyperglycemia, hypertension, hypertriglyceridemia, low high-density lipoprotein and/or abdominal obesity, is associated with negative health outcomes. For example, MetS negatively impacts cognition; however, less is known about incremental MetS risk, i.e., meeting 1 or 2 as opposed to 3 or more criteria. We hypothesized incremental MetS risk would negatively contribute to cognition and relevant neuroanatomy, e.g., memory and hippocampal volumes, and that this risk extends to affective functioning. 119 non-demented/non-depressed participants (age=60.1+12.9;~50% African American) grouped by incremental MetS risk-no (0 criteria met), low (1-2 criteria met), or high (3+ criteria met)-were compared across cognition, affect and relevant neuroanatomy using multivariable linear regressions. Exploratory analyses, stratified by race, consider the role of health disparities in disease severity of individual MetS component (e.g., actual blood pressure readings) on significant results from primary analyses. Incremental MetS risk contributed to depressive symptomatology (no<low<high), learning and memory performance (no>low=high) after controlling for age, race (n.s.) and IQ. Different indices of disease severity contributed to different aspects of brain structure and function by race providing empirical support for future studies of the impact distinct health disparities in vascular risk have on brain aging. MetS compromised mood, cognition and hippocampal structure with incremental risk applying to some but not all of these outcomes. Care providers may wish to monitor a broader spectrum of risk including components of MetS like blood pressure and cholesterol levels when considering brain-behavior relationships in adults from diverse populations.
Collapse
Affiliation(s)
- Melissa Lamar
- University of Illinois at Chicago, 1601 West Taylor Street (MC912), Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|