1
|
Biondetti E, Chiarelli AM, Germuska M, Lipp I, Villani A, Caporale AS, Patitucci E, Murphy K, Tomassini V, Wise RG. Breath-hold BOLD fMRI without CO 2 sampling enables estimation of venous cerebral blood volume: potential use in normalization of stimulus-evoked BOLD fMRI data. Neuroimage 2024; 285:120492. [PMID: 38070840 DOI: 10.1016/j.neuroimage.2023.120492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024] Open
Abstract
BOLD fMRI signal has been used in conjunction with vasodilatory stimulation as a marker of cerebrovascular reactivity (CVR): the relative change in cerebral blood flow (CBF) arising from a unit change in the vasodilatory stimulus. Using numerical simulations, we demonstrate that the variability in the relative BOLD signal change induced by vasodilation is strongly influenced by the variability in deoxyhemoglobin-containing cerebral blood volume (CBV), as this source of variability is likely to be more prominent than that of CVR. It may, therefore, be more appropriate to describe the relative BOLD signal change induced by an isometabolic vasodilation as a proxy of deoxygenated CBV (CBVdHb) rather than CVR. With this in mind, a new method was implemented to map a marker of CBVdHb, termed BOLD-CBV, based on the normalization of voxel-wise BOLD signal variation by an estimate of the intravascular venous BOLD signal from voxels filled with venous blood. The intravascular venous BOLD signal variation, recorded during repeated breath-holding, was extracted from the superior sagittal sinus in a cohort of 27 healthy volunteers and used as a regressor across the whole brain, yielding maps of BOLD-CBV. In the same cohort, we demonstrated the potential use of BOLD-CBV for the normalization of stimulus-evoked BOLD fMRI by comparing group-level BOLD fMRI responses to a visuomotor learning task with and without the inclusion of voxel-wise vascular covariates of BOLD-CBV and the BOLD signal change per mmHg variation in end-tidal carbon dioxide (BOLD-CVR). The empirical measure of BOLD-CBV accounted for more between-subject variability in the motor task-induced BOLD responses than BOLD-CVR estimated from end-tidal carbon dioxide recordings. The new method can potentially increase the power of group fMRI studies by including a measure of vascular characteristics and has the strong practical advantage of not requiring experimental measurement of end-tidal carbon dioxide, unlike traditional methods to estimate BOLD-CVR. It also more closely represents a specific physiological characteristic of brain vasculature than BOLD-CVR, namely blood volume.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy.
| | - Antonio Maria Chiarelli
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Michael Germuska
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Ilona Lipp
- Department of Neurophysics, Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Alessandro Villani
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Alessandra S Caporale
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Valentina Tomassini
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; MS Centre, Neurology Unit, 'SS. Annunziata' University Hospital, Chieti, Italy; Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK; Helen Durham Centre for Neuroinflammation, University Hospital of Wales, Cardiff, UK
| | - Richard G Wise
- Department of Neurosciences, Imaging, and Clinical Sciences, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, 'G. D'Annunzio' University of Chieti-Pescara, Chieti, Italy; Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
2
|
Koiso K, Müller AK, Akamatsu K, Dresbach S, Wiggins CJ, Gulban OF, Goebel R, Miyawaki Y, Poser BA, Huber L. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. APERTURE NEURO 2023; 3:10.52294/001c.87961. [PMID: 40206493 PMCID: PMC11981596 DOI: 10.52294/001c.87961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Cortical depth-dependent functional magnetic resonance image (fMRI), also known as layer-fMRI, has the potential to capture directional neural information flow of brain computations within and across large-scale cortical brain networks. E.g., layer-fMRI can differentiate feedforward and feedback cortical input in hierarchically organized brain networks. Recent advancements in 3D-EPI sampling approaches and MR contrast generation strategies have allowed proof-of-principle studies showing that layer-fMRI can provide sufficient data quality for capturing laminar changes in functional connectivity. These studies have however not shown how reliable the signal is and how repeatable the respective results are. It is especially unclear whether whole-brain layer-fMRI functional connectivity protocols are widely applicable across common neuroscience-driven analysis approaches. Moreover, there are no established preprocessing fMRI methods that are optimized to work for whole-brain layer-fMRI datasets. In this work, we aimed to serve the field of layer-fMRI and build tools for future routine whole-brain layer-fMRI in application-based neuroscience research. We have developed publicly available sequences, acquisition protocols, and processing pipelines for whole-brain layer-fMRI. These protocols are validated across 60 hours of scanning in nine participants. Specifically, we identified and exploited methodological advancements for maximizing tSNR efficiency and test-retest reliability. We are sharing an extensive multi-modal whole-brain layer-fMRI dataset (20 scan hours of movie-watching in a single participant) for the purpose of benchmarking future method developments: The Kenshu dataset. With this dataset, we are also exemplifying the usefulness of whole brain layer-fMRI for commonly applied analysis approaches in modern cognitive neuroscience fMRI studies. This includes connectivity analyses, representational similarity matrix estimations, general linear model analyses, principal component analysis clustering, etc. We believe that this work paves the road for future routine measurements of directional functional connectivity across the entire brain.
Collapse
Affiliation(s)
- Kenshu Koiso
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Anna K Müller
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | - Kazuaki Akamatsu
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | | | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Brain Innovation, Maastricht, NL
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Brain Innovation, Maastricht, NL
| | - Yoichi Miyawaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| |
Collapse
|
3
|
Williams RJ, Specht JL, Mazerolle EL, Lebel RM, MacDonald ME, Pike GB. Correspondence between BOLD fMRI task response and cerebrovascular reactivity across the cerebral cortex. Front Physiol 2023; 14:1167148. [PMID: 37228813 PMCID: PMC10203231 DOI: 10.3389/fphys.2023.1167148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
BOLD sensitivity to baseline perfusion and blood volume is a well-acknowledged fMRI confound. Vascular correction techniques based on cerebrovascular reactivity (CVR) might reduce variance due to baseline cerebral blood volume, however this is predicated on an invariant linear relationship between CVR and BOLD signal magnitude. Cognitive paradigms have relatively low signal, high variance and involve spatially heterogenous cortical regions; it is therefore unclear whether the BOLD response magnitude to complex paradigms can be predicted by CVR. The feasibility of predicting BOLD signal magnitude from CVR was explored in the present work across two experiments using different CVR approaches. The first utilized a large database containing breath-hold BOLD responses and 3 different cognitive tasks. The second experiment, in an independent sample, calculated CVR using the delivery of a fixed concentration of carbon dioxide and a different cognitive task. An atlas-based regression approach was implemented for both experiments to evaluate the shared variance between task-invoked BOLD responses and CVR across the cerebral cortex. Both experiments found significant relationships between CVR and task-based BOLD magnitude, with activation in the right cuneus (R 2 = 0.64) and paracentral gyrus (R 2 = 0.71), and the left pars opercularis (R 2 = 0.67), superior frontal gyrus (R 2 = 0.62) and inferior parietal cortex (R 2 = 0.63) strongly predicted by CVR. The parietal regions bilaterally were highly consistent, with linear regressions significant in these regions for all four tasks. Group analyses showed that CVR correction increased BOLD sensitivity. Overall, this work suggests that BOLD signal response magnitudes to cognitive tasks are predicted by CVR across different regions of the cerebral cortex, providing support for the use of correction based on baseline vascular physiology.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Faculty of Health, School of Human Services, Charles Darwin University, Darwin, NT, Australia
| | - Jacinta L. Specht
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Erin L. Mazerolle
- Departments of Psychology and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - R. Marc Lebel
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- GE HealthCare, Calgary, AB, Canada
| | - M. Ethan MacDonald
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | - G. Bruce Pike
- Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Cowdrick KR, Urner T, Sathialingam E, Fang Z, Quadri A, Turrentine K, Yup Lee S, Buckley EM. Agreement in cerebrovascular reactivity assessed with diffuse correlation spectroscopy across experimental paradigms improves with short separation regression. NEUROPHOTONICS 2023; 10:025002. [PMID: 37034012 PMCID: PMC10079775 DOI: 10.1117/1.nph.10.2.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Significance Cerebrovascular reactivity (CVR), i.e., the ability of cerebral vasculature to dilate or constrict in response to vasoactive stimuli, is a biomarker of vascular health. Exogenous administration of inhaled carbon dioxide, i.e., hypercapnia (HC), remains the "gold-standard" intervention to assess CVR. More tolerable paradigms that enable CVR quantification when HC is difficult/contraindicated have been proposed. However, because these paradigms feature mechanistic differences in action, an assessment of agreement of these more tolerable paradigms to HC is needed. Aim We aim to determine the agreement of CVR assessed during HC, breath-hold (BH), and resting state (RS) paradigms. Approach Healthy adults were subject to HC, BH, and RS paradigms. End tidal carbon dioxide (EtCO2) and cerebral blood flow (CBF, assessed with diffuse correlation spectroscopy) were monitored continuously. CVR (%/mmHg) was quantified via linear regression of CBF versus EtCO2 or via a general linear model (GLM) that was used to minimize the influence of systemic and extracerebral signal contributions. Results Strong agreement ( CCC ≥ 0.69 ; R ≥ 0.76 ) among CVR paradigms was demonstrated when utilizing a GLM to regress out systemic/extracerebral signal contributions. Linear regression alone showed poor agreement across paradigms ( CCC ≤ 0.35 ; R ≤ 0.45 ). Conclusions More tolerable experimental paradigms coupled with regression of systemic/extracerebral signal contributions may offer a viable alternative to HC for assessing CVR.
Collapse
Affiliation(s)
- Kyle R. Cowdrick
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Tara Urner
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Eashani Sathialingam
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Zhou Fang
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Ayesha Quadri
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Katherine Turrentine
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
| | - Seung Yup Lee
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Kennesaw State University, Department of Electrical and Computer Engineering, Marietta, Georgia, United States
| | - Erin M. Buckley
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta and Emory University School of Medicine, Department of Pediatrics, Atlanta, Georgia, United States
- Children’s Healthcare of Atlanta, Children’s Research Scholar, Atlanta, Georgia, United States
| |
Collapse
|
5
|
Yeh MY, Chen HS, Hou P, Kumar VA, Johnson JM, Noll KR, Prabhu SS, Ferguson SD, Schomer DF, Peng HH, Liu HL. Cerebrovascular Reactivity Mapping Using Resting-State Functional MRI in Patients With Gliomas. J Magn Reson Imaging 2022; 56:1863-1871. [PMID: 35396789 PMCID: PMC11846080 DOI: 10.1002/jmri.28194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Recently, a data-driven regression analysis method was developed to utilize the resting-state (rs) blood oxygenation level-dependent signal for cerebrovascular reactivity (CVR) mapping (rs-CVR), which was previously optimized by comparing with the CO2 inhalation-based method in health subjects and patients with neurovascular diseases. PURPOSE To investigate the agreement of rs-CVR and the CVR mapping with breath-hold MRI (bh-CVR) in patients with gliomas. STUDY TYPE Retrospective. POPULATION Twenty-five patients (12 males, 13 females; mean age ± SD, 48 ± 13 years) with gliomas. FIELD STRENGTH/SEQUENCE Dynamic T2*-weighted gradient-echo echo-planar imaging during a breath-hold paradigm and during the rs on a 3-T scanner. ASSESSMENT rs-CVR with various frequency ranges and resting-state fluctuation amplitude (RSFA) were assessed. The agreement between each rs-based CVR measurement and bh-CVR was determined by voxel-wise correlation and Dice coefficient in the whole brain, gray matter, and the lesion region of interest (ROI). STATISTICAL TESTS Voxel-wise Pearson correlation, Dice coefficient, Fisher Z-transformation, repeated-measure analysis of variance and post hoc test with Bonferroni correction, and nonparametric repeated-measure Friedman test and post hoc test with Bonferroni correction were used. Significance was set at P < 0.05. RESULTS Compared with bh-CVR, the highest correlations were found at the frequency bands of 0.04-0.08 Hz and 0.02-0.04 Hz for rs-CVR in both whole brain and the lesion ROI. RSFA had significantly lower correlations than did rs-CVR of 0.02-0.04 Hz and a wider frequency range (0-0.1164 Hz). Significantly higher correlations and Dice coefficient were found in normal tissues than in the lesion ROI for all three methods. DATA CONCLUSION The optimal frequency ranges for rs-CVR are determined by comparing with bh-CVR in patients with gliomas. The rs-CVR method outperformed the RSFA. Significantly higher correlation and Dice coefficient between rs- and bh-CVR were found in normal tissue than in the lesion. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Mei-Yu Yeh
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu Taiwan
| | - Henry S. Chen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ping Hou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Vinodh A. Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Kyle R. Noll
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sujit S. Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sherise D. Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Donald F. Schomer
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hsu-Hsia Peng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu Taiwan
| | - Ho-Ling Liu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Peng SL, Chu LWL, Su FY. Cerebral hemodynamic response to caffeine: effect of dietary caffeine consumption. NMR IN BIOMEDICINE 2022; 35:e4727. [PMID: 35285102 DOI: 10.1002/nbm.4727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/14/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Caffeine has a significant effect on cerebrovascular systems, and the dual action of caffeine on both neural and vascular responses leads to concerns for the interpretation of blood oxygenation level-dependent (BOLD) functional MRI. However, potential differences in the brain response to caffeine with regard to consumption habits have not been fully elucidated, as BOLD responses may vary with the dietary caffeine consumption history. The main aim of this study was to characterize the acute effect of caffeine on cerebral hemodynamic responses in participants with different patterns of caffeine consumption habits. Fifteen non-habitual and 11 habitual volunteers were included in this study. The cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) to the breath-hold challenge were measured before and after 200 mg caffeine administration. The non-habitual individuals exhibited a pattern of progressive reduction in CBF with time. The CVR was diminished in the caffeinated condition (P < 0.05). In the habitual group, the pattern of CBF decrease was smaller and homogeneous across the brain, and reached steady state rapidly. The CVR was not affected in the presence of caffeine (P > 0.05). Our results demonstrated that the cerebral hemodynamic response to caffeine was subject to the habitual consumption patterns of the participants. The compromised CVR following caffeine administration in the non-habitual group may partially explain the suppressed BOLD response to a visual stimulation in low-caffeine-level users.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Lok Wang Lauren Chu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Feng-Yi Su
- Department of Medical Imaging, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Stickland RC, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Lag-Optimized Blood Oxygenation Level Dependent Cerebrovascular Reactivity Estimates Derived From Breathing Task Data Have a Stronger Relationship With Baseline Cerebral Blood Flow. Front Neurosci 2022; 16:910025. [PMID: 35801183 PMCID: PMC9254683 DOI: 10.3389/fnins.2022.910025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebrovascular reactivity (CVR), an important indicator of cerebrovascular health, is commonly studied with the Blood Oxygenation Level Dependent functional MRI (BOLD-fMRI) response to a vasoactive stimulus. Theoretical and empirical evidence suggests that baseline cerebral blood flow (CBF) modulates BOLD signal amplitude and may influence BOLD-CVR estimates. We address how acquisition and modeling choices affect the relationship between baseline cerebral blood flow (bCBF) and BOLD-CVR: whether BOLD-CVR is modeled with the inclusion of a breathing task, and whether BOLD-CVR amplitudes are optimized for hemodynamic lag effects. We assessed between-subject correlations of average GM values and within-subject spatial correlations across cortical regions. Our results suggest that a breathing task addition to a resting-state acquisition, alongside lag-optimization within BOLD-CVR modeling, can improve BOLD-CVR correlations with bCBF, both between- and within-subjects, likely because these CVR estimates are more physiologically accurate. We report positive correlations between bCBF and BOLD-CVR, both between- and within-subjects. The physiological explanation of this positive correlation is unclear; research with larger samples and tightly controlled vasoactive stimuli is needed. Insights into what drives variability in BOLD-CVR measurements and related measurements of cerebrovascular function are particularly relevant when interpreting results in populations with altered vascular and/or metabolic baselines or impaired cerebrovascular reserve.
Collapse
Affiliation(s)
- Rachael C. Stickland
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain
- University of the Basque Country EHU/UPV, Donostia, Spain
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
8
|
Qin S, Basak C. Fitness and arterial stiffness in healthy aging: Modifiable cardiovascular risk factors contribute to altered default mode network patterns during executive function. Neuropsychologia 2022; 172:108269. [PMID: 35595064 DOI: 10.1016/j.neuropsychologia.2022.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022]
Abstract
Increases in cardiovascular risks such as high blood pressure and low physical fitness have been independently associated with altered default mode network (DMN) activation patterns in healthy aging. However, cardiovascular risk is a multidimensional health problem. Therefore, we need to investigate multiple cardiovascular risk factors and their contributions to cognition and DMN activations in older adults, which has not yet been done. The current fMRI study examined contributions of two common modifiable cardiovascular risk factors (arterial stiffness and physical fitness) on DMN activations involved during random n-back, a task of executive functioning and working memory, in older adults. The results how that high cardiovascular risk of either increased arterial stiffness or decreased fitness independently contributed to worse task performance and reduced deactivations in two DMN regions: the anterior and posterior cingulate cortices. We then examined not only the potential interaction between the two risk factors, but also their additive (i.e., combined) effect on performance and DMN deactivations. A significant interaction between the two cardiovascular risk factors was observed on performance, with arterial stiffness moderating the relationship between physical fitness and random n-back accuracy. The additive effect of the two factors on task performance was driven by arterial stiffness. Arterial stiffness was also found to be the driving factor when the additive effect of the two risk factors was examined on DMN deactivations. However, in posterior cingulate cortex, a hub region of the DMN, the additive effect on its deactivation was significantly higher than the effect of each risk factor alone. These results suggest that the effects of cardiovascular risks on the aging brain are complicated and multi-dimensional, with arterial stiffness moderating or driving the combined effects on performance and anterior DMN deactivations, but physical fitness contributing additional effect to posterior DMN deactivation during executive functioning.
Collapse
Affiliation(s)
- Shuo Qin
- Center for Vital Longevity, University of Texas at Dallas, United States
| | - Chandramallika Basak
- Center for Vital Longevity, University of Texas at Dallas, United States; Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States.
| |
Collapse
|
9
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
10
|
Liu P, Jiang D, Albert M, Bauer CE, Caprihan A, Gold BT, Greenberg SM, Helmer KG, Jann K, Jicha G, Rodriguez P, Satizabal CL, Seshadri S, Singh H, Thompson JF, Wang DJJ, Lu H. Multi-vendor and multisite evaluation of cerebrovascular reactivity mapping using hypercapnia challenge. Neuroimage 2021; 245:118754. [PMID: 34826595 PMCID: PMC8783393 DOI: 10.1016/j.neuroimage.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/05/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Steven M Greenberg
- Department of Neurology, Massachusetts General Hospital Stroke Research Center, Harvard Medical School, Boston, MA, USA
| | - Karl G Helmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Kay Jann
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gregory Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Pavel Rodriguez
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Claudia L Satizabal
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Herpreet Singh
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey F Thompson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Danny J J Wang
- Laboratory of Functional MRI Technology, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore 21287, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Garrett DD, Skowron A, Wiegert S, Adolf J, Dahle CL, Lindenberger U, Raz N. Lost Dynamics and the Dynamics of Loss: Longitudinal Compression of Brain Signal Variability is Coupled with Declines in Functional Integration and Cognitive Performance. Cereb Cortex 2021; 31:5239-5252. [PMID: 34297815 PMCID: PMC8491679 DOI: 10.1093/cercor/bhab154] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022] Open
Abstract
Reduced moment-to-moment blood oxygen level-dependent (BOLD) signal variability has been consistently linked to advanced age and poorer cognitive performance, showing potential as a functional marker of brain aging. To date, however, this promise has rested exclusively on cross-sectional comparisons. In a sample of 74 healthy adults, we provide the first longitudinal evidence linking individual differences in BOLD variability, age, and performance across multiple cognitive domains over an average period of 2.5 years. As expected, those expressing greater loss of BOLD variability also exhibited greater decline in cognition. The fronto-striato-thalamic system emerged as a core neural substrate for these change-change associations. Preservation of signal variability within regions of the fronto-striato-thalamic system also cohered with preservation of functional integration across regions of this system, suggesting that longitudinal maintenance of "local" dynamics may require across-region communication. We therefore propose this neural system as a primary target in future longitudinal studies on the neural substrates of cognitive aging. Given that longitudinal change-change associations between brain and cognition are notoriously difficult to detect, the presence of such an association within a relatively short follow-up period bolsters the promise of brain signal variability as a viable, experimentally sensitive probe for studying individual differences in human cognitive aging.
Collapse
Affiliation(s)
- Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - Alexander Skowron
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - Steffen Wiegert
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - Janne Adolf
- Research Group of Quantitative Psychology and Individual Differences, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven 3000, Belgium
| | - Cheryl L Dahle
- Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
| | - Naftali Raz
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, Berlin 14195, Germany
- Institute of Gerontology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA
- Department of Psychology, Wayne State University, 87 East Ferry Street, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Tsvetanov KA, Henson RNA, Jones PS, Mutsaerts H, Fuhrmann D, Tyler LK, Rowe JB. The effects of age on resting-state BOLD signal variability is explained by cardiovascular and cerebrovascular factors. Psychophysiology 2021; 58:e13714. [PMID: 33210312 PMCID: PMC8244027 DOI: 10.1111/psyp.13714] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Accurate identification of brain function is necessary to understand neurocognitive aging, and thereby promote health and well-being. Many studies of neurocognitive aging have investigated brain function with the blood-oxygen level-dependent (BOLD) signal measured by functional magnetic resonance imaging. However, the BOLD signal is a composite of neural and vascular signals, which are differentially affected by aging. It is, therefore, essential to distinguish the age effects on vascular versus neural function. The BOLD signal variability at rest (known as resting state fluctuation amplitude, RSFA), is a safe, scalable, and robust means to calibrate vascular responsivity, as an alternative to breath-holding and hypercapnia. However, the use of RSFA for normalization of BOLD imaging assumes that age differences in RSFA reflecting only vascular factors, rather than age-related differences in neural function (activity) or neuronal loss (atrophy). Previous studies indicate that two vascular factors, cardiovascular health (CVH) and cerebrovascular function, are insufficient when used alone to fully explain age-related differences in RSFA. It remains possible that their joint consideration is required to fully capture age differences in RSFA. We tested the hypothesis that RSFA no longer varies with age after adjusting for a combination of cardiovascular and cerebrovascular measures. We also tested the hypothesis that RSFA variation with age is not associated with atrophy. We used data from the population-based, lifespan Cam-CAN cohort. After controlling for cardiovascular and cerebrovascular estimates alone, the residual variance in RSFA across individuals was significantly associated with age. However, when controlling for both cardiovascular and cerebrovascular estimates, the variance in RSFA was no longer associated with age. Grey matter volumes did not explain age differences in RSFA, after controlling for CVH. The results were consistent between voxel-level analysis and independent component analysis. Our findings indicate that cardiovascular and cerebrovascular signals are together sufficient predictors of age differences in RSFA. We suggest that RSFA can be used to separate vascular from neuronal factors, to characterize neurocognitive aging. We discuss the implications and make recommendations for the use of RSFA in the research of aging.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Richard N. A. Henson
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - P. Simon Jones
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Henk Mutsaerts
- Department of Radiology and Nuclear MedicineAmsterdam University Medical CenterAmsterdamthe Netherlands
| | - Delia Fuhrmann
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| | - Lorraine K. Tyler
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - Cam‐CAN
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Department of PsychologyCentre for Speech, Language and the BrainUniversity of CambridgeCambridgeUK
| | - James B. Rowe
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Medical Research Council Cognition and Brain Sciences UnitCambridgeUK
| |
Collapse
|
13
|
Champagne AA, Coverdale NS, Fernandez-Ruiz J, Mark CI, Cook DJ. Compromised resting cerebral metabolism after sport-related concussion: A calibrated MRI study. Brain Imaging Behav 2021; 15:133-146. [PMID: 32307673 DOI: 10.1007/s11682-019-00240-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Altered resting cerebral blood flow (CBF0) in the acute phase post-concussion may contribute to neurobehavioral deficiencies, often reported weeks after the injury. However, in addition to changes in CBF0, little is known about other physiological mechanisms that may be disturbed within the cerebrovasculature. The aim of this study was to assess whether changes in baseline perfusion following sport-related concussion (SRC) were co-localized with changes in cerebral metabolic demand. Forty-two subjects (15 SRC patients 8.0 ± 4.6 days post-injury and 27 age-matched healthy control athletes) were studied cross-sectionally. CBF0, cerebrovascular reactivity (CVR), resting oxygen extraction (OEF0) and cerebral metabolic rate of oxygen consumption (CMRO2|0) were measured using a combination of hypercapnic and hyperoxic breathing protocols, and the biophysical model developed in calibrated MRI. Blood oxygenation level dependent and perfusion data were acquired simultaneously using a dual-echo arterial spin labelling sequence. SRC patients showed significant decreases in CBF0 spread across the grey-matter (P < 0.05, corrected), and these differences were also confounded by the effects of baseline end-tidal CO2 (P < 0.0001). Lower perfusion was co-localized with reductions in regional CMRO2|0 (P = 0.006) post-SRC, despite finding no group-differences in OEF0 (P = 0.800). Higher CVR within voxels showing differences in CBF was also observed in the SRC group (P = 0.001), compared to controls. Reductions in metabolic demand despite no significant changes in OEF0 suggests that hypoperfusion post-SRC may reflect compromised metabolic function after the injury. These results provide novel insight about the possible pathophysiological mechanisms underlying concussion that may affect the clinical recovery of athletes after sport-related head injuries.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico
| | - Clarisse I Mark
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, K7L 3N6, Canada.
- Department of Surgery, Queen's University, Room 232, 18 Stuart St., Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
14
|
Hawkins PCT, Zelaya FO, O'Daly O, Holiga S, Dukart J, Umbricht D, Mehta MA. The effect of risperidone on reward-related brain activity is robust to drug-induced vascular changes. Hum Brain Mapp 2021; 42:2766-2777. [PMID: 33666305 PMCID: PMC8127149 DOI: 10.1002/hbm.25400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/22/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Dopamine (DA) mediated brain activity is intimately linked to reward‐driven cerebral responses, while aberrant reward processing has been implicated in several psychiatric disorders. fMRI has been a valuable tool in understanding the mechanism by which DA modulators alter reward‐driven responses and how they may exert their therapeutic effect. However, the potential effects of a pharmacological compound on aspects of neurovascular coupling may cloud the interpretability of the BOLD contrast. Here, we assess the effects of risperidone on reward driven BOLD signals produced by reward anticipation and outcome, while attempting to control for potential drug effects on regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR). Healthy male volunteers (n = 21) each received a single oral dose of either 0.5 mg, 2 mg of risperidone or placebo in a double‐blind, placebo‐controlled, randomised, three‐period cross‐over study design. Participants underwent fMRI scanning while performing the widely used Monetary Incentive Delay (MID) task to assess drug impact on reward function. Measures of CBF (Arterial Spin Labelling) and breath‐hold challenge induced BOLD signal changes (as a proxy for CVR) were also acquired and included as covariates. Risperidone produced divergent, dose‐dependent effects on separate phases of reward processing, even after controlling for potential nonneuronal influences on the BOLD signal. These data suggest the D2 antagonist risperidone has a wide‐ranging influence on DA‐mediated reward function independent of nonneuronal factors. We also illustrate that assessment of potential vascular confounds on the BOLD signal may be advantageous when investigating CNS drug action and advocate for the inclusion of these additional measures into future study designs.
Collapse
Affiliation(s)
- Peter C T Hawkins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando O Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Stefan Holiga
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Juergen Dukart
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Umbricht
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Ma J, Cao X, Chen F, Ye Q, Qin R, Cheng Y, Zhu X, Xu Y. Exosomal MicroRNAs Contribute to Cognitive Impairment in Hypertensive Patients by Decreasing Frontal Cerebrovascular Reactivity. Front Neurosci 2021; 15:614220. [PMID: 33732103 PMCID: PMC7957933 DOI: 10.3389/fnins.2021.614220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/14/2021] [Indexed: 01/08/2023] Open
Abstract
Mechanisms underlying cognitive impairment (CI) in hypertensive patients remain relatively unclear. The present study aimed to explore the relationship among serum exosomal microRNAs (miRNAs), cerebrovascular reactivity (CVR), and cognitive function in hypertensive patients. Seventy-three hypertensive patients with CI (HT-CI), 67 hypertensive patients with normal cognition (HT-NC), and 37 healthy controls underwent identification of exosomal miRNA, multimodal magnetic resonance imaging (MRI) scans, and neuropsychological tests. CVR mapping was investigated based on resting-state functional MRI data. Compared with healthy subjects and HT-NC subjects, HT-CI subjects displayed decreased serum exosomal miRNA-330-3p. The group difference of CVR was mainly found in the left frontal lobe and demonstrated that HT-CI group had a lower CVR than both HT-NC group and control group. Furthermore, both the CVR in the left medial superior frontal gyrus and the miRNA-330-3p level were significantly correlated with executive function (r = -0.275, P = 0.021, and r = -0.246, P = 0.04, respectively) in HT-CI subjects, and the CVR was significantly correlated with the miRNA-330-3p level (r = 0.246, P = 0.040). Notably, path analysis showed that the CVR mediated the association between miRNA-330-3p and executive function. In conclusion, decreased miRNA-330-3p might contribute to CI in hypertensive patients by decreasing frontal CVR and could be a biomarker of early diagnosis.
Collapse
Affiliation(s)
- Junyi Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Xiang Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Fangyu Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Qing Ye
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
| | - Yue Cheng
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| | - Yun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Medical School, Drum Tower Hospital, Institute of Brain Science, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.,Nanjing Neurology Clinic Medical Center, Nanjing, China
| |
Collapse
|
16
|
Pinto J, Bright MG, Bulte DP, Figueiredo P. Cerebrovascular Reactivity Mapping Without Gas Challenges: A Methodological Guide. Front Physiol 2021; 11:608475. [PMID: 33536935 PMCID: PMC7848198 DOI: 10.3389/fphys.2020.608475] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Cerebrovascular reactivity (CVR) is defined as the ability of vessels to alter their caliber in response to vasoactive factors, by means of dilating or constricting, in order to increase or decrease regional cerebral blood flow (CBF). Importantly, CVR may provide a sensitive biomarker for pathologies where vasculature is compromised. Furthermore, the spatiotemporal dynamics of CVR observed in healthy subjects, reflecting regional differences in cerebral vascular tone and response, may also be important in functional MRI studies based on neurovascular coupling mechanisms. Assessment of CVR is usually based on the use of a vasoactive stimulus combined with a CBF measurement technique. Although transcranial Doppler ultrasound has been frequently used to obtain global flow velocity measurements, MRI techniques are being increasingly employed for obtaining CBF maps. For the vasoactive stimulus, vasodilatory hypercapnia is usually induced through the manipulation of respiratory gases, including the inhalation of increased concentrations of carbon dioxide. However, most of these methods require an additional apparatus and complex setups, which not only may not be well-tolerated by some populations but are also not widely available. For these reasons, strategies based on voluntary breathing fluctuations without the need for external gas challenges have been proposed. These include the task-based methodologies of breath holding and paced deep breathing, as well as a new generation of methods based on spontaneous breathing fluctuations during resting-state. Despite the multitude of alternatives to gas challenges, existing literature lacks definitive conclusions regarding the best practices for the vasoactive modulation and associated analysis protocols. In this work, we perform an extensive review of CVR mapping techniques based on MRI and CO2 variations without gas challenges, focusing on the methodological aspects of the breathing protocols and corresponding data analysis. Finally, we outline a set of practical guidelines based on generally accepted practices and available data, extending previous reports and encouraging the wider application of CVR mapping methodologies in both clinical and academic MRI settings.
Collapse
Affiliation(s)
- Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Molly G. Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Daniel P. Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
18
|
Weldon KB, Olman CA. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 2020; 376:20200040. [PMID: 33190599 PMCID: PMC7741029 DOI: 10.1098/rstb.2020.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies with ultra-high field (UHF, 7+ Tesla) technology enable the acquisition of high-resolution images. In this work, we discuss recent achievements in UHF fMRI at the mesoscopic scale, on the order of cortical columns and layers, and examine approaches to addressing common challenges. As researchers push to smaller and smaller voxel sizes, acquisition and analysis decisions have greater potential to degrade spatial accuracy, and UHF fMRI data must be carefully interpreted. We consider the impact of acquisition decisions on the spatial specificity of the MR signal with a representative dataset with 0.8 mm isotropic resolution. We illustrate the trade-offs in contrast with noise ratio and spatial specificity of different acquisition techniques and show that acquisition blurring can increase the effective voxel size by as much as 50% in some dimensions. We further describe how different sources of degradations to spatial resolution in functional data may be characterized. Finally, we emphasize that progress in UHF fMRI depends not only on scientific discovery and technical advancement, but also on informal discussions and documentation of challenges researchers face and overcome in pursuit of their goals. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cheryl A Olman
- Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Qin S, Basak C. Influence of Multiple Cardiovascular Risk Factors on Task-Switching in Older Adults: An fMRI Study. Front Hum Neurosci 2020; 14:561877. [PMID: 33033477 PMCID: PMC7509111 DOI: 10.3389/fnhum.2020.561877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
Not only are the effects of cardiovascular risk factors such as high blood pressure and low fitness on executive functions and brain activations in older adults scarcely investigated, no fMRI study has investigated the combined effects of multiple risk factors on brain activations in older adults. This fMRI study examined the independent and combined effects of two cardiovascular risk factors, arterial plasticity, and physical fitness, on brain activations during task-switching in older adults. The effects of these two risk factors on age-related differences in activation between older and younger adults were also examined. Independently, low physical fitness and low arterial plasticity were related to reduced suppressions of occipital brain regions. The combined effects of these two risks on occipital regions were greater than the independent effects of either risk factor. Age-related overactivations in frontal cortex were observed in low fitness older adults. Brain-behavior correlation indicates that these frontal overactivations are maladaptive to older adults' task performance. It is possible that the resulting effects of cardiovascular risks on the aging brain, especially the maladaptive overactivations of frontal brain regions by high risk older adults, contribute to often found posterior-anterior shift in aging (PASA) brain activations. Furthermore, observed age-related differences in brain activations during task-switching can be partially attributed to individual differences in cardiovascular risks among older adults.
Collapse
Affiliation(s)
- Shuo Qin
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, United States
| | - Chandramallika Basak
- Center for Vital Longevity, The University of Texas at Dallas, Dallas, TX, United States
| |
Collapse
|
20
|
Lewis N, Lu H, Liu P, Hou X, Damaraju E, Iraji A, Calhoun V. Static and dynamic functional connectivity analysis of cerebrovascular reactivity: An fMRI study. Brain Behav 2020; 10:e01516. [PMID: 32342644 PMCID: PMC7303385 DOI: 10.1002/brb3.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/20/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) is an important aspect of brain function, and as such it is important to understand relationship between CVR and functional connectivity. METHODS This research studied the role of CVR, or the brain's ability to react to vasoactive stimuli on brain functional connectivity by scanning subjects with blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while they periodically inhale room air and a CO 2-enriched gas mixture. We developed a new metric to measure the effect of CVR on each intrinsic connectivity network (ICN), which contrasts to voxel-wise CVR. We also studied the changes in whole-brain connectivity patterns using both static functional network connectivity (sFNC) and dynamic FNC (dFNC). RESULTS We found that network connectivity is generally weaker during vascular dilation, which is supported by previous research. The dFNC analysis revealed that participants did not return to the pre-CO 2 inhalation state, suggesting that one-minute periods of room-air inhalation is not enough for the CO 2 effect to fully dissipate. CONCLUSIONS Cerebrovascular reactivity is one tool that the cerebrovascular system uses to ensure the constant, finely-tuned flow of oxygen to function properly. Understanding the relationship between CVR and brain dynamism can provide unique information about cerebrovascular diseases and general brain function. We observed that CVR has a wide, but consistent relationship to connectivity patterns between functional networks.
Collapse
Affiliation(s)
- Noah Lewis
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
- Department of Computer ScienceUniversity of New MexicoAlbuquerqueNMUSA
| | - Hanzhang Lu
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Peiying Liu
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xirui Hou
- Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Eswar Damaraju
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
| | - Vince Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia institute of Technology, Emory UniversityAtlantaGAUSA
- Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| |
Collapse
|
21
|
Peng SL, Yang HC, Chen CM, Shih CT. Short- and long-term reproducibility of BOLD signal change induced by breath-holding at 1.5 and 3 T. NMR IN BIOMEDICINE 2020; 33:e4195. [PMID: 31885110 DOI: 10.1002/nbm.4195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Cerebrovascular reactivity (CVR) can give insight into the cerebrovascular function. CVR can be estimated by measuring a blood-oxygen-level-dependent (BOLD) response combined with breath-holding (BH). The reproducibility of this technique has been addressed and existing studies have focused on short-term reproducibility using a 3 T magnetic resonance imaging (MRI) system. However, little is known about the long-term reproducibility of this procedure and the corresponding reproducibility using a 1.5 T MRI system. Here, we systematically examined the short- and long-term reproducibility of BOLD responses to BH across field strengths. Nine subjects participated in three MRI sessions separated by 30 minutes (sessions 1 and 2: short term) and 68-92 days (sessions 1 and 3, long term) at both 1.5 and 3 T MRI. Our findings revealed that significant differences between field strengths were detected in the activated gray matter volume and BOLD signal change (both P < 0.001), with smaller magnitudes at 1.5 T. However, activation patterns were reproducible, independent of the time interval, brain region or field strength. All interscan coefficient of variation values were below the 33% fiducial limit, and the intraclass correlation coefficient values were above 0.4, which is usually considered the acceptability limit in functional studies. These findings suggest that the response of BOLD signal to BH for assessing CVR is reproducible over time at 1.5 and 3 T. This technique can be considered a tool for monitoring longitudinal changes in patients with cerebrovascular diseases, and its use should be encouraged for clinical 1.5 T MRI systems.
Collapse
Affiliation(s)
- Shin-Lei Peng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Hui-Chieh Yang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - Chun-Ming Chen
- Department of Radiology, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Ting Shih
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
22
|
Champagne AA, Coverdale NS, Ross A, Chen Y, Murray CI, Dubowitz D, Cook DJ. Multi-modal normalization of resting-state using local physiology reduces changes in functional connectivity patterns observed in mTBI patients. Neuroimage Clin 2020; 26:102204. [PMID: 32058317 PMCID: PMC7013121 DOI: 10.1016/j.nicl.2020.102204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022]
Abstract
Blood oxygenation level dependent (BOLD) resting-state functional magnetic resonance imaging (rs-fMRI) may serve as a sensitive marker to identify possible changes in the architecture of large-scale networks following mild traumatic brain injury (mTBI). Differences in functional connectivity (FC) measurements derived from BOLD rs-fMRI may however be confounded by changes in local cerebrovascular physiology and neurovascular coupling mechanisms, without changes in the underlying neuronally driven connectivity of networks. In this study, multi-modal neuroimaging data including BOLD rs-fMRI, baseline cerebral blood flow (CBF0) and cerebrovascular reactivity (CVR; acquired using a hypercapnic gas breathing challenge) were collected in 23 subjects with reported mTBI (14.6±14.9 months post-injury) and 27 age-matched healthy controls. Despite no group differences in CVR within the networks of interest (P > 0.05, corrected), significantly higher CBF0 was documented in the mTBI subjects (P < 0.05, corrected), relative to the controls. A normalization method designed to account for differences in CBF0 post-mTBI was introduced to evaluate the effects of such an approach on reported group differences in network connectivity. Inclusion of regional perfusion measurements in the computation of correlation coefficients within and across large-scale networks narrowed the differences in FC between the groups, suggesting that this approach may elucidate unique changes in connectivity post-mTBI while accounting for shared variance with CBF0. Altogether, our results provide a strong paradigm supporting the need to account for changes in physiological modulators of BOLD in order to expand our understanding of the effects of brain injury on large-scale FC of cortical networks.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | - Andrew Ross
- Performance Phenomics, 180 John St., Toronto ON M5T 1 × 5 Canada.
| | - Yining Chen
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada.
| | | | - David Dubowitz
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand.
| | - Douglas J Cook
- Centre for Neuroscience Studies, Room 260, Queen's University, Kingston ON K7L 3N6 Canada; Department of Surgery, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
23
|
Guidi M, Huber L, Lampe L, Merola A, Ihle K, Möller HE. Cortical laminar resting-state signal fluctuations scale with the hypercapnic blood oxygenation level-dependent response. Hum Brain Mapp 2020; 41:2014-2027. [PMID: 31957959 PMCID: PMC7267967 DOI: 10.1002/hbm.24926] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 11/06/2022] Open
Abstract
Calibrated functional magnetic resonance imaging can remove unwanted sources of signal variability in the blood oxygenation level‐dependent (BOLD) response. This is achieved by scaling, using information from a perfusion‐sensitive scan during a purely vascular challenge, typically induced by a gas manipulation or a breath‐hold task. In this work, we seek for a validation of the use of the resting‐state fluctuation amplitude (RSFA) as a scaling factor to remove vascular contributions from the BOLD response. Given the peculiarity of depth‐dependent vascularization in gray matter, BOLD and vascular space occupancy (VASO) data were acquired at submillimeter resolution and averaged across cortical laminae. RSFA from the primary motor cortex was, thus, compared to the amplitude of hypercapnia‐induced signal changes (tSDhc) and with the M factor of the Davis model on a laminar level. High linear correlations were observed for RSFA and tSDhc (R2 = 0.92 ± 0.06) and somewhat reduced for RSFA and M (R2 = 0.62 ± 0.19). Laminar profiles of RSFA‐normalized BOLD signal changes yielded good agreement with corresponding VASO profiles. Overall, this suggests that RSFA contains strong vascular components and is also modulated by baseline quantities contained in the M factor. We conclude that RSFA may replace the scaling factor tSDhc for normalizing the laminar BOLD response.
Collapse
Affiliation(s)
- Maria Guidi
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Leonie Lampe
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alberto Merola
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kristin Ihle
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Harald E Möller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
24
|
Champagne AA, Coverdale NS, Germuska M, Cook DJ. Multi-parametric analysis reveals metabolic and vascular effects driving differences in BOLD-based cerebrovascular reactivity associated with a history of sport concussion. Brain Inj 2019; 33:1479-1489. [PMID: 31354054 PMCID: PMC7115911 DOI: 10.1080/02699052.2019.1644375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
Objective: Identify alterations in cerebrovascular reactivity (CVR) based on the history of sport-related concussion (SRC). Further explore possible mechanisms underlying differences in vascular physiology using hemodynamic parameters modeled using calibrated magnetic resonance imaging (MRI). Method: End-tidal targeting and dual-echo MRI were combined to probe hypercapnic and hyperoxic challenges in athletes with (n = 32) and without (n = 31) a history of SRC. Concurrent blood oxygenation level dependent (BOLD) and arterial spin labeling (ASL) data were used to compute BOLD-CVR, ASL-CVR, and other physiological parameters including resting oxygen extraction fraction (OEF0) and cerebral blood volume (CBV0). Multiple linear and logistic regressions were then used to identify dominant parameters driving group-differences in BOLD-CVR. Results: Robust evidence for elevated BOLD-CVR were found in athletes with SRC history spreading over parts of the cortical hemispheres. Follow-up analyses showed co-localized differences in ASL-CVR (representing modulation of cerebral blood flow) and hemodynamic factors representing static vascular (i.e., CBV0) and metabolic (i.e., OEF0) effects suggesting that group-based differences in BOLD-CVR may be driven by a mixed effect from factors with vascular and metabolic origins. Conclusion: These results emphasize that while BOLD-CVR offers promises as a surrogate non-specific biomarker for cerebrovascular health following SRC, multiple hemodynamic parameters can affect its relative measurements. Abbreviations: [dHb]: concentration of deoxyhemoglobin; AFNI: Analysis of Functional NeuroImages ( https://afni.nimh.nih.gov ); ASL: arterial spin labeling; BIG: position group: defensive and offensive linemen; BIG-SKILL: position group: full backs, linebackers, running backs, tight-ends; BOLD: blood oxygen level dependent; CBF: cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen consumption; CTL: group of control subjects; CVR: cerebrovascular reactivity; fMRI: functional magnetic resonance imaging; FSL: FMRIB software library ( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ ); HC: hypercapnia; HO: hyperoxia; HX: group with history of concussion; M: maximal theoretical BOLD signal upon complete removal of venous dHb; pCASL: pseudo-continuous arterial spin labeling; PETCO2: end-tidal carbon dioxide; PETO2: end-tidal oxygen; SCAT: sport-concussion assessment tool; SKILL: position group: defensive backs, kickers, quarterbacks, safeties, wide-receivers; SRC: sport-related concussion.
Collapse
Affiliation(s)
- Allen A. Champagne
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
| | | | - Michael Germuska
- Cardiff University Brain Research Imaging Center, Cardiff University, Cardiff, United Kingdom
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen’s University, Kingston, ON, Canada
- Department of Surgery, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
25
|
Göttler J, Preibisch C, Riederer I, Pasquini L, Alexopoulos P, Bohn KP, Yakushev I, Beller E, Kaczmarz S, Zimmer C, Grimmer T, Drzezga A, Sorg C. Reduced blood oxygenation level dependent connectivity is related to hypoperfusion in Alzheimer's disease. J Cereb Blood Flow Metab 2019; 39:1314-1325. [PMID: 29431005 PMCID: PMC6668525 DOI: 10.1177/0271678x18759182] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Functional connectivity of blood oxygenation level dependent signal fluctuations (BOLD-FC) is decreased in Alzheimer's disease (AD), and suggested to reflect reduced coherence in neural population activity; however, as both neuronal and vascular-hemodynamic processes underlie BOLD signals, impaired perfusion might also contribute to reduced BOLD-FC; 42 AD patients and 27 controls underwent simultaneous PET/MR imaging. Resting-state functional MRI assessed BOLD co-activity to quantify BOLD-FC, pulsed arterial spin labeling (pASL) assessed cerebral blood flow (CBF) as proxy for vascular hemodynamics, and 18F-fluorodeoxyglucose PET assessed glucose metabolism (GluMet) to index neuronal activity. Patients' BOLD-FC, CBF, and GluMet were reduced within the same precuneal parietal regions. BOLD-FC was positively associated with mean CBF, specifically in patients and controlled for GluMet levels, suggesting that BOLD-FC reductions correlate with pASL-derived hypoperfusion in AD, independently from 18F-fluorodeoxyglucose PET-derived hypometabolism. Data indicate that impaired vascular hemodynamic processes contribute to reduced BOLD connectivity in AD.
Collapse
Affiliation(s)
- Jens Göttler
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Christine Preibisch
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,3 Clinic for Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabelle Riederer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Lorenzo Pasquini
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,4 Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA
| | - Panagiotis Alexopoulos
- 5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Peter Bohn
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Igor Yakushev
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ebba Beller
- 7 Department of Radiology, Klinikum Großhadern, Ludwig-Maximilans-Universität München, Munich, Germany
| | - Stephan Kaczmarz
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Claus Zimmer
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Timo Grimmer
- 2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Drzezga
- 6 Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,8 Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Christian Sorg
- 1 Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,2 TUM Neuroimaging Center (TUM-NIC), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,5 Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
26
|
Chu PP, Golestani AM, Kwinta JB, Khatamian YB, Chen JJ. Characterizing the modulation of resting-state fMRI metrics by baseline physiology. Neuroimage 2018; 173:72-87. [DOI: 10.1016/j.neuroimage.2018.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022] Open
|
27
|
Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage 2018; 187:104-115. [PMID: 29574034 DOI: 10.1016/j.neuroimage.2018.03.047] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/06/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is an indicator of cerebrovascular reserve and provides important information about vascular health in a range of brain conditions and diseases. Unlike steady-state vascular parameters, such as cerebral blood flow (CBF) and cerebral blood volume (CBV), CVR measures the ability of cerebral vessels to dilate or constrict in response to challenges or maneuvers. Therefore, CVR mapping requires a physiological challenge while monitoring the corresponding hemodynamic changes in the brain. The present review primarily focuses on methods that use CO2 inhalation as a physiological challenge while monitoring changes in hemodynamic MRI signals. CO2 inhalation has been increasingly used in CVR mapping in recent literature due to its potency in causing vasodilation, rapid onset and cessation of the effect, as well as advances in MRI-compatible gas delivery apparatus. In this review, we first discuss the physiological basis of CVR mapping using CO2 inhalation. We then review the methodological aspects of CVR mapping, including gas delivery apparatus, the timing paradigm of the breathing challenge, the MRI imaging sequence, and data analysis. In addition, we review alternative approaches for CVR mapping that do not require CO2 inhalation.
Collapse
Affiliation(s)
- Peiying Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| | - Jill B De Vis
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, 21287, United States; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, 21205, United States
| |
Collapse
|
28
|
King DR, de Chastelaine M, Rugg MD. Recollection-related increases in functional connectivity across the healthy adult lifespan. Neurobiol Aging 2018; 62:1-19. [PMID: 29101898 PMCID: PMC5753578 DOI: 10.1016/j.neurobiolaging.2017.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 12/24/2022]
Abstract
In young adults, recollection-sensitive brain regions exhibit enhanced connectivity with a widely distributed set of other regions during successful versus unsuccessful recollection, and the magnitude of connectivity change correlates with individual differences in recollection accuracy. Here, we examined whether recollection-related changes in connectivity and their relationship with performance varied across samples of young, middle-aged, and older adults. Psychophysiological interaction analyses identified recollection-related increases in connectivity both with recollection-sensitive seed regions and among regions distributed throughout the whole brain. The seed-based approach failed to identify age-related differences in recollection-related connectivity change. However, the whole-brain analysis revealed a number of age-related effects. Numerous pairs of regions exhibited a main effect of age on connectivity change, mostly due to decreased change with increasing age. After controlling for recollection accuracy, however, these effects of age were for the most part no longer significant, and those effects that were detected now reflected age-related increases in connectivity change. A subset of pairs of regions also exhibited an age by performance interaction, driven mostly by a weaker relationship between connectivity change and recollection accuracy with increasing age. We conjecture that these effects reflect age-related differences in neuromodulation.
Collapse
Affiliation(s)
- Danielle R King
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.
| | - Marianne de Chastelaine
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Michael D Rugg
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| |
Collapse
|
29
|
Xu F, Li W, Liu P, Hua J, Strouse JJ, Pekar JJ, Lu H, van Zijl PCM, Qin Q. Accounting for the role of hematocrit in between-subject variations of MRI-derived baseline cerebral hemodynamic parameters and functional BOLD responses. Hum Brain Mapp 2017; 39:344-353. [PMID: 29024300 DOI: 10.1002/hbm.23846] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
Baseline hematocrit fraction (Hct) is a determinant for baseline cerebral blood flow (CBF) and between-subject variation of Hct thus causes variation in task-based BOLD fMRI signal changes. We first verified in healthy volunteers (n = 12) that Hct values can be derived reliably from venous blood T1 values by comparison with the conventional lab test. Together with CBF measured using phase-contrast MRI, this noninvasive estimation of Hct, instead of using a population-averaged Hct value, enabled more individual determination of oxygen delivery (DO2 ), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ). The inverse correlation of CBF and Hct explained about 80% of between-subject variation of CBF in this relatively uniform cohort of subjects, as expected based on the regulation of DO2 to maintain constant CMRO2 . Furthermore, we compared the relationships of visual task-evoked BOLD response with Hct and CBF. We showed that Hct and CBF contributed 22%-33% of variance in BOLD signal and removing the positive correlation with Hct and negative correlation with CBF allowed normalization of BOLD signal with 16%-22% lower variability. The results of this study suggest that adjustment for Hct effects is useful for studies of MRI perfusion and BOLD fMRI. Hum Brain Mapp 39:344-353, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Feng Xu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,Developing Brain Research Lab, Children's National Medical Center, Washington DC, Washington
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peiying Liu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jun Hua
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - John J Strouse
- Division of Hematology, Department of Medicine, Duke University, Durham, North Carolina
| | - James J Pekar
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Hanzhang Lu
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
30
|
Thompson GJ. Neural and metabolic basis of dynamic resting state fMRI. Neuroimage 2017; 180:448-462. [PMID: 28899744 DOI: 10.1016/j.neuroimage.2017.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023] Open
Abstract
Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.
Collapse
Affiliation(s)
- Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
31
|
Garrett DD, Lindenberger U, Hoge RD, Gauthier CJ. Age differences in brain signal variability are robust to multiple vascular controls. Sci Rep 2017; 7:10149. [PMID: 28860455 PMCID: PMC5579254 DOI: 10.1038/s41598-017-09752-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/31/2017] [Indexed: 11/09/2022] Open
Abstract
A host of studies support that younger, better performing adults express greater moment-to-moment blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in various cortical regions, supporting an emerging view that the aging brain may undergo a generalized reduction in dynamic range. However, the exact physiological nature of age differences in SDBOLD remains understudied. In a sample of 29 younger and 45 older adults, we examined the contribution of vascular factors to age group differences in fixation-based SDBOLD using (1) a dual-echo BOLD/pseudo-continuous arterial spin labeling (pCASL) sequence, and (2) hypercapnia via a computer-controlled gas delivery system. We tested the hypothesis that, although SDBOLD may relate to individual differences in absolute cerebral blood flow (CBF), BOLD cerebrovascular reactivity (CVR), or maximum BOLD signal change (M), robust age differences in SDBOLD would remain after multiple statistical controls for these vascular factors. As expected, our results demonstrated that brain regions in which younger adults expressed higher SDBOLD persisted after comprehensive control of vascular effects. Our findings thus further establish BOLD signal variability as an important marker of the aging brain.
Collapse
Affiliation(s)
- Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany. .,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin/London, Germany.,Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,European University Institute, San Domenico di Fiesole (FI), Fiesole, Italy
| | - Richard D Hoge
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| |
Collapse
|
32
|
Avelar-Pereira B, Bäckman L, Wåhlin A, Nyberg L, Salami A. Age-Related Differences in Dynamic Interactions Among Default Mode, Frontoparietal Control, and Dorsal Attention Networks during Resting-State and Interference Resolution. Front Aging Neurosci 2017; 9:152. [PMID: 28588476 PMCID: PMC5438979 DOI: 10.3389/fnagi.2017.00152] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 05/03/2017] [Indexed: 12/28/2022] Open
Abstract
Resting-state fMRI (rs-fMRI) can identify large-scale brain networks, including the default mode (DMN), frontoparietal control (FPN) and dorsal attention (DAN) networks. Interactions among these networks are critical for supporting complex cognitive functions, yet the way in which they are modulated across states is not well understood. Moreover, it remains unclear whether these interactions are similarly affected in aging regardless of cognitive state. In this study, we investigated age-related differences in functional interactions among the DMN, FPN and DAN during rest and the Multi-Source Interference task (MSIT). Networks were identified using independent component analysis (ICA), and functional connectivity was measured during rest and task. We found that the FPN was more coupled with the DMN during rest and with the DAN during the MSIT. The degree of FPN-DMN connectivity was lower in older compared to younger adults, whereas no age-related differences were observed in FPN-DAN connectivity in either state. This suggests that dynamic interactions of the FPN are stable across cognitive states. The DMN and DAN were anti correlated and age-sensitive during the MSIT only, indicating variation in a task-dependent manner. Increased levels of anticorrelation from rest to task also predicted successful interference resolution. Additional analyses revealed that the degree of DMN-DAN anticorrelation during the MSIT was associated to resting cerebral blood flow (CBF) within the DMN. This suggests that reduced DMN neural activity during rest underlies an impaired ability to achieve higher levels of anticorrelation during a task. Taken together, our results suggest that only parts of age-related differences in connectivity are uncovered at rest and thus, should be studied in the functional connectome across multiple states for a more comprehensive picture.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm UniversityStockholm, Sweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm UniversityStockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm UniversityStockholm, Sweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeå, Sweden
| |
Collapse
|
33
|
Khalili-Mahani N, Rombouts SARB, van Osch MJP, Duff EP, Carbonell F, Nickerson LD, Becerra L, Dahan A, Evans AC, Soucy JP, Wise R, Zijdenbos AP, van Gerven JM. Biomarkers, designs, and interpretations of resting-state fMRI in translational pharmacological research: A review of state-of-the-Art, challenges, and opportunities for studying brain chemistry. Hum Brain Mapp 2017; 38:2276-2325. [PMID: 28145075 DOI: 10.1002/hbm.23516] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 11/21/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
A decade of research and development in resting-state functional MRI (RSfMRI) has opened new translational and clinical research frontiers. This review aims to bridge between technical and clinical researchers who seek reliable neuroimaging biomarkers for studying drug interactions with the brain. About 85 pharma-RSfMRI studies using BOLD signal (75% of all) or arterial spin labeling (ASL) were surveyed to investigate the acute effects of psychoactive drugs. Experimental designs and objectives include drug fingerprinting dose-response evaluation, biomarker validation and calibration, and translational studies. Common biomarkers in these studies include functional connectivity, graph metrics, cerebral blood flow and the amplitude and spectrum of BOLD fluctuations. Overall, RSfMRI-derived biomarkers seem to be sensitive to spatiotemporal dynamics of drug interactions with the brain. However, drugs cause both central and peripheral effects, thus exacerbate difficulties related to biological confounds, structured noise from motion and physiological confounds, as well as modeling and inference testing. Currently, these issues are not well explored, and heterogeneities in experimental design, data acquisition and preprocessing make comparative or meta-analysis of existing reports impossible. A unifying collaborative framework for data-sharing and data-mining is thus necessary for investigating the commonalities and differences in biomarker sensitivity and specificity, and establishing guidelines. Multimodal datasets including sham-placebo or active control sessions and repeated measurements of various psychometric, physiological, metabolic and neuroimaging phenotypes are essential for pharmacokinetic/pharmacodynamic modeling and interpretation of the findings. We provide a list of basic minimum and advanced options that can be considered in design and analyses of future pharma-RSfMRI studies. Hum Brain Mapp 38:2276-2325, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Najmeh Khalili-Mahani
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,PERFORM Centre, Concordia University, Montreal, Canada
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands.,Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | | | - Eugene P Duff
- Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands.,Oxford Centre for Functional MRI of the Brain, Oxford University, Oxford, United Kingdom
| | | | - Lisa D Nickerson
- McLean Hospital, Belmont, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Lino Becerra
- Center for Pain and the Brain, Harvard Medical School & Boston Children's Hospital, Boston, Massachusetts
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Alan C Evans
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, Montreal, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Richard Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Alex P Zijdenbos
- McGill Centre for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, Canada.,Biospective Inc, Montreal, Quebec, Canada
| | - Joop M van Gerven
- Centre for Human Drug Research, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
34
|
Cerebrovascular reactivity mapping without gas challenges. Neuroimage 2016; 146:320-326. [PMID: 27888058 DOI: 10.1016/j.neuroimage.2016.11.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 11/22/2022] Open
Abstract
Cerebrovascular reactivity (CVR), the ability of cerebral vessels to dilate or constrict, has been shown to provide valuable information in the diagnosis and treatment evaluation of patients with various cerebrovascular conditions. CVR mapping is typically performed using hypercapnic gas inhalation as a vasoactive challenge while collecting BOLD images, but the inherent need of gas inhalation and the associated apparatus setup present a practical obstacle in applying it in routine clinical use. Therefore, we aimed to develop a new method to map CVR using resting-state BOLD data without the need of gas inhalation. This approach exploits the natural variation in respiration and measures its influence on BOLD MRI signal. In this work, we first identified a surrogate of the arterial CO2 fluctuation during spontaneous breathing from the global BOLD signal. Second, we tested the feasibility and reproducibility of the proposed approach to use the above-mentioned surrogate as a regressor to estimate voxel-wise CVR. Third, we validated the "resting-state CVR map" with a conventional CVR map obtained with hypercapnic gas inhalation in healthy volunteers. Finally, we tested the utility of this new approach in detecting abnormal CVR in a group of patients with Moyamoya disease, and again validated the results using the conventional gas inhalation method. Our results showed that global BOLD signal fluctuation in the frequency range of 0.02-0.04Hz contains the most prominent contribution from natural variation in arterial CO2. The CVR map calculated using this signal as a regressor is reproducible across runs (ICC=0.91±0.06), and manifests a strong spatial correlation with results measured with a conventional hypercapnia-based method in healthy subjects (r=0.88, p<0.001). We also found that resting-state CVR was able to identify vasodilatory deficit in patients with steno-occlusive disease, the spatial pattern of which matches that obtained using the conventional gas method (r=0.71±0.18). These results suggest that CVR obtained with resting-state BOLD may be a useful alternative in detecting vascular deficits in clinical applications when gas challenge is not feasible.
Collapse
|
35
|
Guidi M, Huber L, Lampe L, Gauthier CJ, Möller HE. Lamina-dependent calibrated BOLD response in human primary motor cortex. Neuroimage 2016; 141:250-261. [DOI: 10.1016/j.neuroimage.2016.06.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/07/2016] [Accepted: 06/17/2016] [Indexed: 02/06/2023] Open
|
36
|
Qin S, Ray NR, Ramakrishnan N, Nashiro K, O'Connell MA, Basak C. Illusory conjunctions in visual short-term memory: Individual differences in corpus callosum connectivity and splitting attention between the two hemifields. Psychophysiology 2016; 53:1639-1650. [DOI: 10.1111/psyp.12735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/11/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Shuo Qin
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| | - Nicholas R. Ray
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| | - Nithya Ramakrishnan
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| | - Kaoru Nashiro
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| | - Margaret A. O'Connell
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| | - Chandramallika Basak
- School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas Texas USA
| |
Collapse
|
37
|
Quantitative mapping of cerebrovascular reactivity using resting-state BOLD fMRI: Validation in healthy adults. Neuroimage 2016; 138:147-163. [PMID: 27177763 DOI: 10.1016/j.neuroimage.2016.05.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 11/23/2022] Open
Abstract
In conventional neuroimaging, cerebrovascular reactivity (CVR) is quantified primarily using the blood-oxygenation level-dependent (BOLD) functional MRI (fMRI) signal, specifically, as the BOLD response to intravascular carbon dioxide (CO2) modulations, in units of [%ΔBOLD/mmHg]. While this method has achieved wide appeal and clinical translation, the tolerability of CO2-related tasks amongst patients and the elderly remains a challenge in more routine and large-scale applications. In this work, we propose an improved method to quantify CVR by exploiting intrinsic fluctuations in CO2 and corresponding changes in the resting-state BOLD signal (rs-qCVR). Our rs-qCVR approach requires simultaneous monitoring of PETCO2, cardiac pulsation and respiratory volume. In 16 healthy adults, we compare our quantitative CVR estimation technique to the prospective CO2-targeting based CVR quantification approach (qCVR, the "standard"). We also compare our rs-CVR to non-quantitative alternatives including the resting-state fluctuation amplitude (RSFA), amplitude of low-frequency fluctuation (ALFF) and global-signal regression. When all subjects were pooled, only RSFA and ALFF were significantly associated with qCVR. However, for characterizing regional CVR variations within each subject, only the PETCO2-based rs-qCVR measure is strongly associated with standard qCVR in 100% of the subjects (p≤0.1). In contrast, for the more qualitative CVR measures, significant within-subject association with qCVR was only achieved in 50-70% of the subjects. Our work establishes the feasibility of extracting quantitative CVR maps using rs-fMRI, opening the possibility of mapping functional connectivity and qCVR simultaneously.
Collapse
|
38
|
Thompson GJ, Riedl V, Grimmer T, Drzezga A, Herman P, Hyder F. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism. Brain Connect 2016; 6:435-47. [PMID: 27029438 DOI: 10.1089/brain.2015.0394] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.
Collapse
Affiliation(s)
- Garth J Thompson
- 1 Magnetic Resonance Research Center (MRRC), Yale University , New Haven, Connecticut.,2 Department of Radiology and Biomedical Imaging, Yale University , New Haven, Connecticut
| | - Valentin Riedl
- 3 Department of Neuroradiology, Technische Universität München , München, Germany .,4 Department of Nuclear Medicine, Technische Universität München , München, Germany .,5 Neuroimaging Center, Technische Universität München , München, Germany
| | - Timo Grimmer
- 5 Neuroimaging Center, Technische Universität München , München, Germany .,6 Department of Psychiatry, Technische Universität München , München, Germany
| | | | - Peter Herman
- 1 Magnetic Resonance Research Center (MRRC), Yale University , New Haven, Connecticut.,2 Department of Radiology and Biomedical Imaging, Yale University , New Haven, Connecticut.,8 Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University , New Haven, Connecticut
| | - Fahmeed Hyder
- 1 Magnetic Resonance Research Center (MRRC), Yale University , New Haven, Connecticut.,2 Department of Radiology and Biomedical Imaging, Yale University , New Haven, Connecticut.,8 Quantitative Neuroscience with Magnetic Resonance (QNMR) Core Center, Yale University , New Haven, Connecticut.,9 Department of Biomedical Engineering, Yale University , New Haven, Connecticut
| |
Collapse
|
39
|
Golestani AM, Kwinta JB, Strother SC, Khatamian YB, Chen JJ. The association between cerebrovascular reactivity and resting-state fMRI functional connectivity in healthy adults: The influence of basal carbon dioxide. Neuroimage 2016; 132:301-313. [PMID: 26908321 DOI: 10.1016/j.neuroimage.2016.02.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/23/2015] [Accepted: 02/15/2016] [Indexed: 12/28/2022] Open
Abstract
Although widely used in resting-state fMRI (fMRI) functional connectivity measurement (fcMRI), the BOLD signal is only an indirect measure of neuronal activity, and is inherently modulated by both neuronal activity and vascular physiology. For instance, cerebrovascular reactivity (CVR) varies widely across individuals irrespective of neuronal function, but the implications for fcMRI are currently unknown. This knowledge gap compromises our ability to correctly interpret fcMRI measurements. In this work, we investigate the relationship between CVR and resting fcMRI measurements in healthy young adults, in both the motor and the executive-control networks. We modulate CVR within each individual by subtly increasing and decreasing resting vascular tension through baseline end-tidal CO2 (PETCO2), and measure fcMRI during these hypercapnic, hypocapnic and normocapnic states. Furthermore, we assess the association between CVR and fcMRI within and across individuals. Within individuals, resting PETCO2 is found to significantly influence both CVR and resting fcMRI values. In addition, we find resting fcMRI to be significantly and positively associated with CVR across the group in both networks. This relationship is potentially mediated by concomitant alterations in BOLD signal fluctuation amplitude. This work clearly demonstrates and quantifies a major vascular modulator of resting fcMRI, one that is also subject and regional dependent. We suggest that individualized correction for CVR effects in fcMRI measurements is essential for fcMRI studies of healthy brains, and can be even more important in studying diseased brains.
Collapse
Affiliation(s)
| | - Jonathan B Kwinta
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | - Stephen C Strother
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
40
|
Holper L, Scholkmann F, Seifritz E. Time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity during resting-state and respiratory challenges assessed by multimodal functional near-infrared spectroscopy. Neuroimage 2015; 120:481-92. [PMID: 26169319 DOI: 10.1016/j.neuroimage.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/13/2022] Open
Abstract
Monitoring respiratory processes is important for evaluating neuroimaging data, given their influence on time-frequency dynamics of intra- and extracerebral hemodynamics. Here we investigated the time-frequency dynamics of the sum of intra- and extracerebral hemodynamic functional connectivity states during hypo- and hypercapnia by using three different respiratory challenge tasks (i.e., hyperventilation, breath-holding, and rebreathing) compared to resting-state. The sum of intra- and extracerebral hemodynamic responses were assessed using functional near-infrared spectroscopy (fNIRS) within two regions of interest (i.e., the dorsolateral and the medial prefrontal cortex). Time-frequency fNIRS analysis was performed based on wavelet transform coherence to quantify functional connectivity in terms of positive and negative phase-coupling within each region of interest. Physiological measures were assessed in the form of partial end-tidal carbon dioxide, heart rate, arterial tissue oxygen saturation, and respiration rate. We found that the three respiration challenges modulated time-frequency dynamics differently with respect to resting-state: 1) Hyperventilation and breath-holding exhibited inverse patterns of positive and negative phase-coupling. 2) In contrast, rebreathing had no significant effect. 3) Low-frequency oscillations contributed to a greater extent to time-frequency dynamics compared to high-frequency oscillations. The results highlight that there exist distinct differences in time-frequency dynamics of the sum of intra- and extracerebral functional connectivity not only between hypo- (hyperventilation) and hypercapnia but also between different states of hypercapnia (breath-holding versus rebreathing). This suggests that a multimodal assessment of intra-/extracerebral and systemic physiological changes during respiratory challenges compared to resting-state may have potential use in the differentiation between physiological and pathological respiratory behavior accompanied by the psycho-physiological state of a human.
Collapse
Affiliation(s)
- L Holper
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - F Scholkmann
- Biomedical Optics Research Laboratory, Division of Neonatology, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091 Zurich, Switzerland
| | - E Seifritz
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
41
|
Tchistiakova E, Crane DE, Mikulis DJ, Anderson ND, Greenwood CE, Black SE, MacIntosh BJ. Vascular risk factor burden correlates with cerebrovascular reactivity but not resting state coactivation in the default mode network. J Magn Reson Imaging 2015; 42:1369-76. [PMID: 25884110 DOI: 10.1002/jmri.24917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023] Open
Abstract
PURPOSE White matter hyperintensities (WMH) are prevalent among older adults and are often associated with cognitive decline and increased risk of stroke and dementia. Vascular risk factors (VRFs) are linked to WMH, yet the impact of multiple VRFs on gray matter function is still unclear. The goal of this study was to test for associations between the number of VRFs and cerebrovascular reactivity (CVR) and resting state (RS) coactivation among individuals with WMH. MATERIALS AND METHODS Twenty-nine participants with suspected WMH were grouped based on the number of VRFs (subgroups: 0, 1, or ≥2). CVR and RS coactivation were measured with blood oxygenation level-dependent (BOLD) imaging on a 3T magnetic resonance imaging (MRI) system during hypercapnia and rest, respectively. Default-mode (DMN), sensory-motor, and medial-visual networks, generated using independent component analysis of RS-BOLD, were selected as networks of interest (NOIs). CVR-BOLD was analyzed using two methods: 1) a model-based approach using CO2 traces, and 2) a dual-regression (DR) approach using NOIs as spatial inputs. Average CVR and RS coactivations within NOIs were compared between VRF subgroups. A secondary analysis investigated the correlation between CVR and RS coactivation. RESULTS VRF subgroup differences were detected using DR-based CVR in the DMN (F20,2 = 5.17, P = 0.015) but not the model-based CVR nor RS coactivation. DR-based CVR was correlated with RS coactivation in the DMN (r(2) = 0.28, P = 0.006) but not the sensory-motor nor medial-visual NOIs. CONCLUSION In individuals with WMH, CVR in the DMN was inversely associated with the number of VRFs and correlated with RS coactivation.
Collapse
Affiliation(s)
- Ekaterina Tchistiakova
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Brain Sciences Research Program, Toronto, Ontario, Canada
| | - David E Crane
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Brain Sciences Research Program, Toronto, Ontario, Canada
| | - David J Mikulis
- Department of Medical Imaging, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Nicole D Anderson
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Psychiatry), University of Toronto, Toronto, Ontario, Canada
| | - Carol E Greenwood
- Rotman Research Institute, Toronto, Ontario, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Brain Sciences Research Program, Toronto, Ontario, Canada.,Rotman Research Institute, Toronto, Ontario, Canada.,Department of Medicine (Neurology), Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Toronto, Ontario, Canada.,Brain Sciences Research Program, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Liu P, Dimitrov I, Andrews T, Crane DE, Dariotis JK, Desmond J, Dumas J, Gilbert G, Kumar A, Maclntosh BJ, Tucholka A, Yang S, Xiao G, Lu H. Multisite evaluations of a T2 -relaxation-under-spin-tagging (TRUST) MRI technique to measure brain oxygenation. Magn Reson Med 2015; 75:680-7. [PMID: 25845468 DOI: 10.1002/mrm.25627] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE Venous oxygenation (Yv ) is an important index of brain physiology and may be indicative of brain diseases. A T2 -relaxation-under-spin-tagging (TRUST) MRI technique was recently developed to measure Yv . A multisite evaluation of this technique would be an important step toward broader availability and potential clinical utilizations of Yv measures. METHODS TRUST MRI was performed on a total of 250 healthy subjects, 125 from the developer's site and 25 each from five other sites. All sites were equipped with a 3 Tesla (T) MRI of the same vendor. The estimated Yv and the standard error (SE) of the estimation εYv were compared across sites. RESULTS The averaged Yv and εYv across six sites were 61.1% ± 1.4% and 1.3% ± 0.2%, respectively. Multivariate regression analysis showed that the estimated Yv was dependent on age (P = 0.009) but not on performance site. In contrast, the SE of the Yv estimation was site-dependent (P = 0.024) but was less than 1.5%. Further analysis revealed that εYv was positively associated with the amount of subject motion (P < 0.001) but negatively associated with blood signal intensity (P < 0.001). CONCLUSION This work suggests that TRUST MRI can yield equivalent results of Yv estimation across different sites.
Collapse
Affiliation(s)
- Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,MR clinical science, Philips Healthcare, Cleveland, Ohio, USA
| | - Trevor Andrews
- MR clinical science, Philips Healthcare, Cleveland, Ohio, USA.,Department of Radiology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - David E Crane
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jacinda K Dariotis
- Department of Population, Family and Reproductive Health, Center for Adolescent Health, The Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Julie Dumas
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Guillaume Gilbert
- MR clinical science, Philips Healthcare, Cleveland, Ohio, USA.,Department of Radiology, Notre-Dame Hospital, University of Montreal, Montreal, QC, Canada
| | - Anand Kumar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bradley J Maclntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alan Tucholka
- Department of Radiology, Notre-Dame Hospital, University of Montreal, Montreal, QC, Canada
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Guanghua Xiao
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
43
|
Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan. Neuroimage 2015; 113:387-96. [PMID: 25795342 PMCID: PMC4441043 DOI: 10.1016/j.neuroimage.2015.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 12/02/2022] Open
Abstract
FMRI BOLD responses to changes in neural activity are influenced by the reactivity of the vasculature. By complementing a task-related BOLD acquisition with a vascular reactivity measure obtained through breath-holding or hypercapnia, this unwanted variance can be statistically reduced in the BOLD responses of interest. Recently, it has been suggested that vascular reactivity can also be estimated using a resting state scan. This study aimed to compare three breath-hold based analysis approaches (block design, sine–cosine regressor and CO2 regressor) and a resting state approach (CO2 regressor) to measure vascular reactivity. We tested BOLD variance explained by the model and repeatability of the measures. Fifteen healthy participants underwent a breath-hold task and a resting state scan with end-tidal CO2 being recorded during both. Vascular reactivity was defined as CO2-related BOLD percent signal change/mm Hg change in CO2. Maps and regional vascular reactivity estimates showed high repeatability when the breath-hold task was used. Repeatability and variance explained by the CO2 trace regressor were lower for the resting state data based approach, which resulted in highly variable measures of vascular reactivity. We conclude that breath-hold based vascular reactivity estimations are more repeatable than resting-based estimates, and that there are limitations with replacing breath-hold scans by resting state scans for vascular reactivity assessment.
Collapse
|
44
|
Lu H, Liu P, Yezhuvath U, Cheng Y, Marshall O, Ge Y. MRI mapping of cerebrovascular reactivity via gas inhalation challenges. J Vis Exp 2014. [PMID: 25549106 PMCID: PMC4396915 DOI: 10.3791/52306] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The brain is a spatially heterogeneous and temporally dynamic organ, with different regions requiring different amount of blood supply at different time. Therefore, the ability of the blood vessels to dilate or constrict, known as Cerebral-Vascular-Reactivity (CVR), represents an important domain of vascular function. An imaging marker representing this dynamic property will provide new information of cerebral vessels under normal and diseased conditions such as stroke, dementia, atherosclerosis, small vessel diseases, brain tumor, traumatic brain injury, and multiple sclerosis. In order to perform this type of measurement in humans, it is necessary to deliver a vasoactive stimulus such as CO2 and/or O2 gas mixture while quantitative brain magnetic resonance images (MRI) are being collected. In this work, we presented a MR compatible gas-delivery system and the associated protocol that allow the delivery of special gas mixtures (e.g., O2, CO2, N2, and their combinations) while the subject is lying inside the MRI scanner. This system is relatively simple, economical, and easy to use, and the experimental protocol allows accurate mapping of CVR in both healthy volunteers and patients with neurological disorders. This approach has the potential to be used in broad clinical applications and in better understanding of brain vascular pathophysiology. In the video, we demonstrate how to set up the system inside an MRI suite and how to perform a complete experiment on a human participant.
Collapse
Affiliation(s)
- Hanzhang Lu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center;
| | - Peiying Liu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - Uma Yezhuvath
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - Yamei Cheng
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center
| | - Olga Marshall
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
| | - Yulin Ge
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
| |
Collapse
|
45
|
Krieger SN, Gauthier CJ, Ivanov D, Huber L, Roggenhofer E, Sehm B, Turner R, Egan GF. Regional reproducibility of calibrated BOLD functional MRI: Implications for the study of cognition and plasticity. Neuroimage 2014; 101:8-20. [DOI: 10.1016/j.neuroimage.2014.06.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/24/2014] [Accepted: 06/28/2014] [Indexed: 02/02/2023] Open
|
46
|
Kennedy KM, Rodrigue KM, Bischof GN, Hebrank AC, Reuter-Lorenz PA, Park DC. Age trajectories of functional activation under conditions of low and high processing demands: an adult lifespan fMRI study of the aging brain. Neuroimage 2014; 104:21-34. [PMID: 25284304 DOI: 10.1016/j.neuroimage.2014.09.056] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/23/2014] [Accepted: 09/24/2014] [Indexed: 12/01/2022] Open
Abstract
We examined functional activation across the adult lifespan in 316 healthy adults aged 20-89years on a judgment task that, across conditions, drew upon both semantic knowledge and ability to modulate neural function in response to cognitive challenge. Activation in core regions of the canonical semantic network (e.g., left IFG) were largely age-invariant, consistent with cognitive aging studies that show verbal knowledge is preserved across the lifespan. However, we observed a steady linear increase in activation with age in regions outside the core network, possibly as compensation to maintain function. Under conditions of increased task demands, we observed a stepwise reduction across the lifespan of modulation of activation to increasing task demands in cognitive control regions (frontal, parietal, anterior cingulate), paralleling the neural equivalent of "processing resources" described by cognitive aging theories. Middle-age was characterized by decreased modulation to task-demand in subcortical regions (caudate, nucleus accumbens, thalamus), and very old individuals showed reduced modulation to task difficulty in midbrain/brainstem regions (ventral tegmental, substantia nigra). These novel findings suggest that aging of activation to demand follows a gradient along the dopaminergic/nigrostriatal system, with earliest manifestation in fronto-parietal regions, followed by deficits in subcortical nuclei in middle-age and then to midbrain/brainstem dopaminergic regions in the very old.
Collapse
Affiliation(s)
- Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA.
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Gérard N Bischof
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | - Andrew C Hebrank
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| | | | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX 75235, USA
| |
Collapse
|
47
|
Cohen MX. A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci 2014; 37:480-90. [DOI: 10.1016/j.tins.2014.06.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/17/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022]
|
48
|
Kannurpatti SS, Motes MA, Biswal BB, Rypma B. Assessment of unconstrained cerebrovascular reactivity marker for large age-range FMRI studies. PLoS One 2014; 9:e88751. [PMID: 24551151 PMCID: PMC3923811 DOI: 10.1371/journal.pone.0088751] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/12/2014] [Indexed: 11/23/2022] Open
Abstract
Breath hold (BH), a commonly used task to measure cerebrovascular reactivity (CVR) in fMRI studies varies in outcome among individuals due to subject-physiology and/or BH-inspiration/expiration differences (i.e., performance). In prior age-related fMRI studies, smaller task-related BOLD response variability is observed among younger than older individuals. Also, a linear CVR versus task relationship exists in younger individuals which maybe useful to test the accuracy of CVR responses in older groups. Hence we hypothesized that subject-related physiological and/or BH differences, if present, may compromise CVR versus task linearity in older individuals. To test the hypothesis, empirical BH versus task relationships from motor and cognitive areas were obtained in younger (mean age = 26 years) and older (mean age = 58 years) human subjects. BH versus task linearity was observed only in the younger group, confirming our hypothesis. Further analysis indicated BH responses and its variability to be similar in both younger and older groups, suggesting that BH may not accurately represent CVR in a large age range. Using the resting state fluctuation of amplitude (RSFA) as an unconstrained alternative to BH, subject-wise correspondence between BH and RSFA was tested. Correlation between BH versus RSFA was significant within the motor but was not significant in the cognitive areas in the younger and was completely disrupted in both areas in the older subjects indicating that BH responses are constrained by subject-related physiology and/or performance-related differences. Contrasting BH to task, RSFA-task relationships were independent of age accompanied by age-related increases in CVR variability as measured by RSFA, not observed with BH. Together the results obtained indicate that RSFA accurately represents CVR in any age range avoiding multiple and yet unknown physiologic and task-related pitfalls of BH.
Collapse
Affiliation(s)
- Sridhar S. Kannurpatti
- Department of Radiology, RUTGERS-New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail: (SSK) (SK); (BR) (BR)
| | - Michael A. Motes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, United States of America
| | - Bharat B. Biswal
- Department of Radiology, RUTGERS-New Jersey Medical School, Newark, New Jersey, United States of America
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, United States of America
- * E-mail: (SSK) (SK); (BR) (BR)
| |
Collapse
|
49
|
Liu C, Li1 C, Yin X, Yang J, Zhou D, Gui L, Wang J. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia. PLoS One 2014; 9:e87880. [PMID: 24498389 PMCID: PMC3912127 DOI: 10.1371/journal.pone.0087880] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/04/2014] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES To investigate the amplitude of low-frequency fluctuations (ALFF) alteration of whole brain in patients with subcortical ischemic vascular dementia (SIVD). MATERIALS AND METHODS Thirty patients with SIVD and 35 control subjects were included in this study. All of them underwent structural MRI and rs-fMRI scan. The structural data were processed using the voxel-based morphometry 8 toolbox (VBM8). The rs-fMRI data were processed using Statistical Parametric Mapping (SPM8) and Data Processing Assistant for Resting-State fMRI (DPARSF) software. Within-group analysis was performed with a one-sample Student's t-test to identify brain regions with ALFF value larger than the mean. Intergroup analysis was performed with a two-sample Student's t-test to identify ALFF differences of whole brain between SIVD and control subjects. Partial correlations between ALFF values and Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) scores were analyzed in the SIVD group across the parameters of age, gender, years of education, and GM volume. RESULTS Within-group analysis showed that the bilateral anterior cingulate cortex (ACC), posterior cingulate cortex, medial prefrontal cortex (MPFC), inferior parietal lobe (IPL), occipital lobe, and adjacent precuneus had significantly higher standardized ALFF values than the global mean ALFF value in both groups. Compared to the controls, patients with SIVD presented lower ALFF values in the bilateral precuneus and higher ALFF values in the bilateral ACC, left insula and hippocampus. Including GM volume as an extra covariate, the ALFF inter-group difference exhibited highly similar spatial patterns to those without GM volume correcting. Close negative correlations were found between the ALFF values of left insula and the MoCA and MMSE scores of SIVD patients. CONCLUSION SIVD is associated with a unique spontaneous aberrant activity of rs-fMRI signals, and measurement of ALFF in the precuneus, ACC, insula, and hippocampus may aid in the detection of SIVD.
Collapse
Affiliation(s)
- Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuanming Li1
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuntao Yin
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Yang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Daiquan Zhou
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li Gui
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
50
|
Thomas BP, Liu P, Aslan S, King KS, van Osch MJP, Lu H. Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage 2013; 83:505-12. [PMID: 23851322 DOI: 10.1016/j.neuroimage.2013.07.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/23/2013] [Accepted: 07/02/2013] [Indexed: 12/21/2022] Open
Abstract
With a growing need for specific biomarkers in vascular diseases, there has been a surging interest in mapping cerebrovascular reactivity (CVR) of the brain. This index can be measured by conducting a hypercapnia challenge while acquiring blood-oxygenation-level-dependent (BOLD) signals. A BOLD signal increase with hypercapnia is the expected outcome and represents the majority of literature reports; in this work we report an intriguing observation of an apparently negative BOLD CVR response at 3T, during inhalation of 5% CO2 with balance medical air. These "negative-CVR" clusters were specifically located in the ventricular regions of the brain, where CSF is abundant and results in an intense baseline signal. The amplitude of the CVR response was -0.51±0.44% (N=14, age 26±4 years). We hypothesized that this observation might not be due to a decrease in oxygenation but rather a volume effect in which bright CSF signal is replaced by a less intensive blood signal as a result of vasodilation. To test this, we performed an inversion-recovery (IR) experiment to suppress the CSF signal (N=10, age 27±5 years). This maneuver in imaging sequence reversed the sign of the signal response (to 0.66±0.25%), suggesting that the volume change was the predominant reason for the apparently negative CVR in the BOLD experiment. Further support of this hypothesis was provided by a BOLD hyperoxia experiment, in which no voxels showed a negative response, presumably because vasodilation is not usually associated with this challenge. Absolute CBF response to hypercapnia was measured in a new group of subjects (N=8, age 29±7 years) and it was found that CBF in ventricular regions increased by 48% upon CO2 inhalation, suggesting that blood oxygenation most likely increased rather than decreased. The findings from this study suggest that CO2 inhalation results in the dilation of ventricular vessels accompanied by shrinkage in CSF space, which is responsible for the apparently negative CVR in brain ventricles.
Collapse
Affiliation(s)
- Binu P Thomas
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA; Biomedical Engineering Graduate Program, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Bioengineering, UT Arlington, Arlington, TX 76019, USA
| | | | | | | | | | | |
Collapse
|