1
|
Laaksonen K, Ward NS. Biomarkers of plasticity for stroke recovery. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:287-298. [PMID: 35034742 DOI: 10.1016/b978-0-12-819410-2.00033-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Stroke is the commonest cause of physical disability in the world. Our understanding of the biologic mechanisms involved in recovery and repair has advanced to the point that therapeutic opportunities to promote recovery through manipulation of post-stroke plasticity have never been greater. This work has almost exclusively been carried out in rodent models of stroke with little translation into human studies. The challenge ahead is to develop a mechanistic understanding of recovery from stroke in humans. Advances in neuroimaging techniques can now provide the appropriate intermediate level of description to bridge the gap between a molecular and cellular account of recovery and a behavioral one. Clinical trials can then be designed in a stratified manner taking into account when an intervention should be delivered and who is most likely to benefit. This approach is most likely to lead to the step-change in how restorative therapeutic strategies are delivered in human stroke patients.
Collapse
Affiliation(s)
- Kristina Laaksonen
- Department of Neurology, Helsinki University Hospital, and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Nick S Ward
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| |
Collapse
|
2
|
Lönnberg P, Pihko E, Lauronen L, Nurminen J, Andersson S, Metsäranta M, Lano A, Nevalainen P. Secondary somatosensory cortex evoked responses and 6-year neurodevelopmental outcome in extremely preterm children. Clin Neurophysiol 2021; 132:1572-1583. [PMID: 34023633 DOI: 10.1016/j.clinph.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE We assessed in extremely preterm born (EPB) children whether secondary somatosensory cortex (SII) responses recorded with magnetoencephalography (MEG) at term-equivalent age (TEA) correlate with neurodevelopmental outcome at age 6 years. Secondly, we assessed whether SII responses differ between 6-year-old EPB and term-born (TB) children. METHODS 39 EPB children underwent MEG with tactile stimulation at TEA. At age 6 years, 32 EPB and 26 TB children underwent MEG including a sensorimotor task requiring attention and motor inhibition. SII responses to tactile stimulation were modeled with equivalent current dipoles. Neurological outcome, motor competence, and general cognitive ability were prospectively evaluated at age 6 years. RESULTS Unilaterally absent SII response at TEA was associated with abnormal motor competence in 6-year-old EPB children (p = 0.03). At age 6 years, SII responses were bilaterally detectable in most EPB (88%) and TB (92%) children (group comparison, p = 0.69). Motor inhibition was associated with decreased SII peak latencies in TB children, but EPB children lacked this effect (p = 0.02). CONCLUSIONS Unilateral absence of an SII response at TEA predicted poorer motor outcome in EPB children. SIGNIFICANCE Neurophysiological methods may provide new means for outcome prognostication in EPB children.
Collapse
Affiliation(s)
- Piia Lönnberg
- Child Neurology, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Elina Pihko
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Leena Lauronen
- Clinical Neurophysiology, New Children's Hospital, HUS Medical Imaging Center, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Nurminen
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sture Andersson
- Pediatrics, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Metsäranta
- Pediatrics, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aulikki Lano
- Child Neurology, New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Nevalainen
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Clinical Neurophysiology, New Children's Hospital, HUS Medical Imaging Center, HUS Diagnostic Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Del Vecchio M, Caruana F, Sartori I, Pelliccia V, Zauli FM, Lo Russo G, Rizzolatti G, Avanzini P. Action execution and action observation elicit mirror responses with the same temporal profile in human SII. Commun Biol 2020; 3:80. [PMID: 32080326 PMCID: PMC7033229 DOI: 10.1038/s42003-020-0793-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/10/2020] [Indexed: 11/10/2022] Open
Abstract
The properties of the secondary somatosensory area (SII) have been described by many studies in monkeys and humans. Recent studies on monkeys, however, showed that beyond somatosensory stimuli, SII responds to a wider number of stimuli, a finding requiring a revision that human SII is purely sensorimotor. By recording cortical activity with stereotactic electroencephalography (stereo-EEG), we examined the properties of SI and SII in response to a motor task requiring reaching, grasping and manipulation, as well as the observation of the same actions. Furthermore, we functionally characterized this area with a set of clinical tests, including tactile, acoustical, and visual stimuli. The results showed that only SII activates both during execution and observation with a common temporal profile, whereas SI response were limited to execution. Together with their peculiar response to tactile stimuli, we conclude that the role of SII is pivotal also in the observation of actions involving haptic control.
Collapse
Affiliation(s)
- Maria Del Vecchio
- University of Modena and Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, 41100, Modena, Italy.
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125, Parma, Italy.
| | - Fausto Caruana
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125, Parma, Italy
| | - Ivana Sartori
- Centro per la Chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca' Granda-Niguarda, 20162, Milano, Italy
| | - Veronica Pelliccia
- Centro per la Chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca' Granda-Niguarda, 20162, Milano, Italy
| | - Flavia Maria Zauli
- Università degli Studi di Milano, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", 20157, Milano, Italy
| | - Giorgio Lo Russo
- Centro per la Chirurgia dell'Epilessia "Claudio Munari", Ospedale Ca' Granda-Niguarda, 20162, Milano, Italy
| | - Giacomo Rizzolatti
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125, Parma, Italy
- University of Parma, Dipartimento di Medicina e Chirurgia, 43125, Parma, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125, Parma, Italy
| |
Collapse
|
4
|
Hari R, Baillet S, Barnes G, Burgess R, Forss N, Gross J, Hämäläinen M, Jensen O, Kakigi R, Mauguière F, Nakasato N, Puce A, Romani GL, Schnitzler A, Taulu S. IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clin Neurophysiol 2018; 129:1720-1747. [PMID: 29724661 PMCID: PMC6045462 DOI: 10.1016/j.clinph.2018.03.042] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 03/18/2018] [Accepted: 03/24/2018] [Indexed: 12/22/2022]
Abstract
Magnetoencephalography (MEG) records weak magnetic fields outside the human head and thereby provides millisecond-accurate information about neuronal currents supporting human brain function. MEG and electroencephalography (EEG) are closely related complementary methods and should be interpreted together whenever possible. This manuscript covers the basic physical and physiological principles of MEG and discusses the main aspects of state-of-the-art MEG data analysis. We provide guidelines for best practices of patient preparation, stimulus presentation, MEG data collection and analysis, as well as for MEG interpretation in routine clinical examinations. In 2017, about 200 whole-scalp MEG devices were in operation worldwide, many of them located in clinical environments. Yet, the established clinical indications for MEG examinations remain few, mainly restricted to the diagnostics of epilepsy and to preoperative functional evaluation of neurosurgical patients. We are confident that the extensive ongoing basic MEG research indicates potential for the evaluation of neurological and psychiatric syndromes, developmental disorders, and the integrity of cortical brain networks after stroke. Basic and clinical research is, thus, paving way for new clinical applications to be identified by an increasing number of practitioners of MEG.
Collapse
Affiliation(s)
- Riitta Hari
- Department of Art, Aalto University, Helsinki, Finland.
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, University College of London, London, UK
| | - Richard Burgess
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nina Forss
- Clinical Neuroscience, Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Germany
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute of Physiological Sciences, Okazaki, Japan
| | - François Mauguière
- Department of Functional Neurology and Epileptology, Neurological Hospital & University of Lyon, Lyon, France
| | | | - Aina Puce
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Gian-Luca Romani
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi G. D'Annunzio, Chieti, Italy
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, and Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Samu Taulu
- Institute for Learning & Brain Sciences, University of Washington, Seattle, WA, USA; Department of Physics, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Parkkonen E, Laaksonen K, Piitulainen H, Pekkola J, Parkkonen L, Tatlisumak T, Forss N. Strength of ~20-Hz Rebound and Motor Recovery After Stroke. Neurorehabil Neural Repair 2017; 31:475-486. [PMID: 28164736 DOI: 10.1177/1545968316688795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Stroke is a major cause of disability worldwide, and effective rehabilitation is crucial to regain skills for independent living. Recently, novel therapeutic approaches manipulating the excitatory-inhibitory balance of the motor cortex have been introduced to boost recovery after stroke. However, stroke-induced neurophysiological changes of the motor cortex may vary despite of similar clinical symptoms. Therefore, better understanding of excitability changes after stroke is essential when developing and targeting novel therapeutic approaches. OBJECTIVE AND METHODS We identified recovery-related alterations in motor cortex excitability after stroke using magnetoencephalography. Dynamics (suppression and rebound) of the ~20-Hz motor cortex rhythm were monitored during passive movement of the index finger in 23 stroke patients with upper limb paresis at acute phase, 1 month, and 1 year after stroke. RESULTS After stroke, the strength of the ~20-Hz rebound to stimulation of both impaired and healthy hand was decreased with respect to the controls in the affected (AH) and unaffected (UH) hemispheres, and increased during recovery. Importantly, the rebound strength was lower than that of the controls in the AH and UH also to healthy-hand stimulation despite of intact afferent input. In the AH, the rebound strength to impaired-hand stimulation correlated with hand motor recovery. CONCLUSIONS Motor cortex excitability is increased bilaterally after stroke and decreases concomitantly with recovery. Motor cortex excitability changes are related to both alterations in local excitatory-inhibitory circuits and changes in afferent input. Fluent sensorimotor integration, which is closely coupled with excitability changes, seems to be a key factor for motor recovery.
Collapse
Affiliation(s)
- Eeva Parkkonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Kristina Laaksonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| | - Harri Piitulainen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Johanna Pekkola
- 4 HUS Medical Imaging Center, Radiology, University of Helsinki and Helsinki University Hospital, Finland
| | - Lauri Parkkonen
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Turgut Tatlisumak
- 2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland.,5 Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.,6 Department of Clinical Neurosciences, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Nina Forss
- 1 Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.,2 Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,3 Clinical Neurosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Cortical Excitability Measured with nTMS and MEG during Stroke Recovery. Neural Plast 2015; 2015:309546. [PMID: 26491569 PMCID: PMC4600492 DOI: 10.1155/2015/309546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/05/2015] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Stroke alters cortical excitability both in the lesioned and in the nonlesioned hemisphere. Stroke recovery has been studied using transcranial magnetic stimulation (TMS). Spontaneous brain oscillations and somatosensory evoked fields (SEFs) measured by magnetoencephalography (MEG) are modified in stroke patients during recovery. METHODS We recorded SEFs and spontaneous MEG activity and motor threshold (MT) short intracortical inhibition (SICI) and intracortical facilitation (ICF) with navigated TMS (nTMS) at one and three months after first-ever hemispheric ischemic strokes. Changes of MEG and nTMS parameters attributed to gamma-aminobutyrate and glutamate transmission were compared. RESULTS ICF correlated with the strength and extent of SEF source areas depicted by MEG at three months. The nTMS MT and event-related desynchronization (ERD) of beta-band MEG activity and SICI and the beta-band MEG event-related synchronization (ERS) were correlated, but less strongly. CONCLUSIONS This first report using sequential nTMS and MEG in stroke recovery found intra- and interhemispheric correlations of nTMS and MEG estimates of cortical excitability. ICF and SEF parameters, MT and the ERD of the lesioned hemisphere, and SICI and ERS of the nonlesioned hemisphere were correlated. Covarying excitability in the lesioned and nonlesioned hemispheres emphasizes the importance of the hemispheric balance of the excitability of the sensorimotor system.
Collapse
|
7
|
Somato-motor haptic processing in posterior inner perisylvian region (SII/pIC) of the macaque monkey. PLoS One 2013; 8:e69931. [PMID: 23936121 PMCID: PMC3728371 DOI: 10.1371/journal.pone.0069931] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/12/2013] [Indexed: 12/02/2022] Open
Abstract
The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object.
Collapse
|
8
|
Laaksonen K, Helle L, Parkkonen L, Kirveskari E, Mäkelä JP, Mustanoja S, Tatlisumak T, Kaste M, Forss N. Alterations in spontaneous brain oscillations during stroke recovery. PLoS One 2013; 8:e61146. [PMID: 23593414 PMCID: PMC3623808 DOI: 10.1371/journal.pone.0061146] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/07/2013] [Indexed: 11/18/2022] Open
Abstract
Amplitude or frequency alterations of spontaneous brain oscillations may reveal pathological phenomena in the brain or predict recovery from brain lesions, but the temporal evolution and the functional significance of these changes is not well known. We performed follow-up recordings of spontaneous brain oscillations with whole-head MEG in 16 patients with first-ever stroke in the middle cerebral artery territory, affecting upper limb motor function, 1-7 days (T0), 1 month (T1), and 3 months (T2) after stroke, with concomitant clinical examination. Clinical test results improved significantly from T0 to T1 or T2. During recovery (at T1 and T2), the strength of temporo-parietal ≈ 10-Hz oscillations in the affected hemisphere (AH) was increased as compared with the unaffected hemisphere. Abnormal low-frequency magnetic activity (ALFMA) at ≈ 1 Hz in the AH was detected in the perilesional cortex in seven patients at T0. In four of these, ALFMA persisted at T2. In patients with ALFMA, the lesion size was significantly larger than in the rest of the patients, and worse clinical outcome was observed in patients with persisting ALFMA. Our results indicate that temporo-parietal ≈ 10-Hz oscillations are enhanced in the AH during recovery from stroke. Moreover, stroke causes ALFMA, which seems to persist in patients with worse clinical outcome.
Collapse
Affiliation(s)
- Kristina Laaksonen
- Brain Research Unit, O.V. Lounasmaa Laboratory and MEG Core, Aalto Neuroimaging, Aalto University, Aalto, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mengotti P, Ticini LF, Waszak F, Schütz-Bosbach S, Rumiati RI. Imitating others' actions: transcranial magnetic stimulation of the parietal opercula reveals the processes underlying automatic imitation. Eur J Neurosci 2012; 37:316-22. [DOI: 10.1111/ejn.12019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/07/2012] [Accepted: 09/14/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Paola Mengotti
- SISSA; Neuroscience Area; Via Bonomea 265; 34136; Trieste; Italy
| | - Luca F. Ticini
- Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig; Germany
| | | | | | | |
Collapse
|
10
|
Sun Z, Song C, Sun J, Li L, Dong Y, Wang J, Wu J, Cui W, Wu Y, Lv P. Changes of auditory evoked magnetic fields in patients after acute cerebral infarction using magnetoencephalography. Neural Regen Res 2012; 7:1906-13. [PMID: 25624818 PMCID: PMC4298906 DOI: 10.3969/j.issn.1673-5374.2012.24.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/16/2012] [Indexed: 11/25/2022] Open
Abstract
Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography. The auditory stimuli of 2 kHz pure tone were binaurally presented with an interstimulus interval of 1 second. The intensity of stimuli was 90 dB and the stimulus duration was 8 ms. The results showed that the M100 was the prominent response, peaking approximately 100 ms after stimulus onset in all subjects. It originated from the area close to Heschl's gyrus. In the patient group, the peak latency of M100 responses was significantly prolonged, and the mean strength of equivalent current dipole was significantly smaller in the affected hemisphere. The three-dimensional inter-hemispheric difference of the M100 positions was increased in the patient group. Our experimental findings suggested that impairment of cerebral function in patients with acute ischemic stroke can be detected using magnetoencephalography with the higher spatial resolution and temporal resolution. Magnetoencephalography could provide objective and sensitive indices to estimate auditory cortex function in patients with acute cerebral infarction.
Collapse
Affiliation(s)
- Zhanyong Sun
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Chunfeng Song
- Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jilin Sun
- Department of Magnetoencephalography, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Ling Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Yanhong Dong
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Jianhua Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Jie Wu
- Department of Magnetoencephalography, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Wenzhu Cui
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Yujin Wu
- Department of Magnetoencephalography, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Peiyuan Lv
- Department of Neurology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China,Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China,
Corresponding author: Peiyuan Lv, Professor, Chief physician, Doctoral supervisor, Department of Neurology, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China; Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China (N20120321001/YJ)
| |
Collapse
|
11
|
Physiological aging impacts the hemispheric balances of resting state primary somatosensory activities. Brain Topogr 2012; 26:186-99. [PMID: 22760422 DOI: 10.1007/s10548-012-0240-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
Abstract
To hone knowledge of sensorimotor cerebral organization changes with physiological aging, we focused on the primary somatosensory cortical area (S1). S1 neuronal pools (FS_S1) were identified by the functional source separation (FSS) algorithm applied to magnetoencephalographic recordings during median nerve stimulation. Age-dependence of FS_S1 was then studied at rest separately in the left and right hemispheres of 26 healthy, right-handed subjects between the ages of 24 and 95 years. The resting state FS_S1 spectral features changed with increasing age: (1) alpha activity slowed down; (2) total power increased only in the right hemisphere; (3) right>left interhemispheric asymmetry increased in the whole spectrum; (4) spectral entropy increased with age selectively in the left hemisphere. The present FSS-enriched electrophysiological procedure provided measures of resting state hand representation area sensitive to changes with age. Alterations were stronger in the right hemisphere. Relationships between resting state S1 activity and its responsiveness to external stimuli, revealed that the interhemispheric unbalances which emerged with age were conceivably due to an increased excitability within the right thalamocortical circuit impacting left versus right unbalances of spontaneous firing rates and of local inhibitory-excitatory networks.
Collapse
|
12
|
Effect of afferent input on motor cortex excitability during stroke recovery. Clin Neurophysiol 2012; 123:2429-36. [PMID: 22721651 DOI: 10.1016/j.clinph.2012.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Afferent input is proposed to mediate its effect on motor functions by modulating the excitability of the motor cortex. We aimed to clarify - in a longitudinal study - how afferent input affects motor cortex excitability after stroke and how it is associated with recovery of hand function. METHODS The motor cortex excitability was studied by measuring the reactivity of the motor cortex beta rhythm to somatosensory stimulation. We recorded the amplitude of the suppression and subsequent rebound of the beta oscillations during tactile finger stimulation with MEG in 23 first-ever stroke patients within one week and at 1 and 3 months after stroke, with concomitant evaluation of hand function. RESULTS The strength of the beta rhythm rebound, suggested to reflect decreased motor cortex excitability, was weak in the affected hemisphere after stroke and it was subsequently increased during recovery. The rebound strength correlated with hand function tests in all recordings. CONCLUSION Motor cortex excitability is modulated by afferent input after stroke. The motor cortex excitability is increased in the AH acutely after stroke and decreases in parallel with recovery of hand function. SIGNIFICANCE The results implicate the importance of parallel recovery of both sensory and motor systems in functional recovery after stroke.
Collapse
|