1
|
Menceloglu M, Nakayama K, Song JH. Radial bias alters high-level motion perception. Vision Res 2023; 209:108246. [PMID: 37149959 DOI: 10.1016/j.visres.2023.108246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
The visual system involves various orientation and visual field anisotropies, one of which is a preference for radial orientations and motion directions. By radial, we mean those directions coursing symmetrically outward from the fovea into the periphery. This bias stems from anatomical and physiological substrates in the early visual system. We recently reported that this low-level visual anisotropy can alter perceived object orientation. Here, we report that radial bias can also alter another higher-level system, the perceived direction of apparent motion. We presented a bistable apparent motion quartet in the center of the screen while participants fixated on various locations around the quartet. Participants (N = 22) were strongly biased to see the motion direction that was radial with respect to their fixation, controlling for any biases with center fixation. This was observed using a vertical-horizontal quartet as well as an oblique quartet (45° rotated quartet). The latter allowed us to rule out the contribution of the hemisphere effect where motion across the midline is perceived less often. These results extend our earlier findings on perceived object orientation, showing that low-level structural aspects of the visual system alter yet another higher-level visual process, that of apparent motion perception.
Collapse
Affiliation(s)
- Melisa Menceloglu
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States.
| | - Ken Nakayama
- Department of Psychology, University of California, Berkeley, CA, United States
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States; Carney Institute for Brain Science, Brown University, Providence, RI, United States
| |
Collapse
|
2
|
Johnson PA, Blom T, van Gaal S, Feuerriegel D, Bode S, Hogendoorn H. Position representations of moving objects align with real-time position in the early visual response. eLife 2023; 12:e82424. [PMID: 36656268 PMCID: PMC9851612 DOI: 10.7554/elife.82424] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023] Open
Abstract
When interacting with the dynamic world, the brain receives outdated sensory information, due to the time required for neural transmission and processing. In motion perception, the brain may overcome these fundamental delays through predictively encoding the position of moving objects using information from their past trajectories. In the present study, we evaluated this proposition using multivariate analysis of high temporal resolution electroencephalographic data. We tracked neural position representations of moving objects at different stages of visual processing, relative to the real-time position of the object. During early stimulus-evoked activity, position representations of moving objects were activated substantially earlier than the equivalent activity evoked by unpredictable flashes, aligning the earliest representations of moving stimuli with their real-time positions. These findings indicate that the predictability of straight trajectories enables full compensation for the neural delays accumulated early in stimulus processing, but that delays still accumulate across later stages of cortical processing.
Collapse
|
3
|
Menceloglu M, Nakayama K, Song JH. Radial Bias Alters Perceived Object Orientation. Psychol Sci 2022; 33:2098-2108. [PMID: 36252853 DOI: 10.1177/09567976221110243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Orientation sensitivity is a fundamental property of the visual system, but not all orientations are created equal. For instance, radially oriented stimuli, aligned with a line intersecting the center of gaze, produce greater activity throughout the visual cortex and are associated with greater perceptual sensitivity compared with other orientations. Here, we discuss a robust visual illusion that is likely related to this preference. Using a continuous response measure, participants (N = 36 adults) indicated the gap position in a peripheral Landolt C placed in one of eight orientations and eight locations along four meridians (vertical, horizontal, 45°, 135°). The error distributions revealed that the perceived gap was attracted toward the radial axis. For instance, the gap in a regular C would often be wrongly perceived as tilted 45° corresponding to the oblique meridian where it was placed. These findings demonstrate an unsuspected early-vision influence on the perceived orientation of an object.
Collapse
Affiliation(s)
- Melisa Menceloglu
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University
| | - Ken Nakayama
- Department of Psychology, University of California, Berkeley
| | - Joo-Hyun Song
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University.,Carney Institute for Brain Science, Brown University
| |
Collapse
|
4
|
Stoll S, Finlayson NJ, Schwarzkopf DS. Topographic signatures of global object perception in human visual cortex. Neuroimage 2020; 220:116926. [PMID: 32442640 PMCID: PMC7573540 DOI: 10.1016/j.neuroimage.2020.116926] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/12/2023] Open
Abstract
Our visual system readily groups dynamic fragmented input into global objects. How the brain represents global object perception remains however unclear. To address this question, we recorded brain responses using functional magnetic resonance imaging whilst observers viewed a dynamic bistable stimulus that could either be perceived globally (i.e., as a grouped and coherently moving shape) or locally (i.e., as ungrouped and incoherently moving elements). We further estimated population receptive fields and used these to back-project the brain activity measured during stimulus perception into visual space via a searchlight procedure. Global perception resulted in universal suppression of responses in lower visual cortex accompanied by wide-spread enhancement in higher object-sensitive cortex. However, follow-up experiments indicated that higher object-sensitive cortex is suppressed if global perception lacks shape grouping, and that grouping-related suppression can be diffusely confined to stimulated sites and accompanied by background enhancement once stimulus size is reduced. These results speak to a non-generic involvement of higher object-sensitive cortex in perceptual grouping and point to an enhancement-suppression mechanism mediating the perception of figure and ground. Lower visual cortex activity to grouped vs ungrouped dynamic stimuli is suppressed. When grouping a shape, activity in higher object-sensitive cortex is enhanced. Without shape grouping, activity in higher object-sensitive cortex is suppressed. Grouping-related suppression can be diffusely confined to stimulated cortical sites.
Collapse
Affiliation(s)
- Susanne Stoll
- Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - Nonie J Finlayson
- Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - D Samuel Schwarzkopf
- Experimental Psychology, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| |
Collapse
|
5
|
Schellekens W, Ramsey NF, van Wezel RJA, Raemaekers M. Changes in fMRI BOLD dynamics reflect anticipation to moving objects. Neuroimage 2017; 161:188-195. [PMID: 27620983 DOI: 10.1016/j.neuroimage.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 11/15/2022] Open
Abstract
The human brain is thought to respond differently to novel versus predictable neural input. In human visual cortex, neural response amplitude to visual input might be determined by the degree of predictability. We investigated how fMRI BOLD responses in human early visual cortex reflect the anticipation of a single moving bar's trajectory. We found that BOLD signals decreased linearly from onset to offset of the stimulus trajectory. Moreover, decreased amplitudes of BOLD responses coincided with an increased initial dip as the stimulus moved along its trajectory. Importantly, motion anticipation effects were absent, when motion coherence was disrupted by means of stimulus contrast reversals. These results show that human early visual cortex anticipates the trajectory of a coherently moving object at the initial stages of visual motion processing. The results can be explained by suppression of predictable input, plausibly underlying the formation of stable visual percepts.
Collapse
Affiliation(s)
- W Schellekens
- Brain Center Rudolf Magnus, Department of Neurology, UMC Utrecht, Utrecht, The Netherlands.
| | - N F Ramsey
- Brain Center Rudolf Magnus, Department of Neurology, UMC Utrecht, Utrecht, The Netherlands
| | - R J A van Wezel
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Biomedical Signals and Systems, MIRA, University of Twente, Enschede, The Netherlands
| | - M Raemaekers
- Brain Center Rudolf Magnus, Department of Neurology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Visual motion transforms visual space representations similarly throughout the human visual hierarchy. Neuroimage 2015; 127:173-185. [PMID: 26666897 DOI: 10.1016/j.neuroimage.2015.11.070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/19/2015] [Accepted: 11/29/2015] [Indexed: 11/24/2022] Open
Abstract
Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms.
Collapse
|
7
|
Maloney RT, Clifford CW. Orientation anisotropies in human primary visual cortex depend on contrast. Neuroimage 2015; 119:129-45. [DOI: 10.1016/j.neuroimage.2015.06.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/15/2015] [Accepted: 06/10/2015] [Indexed: 11/28/2022] Open
|
8
|
Predictions to motion stimuli in human early visual cortex: Effects of motion displacement on motion predictability. Neuroimage 2015; 118:118-25. [PMID: 26026815 DOI: 10.1016/j.neuroimage.2015.05.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022] Open
Abstract
Recently, several studies showed that fMRI BOLD responses to moving random dot stimuli are enhanced at the location of dot appearance, i.e., the motion trailing edge. Possibly, BOLD activity in human visual cortex reflects predictability of visual motion input. In the current study, we investigate to what extent fMRI BOLD responses reflect estimated predictions to visual motion. We varied motion displacement parameters (duration and velocity), while measuring BOLD amplitudes as a function of distance from the trailing edge. We have found that for all stimulus configurations, BOLD signals decrease with increasing distance from the trailing edge. This finding indicates that neural activity directly reflects the predictability of moving dots, rather than their appearance within classical receptive fields. However, different motion displacement parameters exerted only marginal effects on predictability, suggesting that early visual cortex does not literally predict motion trajectories. Rather, the results reveal a heuristic mechanism of motion suppression from trailing to leading edge, plausibly mediated through short-range horizontal connections. Simple heuristic suppression allows the visual system to recognize novel input among many motion signals, while being most energy efficient.
Collapse
|
9
|
Ahmadlou M, Heimel JA. Preference for concentric orientations in the mouse superior colliculus. Nat Commun 2015; 6:6773. [PMID: 25832803 PMCID: PMC4396361 DOI: 10.1038/ncomms7773] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 01/23/2023] Open
Abstract
The superior colliculus is a layered structure important for body- and gaze-orienting responses. Its superficial layer is, next to the lateral geniculate nucleus, the second major target of retinal ganglion axons and is retinotopically organized. Here we show that in the mouse there is also a precise organization of orientation preference. In columns perpendicular to the tectal surface, neurons respond to the same visual location and prefer gratings of the same orientation. Calcium imaging and extracellular recording revealed that the preferred grating varies with retinotopic location, and is oriented parallel to the concentric circle around the centre of vision through the receptive field. This implies that not all orientations are equally represented across the visual field. This makes the superior colliculus different from visual cortex and unsuitable for translation-invariant object recognition and suggests that visual stimuli might have different behavioural consequences depending on their retinotopic location. The mammalian superior colliculus (SC) processes visual stimuli but little is known about the spatial organization of the response preferences for specific visual features. Here the authors show that the mouse SC contains a map for orientation preference such that preferred grating orientation is aligned to concentric circles around the centre of the visual field.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
10
|
Abstract
Functional magnetic resonance imaging (fMRI) studies have relied on multivariate analysis methods to decode visual motion direction from measurements of cortical activity. Above-chance decoding has been commonly used to infer the motion-selective response properties of the underlying neural populations. Moreover, patterns of reliable response biases across voxels that underlie decoding have been interpreted to reflect maps of functional architecture. Using fMRI, we identified a direction-selective response bias in human visual cortex that: (1) predicted motion-decoding accuracy; (2) depended on the shape of the stimulus aperture rather than the absolute direction of motion, such that response amplitudes gradually decreased with distance from the stimulus aperture edge corresponding to motion origin; and 3) was present in V1, V2, V3, but not evident in MT+, explaining the higher motion-decoding accuracies reported previously in early visual cortex. These results demonstrate that fMRI-based motion decoding has little or no dependence on the underlying functional organization of motion selectivity.
Collapse
|
11
|
Schellekens W, van Wezel RJA, Petridou N, Ramsey NF, Raemaekers M. Predictive coding for motion stimuli in human early visual cortex. Brain Struct Funct 2014; 221:879-90. [DOI: 10.1007/s00429-014-0942-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
|
12
|
Maloney RT, Watson TL, Clifford CW. Determinants of motion response anisotropies in human early visual cortex: The role of configuration and eccentricity. Neuroimage 2014; 100:564-79. [DOI: 10.1016/j.neuroimage.2014.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/10/2014] [Accepted: 06/24/2014] [Indexed: 11/16/2022] Open
|
13
|
Maloney RT, Watson TL, Clifford CWG. Human cortical and behavioral sensitivity to patterns of complex motion at eccentricity. J Neurophysiol 2013; 110:2545-56. [DOI: 10.1152/jn.00445.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Complex patterns of image motion (contracting, expanding, rotating, and spiraling fields) are important in the coordination of visually guided behaviors. Whereas specialized detectors in monkey visual cortex show selectivity for particular patterns of complex motion, their representation in human visual cortex remains unclear. In the present study, functional magnetic resonance imaging (fMRI) was used to investigate the sensitivity of functionally defined regions of human visual cortex to parametrically modulated complex motion trajectories, coupled with complementary psychophysical testing. A unique stimulus design made it possible to disambiguate the neural responses and psychophysical sensitivity to complex motions per se from the distribution of local motions relative to the fovea, which are known to enhance cortical activity when presented radial to fixation. This involved presenting several small, separate motion fields in the periphery in a manner that distinguished them from global optic flow patterns. The patterns were morphed through complex motion space in a systematic time-locked fashion when presented in the scanner. Anisotropies were observed in the fMRI signal, marked by an enhanced response to expanding vs. contracting fields, even in early visual cortex. Anisotropies in the psychophysical sensitivity measures followed a similar pattern that was correlated with activity in areas hV4, V5/MT, and MST. This represents the first systematic examination of complex motion perception at both a behavioral and neural level in human observers. The characteristic processing anisotropy revealed in both data sets can inform models of complex motion processing, particularly with respect to computations performed in early visual cortex.
Collapse
Affiliation(s)
- Ryan T. Maloney
- Colour, Form and Motion Laboratory, School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia; and
| | - Tamara L. Watson
- School of Social Sciences and Psychology, The University of Western Sydney, Bankstown, New South Wales, Australia
| | - Colin W. G. Clifford
- Colour, Form and Motion Laboratory, School of Psychology, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Australian Research Council Centre of Excellence in Vision Science, The University of Sydney, Sydney, New South Wales, Australia; and
| |
Collapse
|
14
|
Abstract
The rapid advances in brain imaging technology over the past 20 years are affording new insights into cortical processing hierarchies in the human brain. These new data provide a complementary front in seeking to understand the links between perceptual and physiological states. Here we review some of the challenges associated with incorporating brain imaging data into such "linking hypotheses," highlighting some of the considerations needed in brain imaging data acquisition and analysis. We discuss work that has sought to link human brain imaging signals to existing electrophysiological data and opened up new opportunities in studying the neural basis of complex perceptual judgments. We consider a range of approaches when using human functional magnetic resonance imaging to identify brain circuits whose activity changes in a similar manner to perceptual judgments and illustrate these approaches by discussing work that has studied the neural basis of 3D perception and perceptual learning. Finally, we describe approaches that have sought to understand the information content of brain imaging data using machine learning and work that has integrated multimodal data to overcome the limitations associated with individual brain imaging approaches. Together these approaches provide an important route in seeking to understand the links between physiological and psychological states.
Collapse
|
15
|
Raemaekers M, Schellekens W, van Wezel RJA, Petridou N, Kristo G, Ramsey NF. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study. Neuroimage 2013; 84:911-21. [PMID: 24099850 DOI: 10.1016/j.neuroimage.2013.09.060] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/20/2022] Open
Abstract
The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity.
Collapse
Affiliation(s)
- Mathijs Raemaekers
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Integration of motion responses underlying directional motion anisotropy in human early visual cortical areas. PLoS One 2013; 8:e67468. [PMID: 23840711 PMCID: PMC3696083 DOI: 10.1371/journal.pone.0067468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain.
Collapse
|
17
|
Illusory movement of stationary stimuli in the visual periphery: evidence for a strong centrifugal prior in motion processing. J Neurosci 2013; 33:4415-23. [PMID: 23467358 DOI: 10.1523/jneurosci.4744-12.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Visual input is remarkably diverse. Certain sensory inputs are more probable than others, mirroring statistical regularities of the visual environment. The visual system exploits many of these regularities, resulting, on average, in better inferences about visual stimuli. However, by incorporating prior knowledge into perceptual decisions, visual processing can also result in perceptions that do not match sensory inputs. Such perceptual biases can often reveal unique insights into underlying mechanisms and computations. For example, a prior assumption that objects move slowly can explain a wide range of motion phenomena. The prior on slow speed is usually rationalized by its match with visual input, which typically includes stationary or slow moving objects. However, this only holds for foveal and parafoveal stimulation. The visual periphery tends to be exposed to faster motions, which are biased toward centrifugal directions. Thus, if prior assumptions derive from experience, peripheral motion processing should be biased toward centrifugal speeds. Here, in experiments with human participants, we support this hypothesis and report a novel visual illusion where stationary objects in the visual periphery are perceived as moving centrifugally, while objects moving as fast as 7°/s toward fovea are perceived as stationary. These behavioral results were quantitatively explained by a Bayesian observer that has a strong centrifugal prior. This prior is consistent with both the prevalence of centrifugal motions in the visual periphery and a centrifugal bias of direction tuning in cortical area MT, supporting the notion that visual processing mirrors its input statistics.
Collapse
|
18
|
Beckett A, Peirce J, Sanchez-Panchuelo RM, Francis S, Schluppeck D. Contribution of large scale biases in decoding of direction-of-motion from high-resolution fMRI data in human early visual cortex. Neuroimage 2012; 63:1623-32. [DOI: 10.1016/j.neuroimage.2012.07.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/22/2012] [Accepted: 07/23/2012] [Indexed: 10/28/2022] Open
|
19
|
Naito T, Sato H, Osaka N. Direction anisotropy of human motion perception depends on stimulus speed. Vision Res 2010; 50:1862-6. [PMID: 20558192 DOI: 10.1016/j.visres.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 11/19/2022]
Abstract
A number of previous studies have extensively investigated directional anisotropy in motion perception. However, consensus has not been reached regarding the nature of motion directional anisotropies in human vision. In this study, we investigated the directional anisotropy of human motion perception by moving random-dot stimuli in the peripheral upper visual field. Our findings show that the degree of directional anisotropy depends on the stimulus speed. Furthermore, the high and low speed conditions have preferred directions that are opposite. This may reflect differences in the directional information among temporal frequencies in natural scenes. These differences are thought to have crucial roles in the detection of motion direction.
Collapse
Affiliation(s)
- Tomoyuki Naito
- Graduate School of Medicine, Osaka University, 1-17 Machikaneyama, Toyonaka 560-0043, Japan.
| | | | | |
Collapse
|
20
|
Mannion DJ, McDonald JS, Clifford CWG. Orientation anisotropies in human visual cortex. J Neurophysiol 2010; 103:3465-71. [PMID: 20410358 DOI: 10.1152/jn.00190.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Representing the orientation of features in the visual image is a fundamental operation of the early cortical visual system. The nature of such representations can be informed by considering anisotropic distributions of response across the range of orientations. Here we used functional MRI to study modulations in the cortical activity elicited by observation of a sinusoidal grating that varied in orientation. We report a significant anisotropy in the measured blood-oxygen level-dependent activity within visual areas V1, V2, V3, and V3A/B in which horizontal orientations evoked a reduced response. These visual areas and hV4 showed a further anisotropy in which increased responses were observed for orientations that were radial to the point of fixation. We speculate that the anisotropies in cortical activity may be related to anisotropies in the prevalence and behavioral relevance of orientations in typical natural environments.
Collapse
Affiliation(s)
- Damien J Mannion
- School of Psychology, The University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|
21
|
Clifford CWG, Mannion DJ, McDonald JS. Radial biases in the processing of motion and motion-defined contours by human visual cortex. J Neurophysiol 2009; 102:2974-81. [PMID: 19759326 DOI: 10.1152/jn.00411.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Luminance gratings reportedly produce a stronger functional magnetic resonance imaging (fMRI) blood oxygen level-dependent (BOLD) signal in those parts of the retinotopic cortical maps where they are oriented radially to the point of fixation. We sought to extend this finding by examining anisotropies in the response of cortical areas V1-V3 to motion-defined contour stimuli. fMRI at 3 Tesla was used to measure the BOLD signal in the visual cortex of six human subjects. Stimuli were composed of strips of spatial white noise texture presented in an annular window. The texture in alternate strips moved in opposite directions (left-right or up-down). The strips themselves were static and tilted 45 degrees left or right from vertical. Comparison with maps of the visual field obtained from phase-encoded retinotopic analysis revealed systematic patterns of radial bias. For motion, a stronger response to horizontal was evident within V1 and along the borders between V2 and V3. For orientation, the response to leftward tilted contours was greater in left dorsal and right ventral V1-V3. Radial bias for the orientation of motion-defined contours analogous to that reported previously for luminance gratings could reflect cue-invariant processing or the operation of distinct mechanisms subject to similar anisotropies in orientation tuning. Radial bias for motion might be related to the phenomenon of "motion streaks," whereby temporal integration by the visual system introduces oriented blur along the axis of motion. We speculate that the observed forms of radial bias reflect a common underlying anisotropy in the representation of spatiotemporal image structure across the visual field.
Collapse
Affiliation(s)
- Colin W G Clifford
- School of Psychology, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|