1
|
Afnan J, Cai Z, Lina JM, Abdallah C, Pellegrino G, Arcara G, Khajehpour H, Frauscher B, Gotman J, Grova C. Validating MEG estimated resting-state connectome with intracranial EEG. Netw Neurosci 2025; 9:421-446. [PMID: 40161991 PMCID: PMC11949576 DOI: 10.1162/netn_a_00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Magnetoencephalography (MEG) is widely used for studying resting-state brain connectivity. However, MEG source imaging is ill posed and has limited spatial resolution. This introduces source-leakage issues, making it challenging to interpret MEG-derived connectivity in resting states. To address this, we validated MEG-derived connectivity from 45 healthy participants using a normative intracranial EEG (iEEG) atlas. The MEG inverse problem was solved using the wavelet-maximum entropy on the mean method. We computed four connectivity metrics: amplitude envelope correlation (AEC), orthogonalized AEC (OAEC), phase locking value (PLV), and weighted-phase lag index (wPLI). We compared spatial correlation between MEG and iEEG connectomes across standard canonical frequency bands. We found moderate spatial correlations between MEG and iEEG connectomes for AEC and PLV. However, when considering metrics that correct/remove zero-lag connectivity (OAEC/wPLI), the spatial correlation between MEG and iEEG connectomes decreased. MEG exhibited higher zero-lag connectivity compared with iEEG. The correlations between MEG and iEEG connectomes suggest that relevant connectivity patterns can be recovered from MEG. However, since these correlations are moderate/low, MEG connectivity results should be interpreted with caution. Metrics that correct for zero-lag connectivity show decreased correlations, highlighting a trade-off; while MEG may capture more connectivity due to source-leakage, removing zero-lag connectivity can eliminate true connections.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Giovanni Pellegrino
- Epilepsy program, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Giorgio Arcara
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Hassan Khajehpour
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
2
|
Yokoyama H, Kaneko N, Usuda N, Kato T, Khoo HM, Fukuma R, Oshino S, Tani N, Kishima H, Yanagisawa T, Nakazawa K. M/EEG source localization for both subcortical and cortical sources using a convolutional neural network with a realistic head conductivity model. APL Bioeng 2024; 8:046104. [PMID: 39502794 PMCID: PMC11537707 DOI: 10.1063/5.0226457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
While electroencephalography (EEG) and magnetoencephalography (MEG) are well-established noninvasive methods in neuroscience and clinical medicine, they suffer from low spatial resolution. Electrophysiological source imaging (ESI) addresses this by noninvasively exploring the neuronal origins of M/EEG signals. Although subcortical structures are crucial to many brain functions and neuronal diseases, accurately localizing subcortical sources of M/EEG remains particularly challenging, and the feasibility is still a subject of debate. Traditional ESIs, which depend on explicitly defined regularization priors, have struggled to set optimal priors and accurately localize brain sources. To overcome this, we introduced a data-driven, deep learning-based ESI approach without the need for these priors. We proposed a four-layered convolutional neural network (4LCNN) designed to locate both subcortical and cortical sources underlying M/EEG signals. We also employed a sophisticated realistic head conductivity model using the state-of-the-art segmentation method of ten different head tissues from individual MRI data to generate realistic training data. This is the first attempt at deep learning-based ESI targeting subcortical regions. Our method showed excellent accuracy in source localization, particularly in subcortical areas compared to other methods. This was validated through M/EEG simulations, evoked responses, and invasive recordings. The potential for accurate source localization of the 4LCNNs demonstrated in this study suggests future contributions to various research endeavors such as the clinical diagnosis, understanding of the pathophysiology of various neuronal diseases, and basic brain functions.
Collapse
Affiliation(s)
| | - Naotsugu Kaneko
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Noboru Usuda
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | | | - Hui Ming Khoo
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Satoru Oshino
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Tani
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | | | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Afnan J, Cai Z, Lina JM, Abdallah C, Delaire E, Avigdor T, Ros V, Hedrich T, von Ellenrieder N, Kobayashi E, Frauscher B, Gotman J, Grova C. EEG/MEG source imaging of deep brain activity within the maximum entropy on the mean framework: Simulations and validation in epilepsy. Hum Brain Mapp 2024; 45:e26720. [PMID: 38994740 PMCID: PMC11240147 DOI: 10.1002/hbm.26720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Electro/Magneto-EncephaloGraphy (EEG/MEG) source imaging (EMSI) of epileptic activity from deep generators is often challenging due to the higher sensitivity of EEG/MEG to superficial regions and to the spatial configuration of subcortical structures. We previously demonstrated the ability of the coherent Maximum Entropy on the Mean (cMEM) method to accurately localize the superficial cortical generators and their spatial extent. Here, we propose a depth-weighted adaptation of cMEM to localize deep generators more accurately. These methods were evaluated using realistic MEG/high-density EEG (HD-EEG) simulations of epileptic activity and actual MEG/HD-EEG recordings from patients with focal epilepsy. We incorporated depth-weighting within the MEM framework to compensate for its preference for superficial generators. We also included a mesh of both hippocampi, as an additional deep structure in the source model. We generated 5400 realistic simulations of interictal epileptic discharges for MEG and HD-EEG involving a wide range of spatial extents and signal-to-noise ratio (SNR) levels, before investigating EMSI on clinical HD-EEG in 16 patients and MEG in 14 patients. Clinical interictal epileptic discharges were marked by visual inspection. We applied three EMSI methods: cMEM, depth-weighted cMEM and depth-weighted minimum norm estimate (MNE). The ground truth was defined as the true simulated generator or as a drawn region based on clinical information available for patients. For deep sources, depth-weighted cMEM improved the localization when compared to cMEM and depth-weighted MNE, whereas depth-weighted cMEM did not deteriorate localization accuracy for superficial regions. For patients' data, we observed improvement in localization for deep sources, especially for the patients with mesial temporal epilepsy, for which cMEM failed to reconstruct the initial generator in the hippocampus. Depth weighting was more crucial for MEG (gradiometers) than for HD-EEG. Similar findings were found when considering depth weighting for the wavelet extension of MEM. In conclusion, depth-weighted cMEM improved the localization of deep sources without or with minimal deterioration of the localization of the superficial sources. This was demonstrated using extensive simulations with MEG and HD-EEG and clinical MEG and HD-EEG for epilepsy patients.
Collapse
Affiliation(s)
- Jawata Afnan
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Zhengchen Cai
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Jean-Marc Lina
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Sacré-Coeur Hospital, Montréal, Québec, Canada
| | - Chifaou Abdallah
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Edouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| | - Tamir Avigdor
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria Ros
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
| | - Nicolas von Ellenrieder
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Eliane Kobayashi
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Analytical Neurophysiology Lab, Department of Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jean Gotman
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Physnum Team, Centre De Recherches Mathématiques, Montréal, Québec, Canada
- Multimodal Functional Imaging Lab, Department of Physics and Concordia School of Health, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
4
|
Cai Z, Jiang X, Bagić A, Worrell GA, Richardson M, He B. Spontaneous HFO Sequences Reveal Propagation Pathways for Precise Delineation of Epileptogenic Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592202. [PMID: 38746136 PMCID: PMC11092614 DOI: 10.1101/2024.05.02.592202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Epilepsy, a neurological disorder affecting millions worldwide, poses great challenges in precisely delineating the epileptogenic zone - the brain region generating seizures - for effective treatment. High-frequency oscillations (HFOs) are emerging as promising biomarkers; however, the clinical utility is hindered by the difficulties in distinguishing pathological HFOs from non- epileptiform activities at single electrode and single patient resolution and understanding their dynamic role in epileptic networks. Here, we introduce an HFO-sequencing approach to analyze spontaneous HFOs traversing cortical regions in 40 drug-resistant epilepsy patients. This data- driven method automatically detected over 8.9 million HFOs, pinpointing pathological HFO- networks, and unveiled intricate millisecond-scale spatiotemporal dynamics, stability, and functional connectivity of HFOs in prolonged intracranial EEG recordings. These HFO sequences demonstrated a significant improvement in localization of epileptic tissue, with an 818.47% increase in concordance with seizure-onset zone (mean error: 2.92 mm), compared to conventional benchmarks. They also accurately predicted seizure outcomes for 90% AUC based on pre-surgical information using generalized linear models. Importantly, this mapping remained reliable even with short recordings (mean standard deviation: 3.23 mm for 30-minute segments). Furthermore, HFO sequences exhibited distinct yet highly repetitive spatiotemporal patterns, characterized by pronounced synchrony and predominant inward information flow from periphery towards areas involved in propagation, suggesting a crucial role for excitation-inhibition balance in HFO initiation and progression. Together, these findings shed light on the intricate organization of epileptic network and highlight the potential of HFO-sequencing as a translational tool for improved diagnosis, surgical targeting, and ultimately, better outcomes for vulnerable patients with drug-resistant epilepsy. One Sentence Summary Pathological fast brain oscillations travel like traffic along varied routes, outlining recurrently visited neural sites emerging as critical hotspots in epilepsy network.
Collapse
|
5
|
Brkić D, Sommariva S, Schuler AL, Pascarella A, Belardinelli P, Isabella SL, Pino GD, Zago S, Ferrazzi G, Rasero J, Arcara G, Marinazzo D, Pellegrino G. The impact of ROI extraction method for MEG connectivity estimation: practical recommendations for the study of resting state data. Neuroimage 2023; 284:120424. [PMID: 39492417 DOI: 10.1016/j.neuroimage.2023.120424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis requires the extraction of measures from regions of interest (ROI). M/EEG ROI-derived source activity can be treated in different ways. It is possible, for instance, to average each ROI's time series prior to calculating connectivity measures. Alternatively, one can compute connectivity maps for each element of the ROI prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity results is still unclear. Here, we address this question within a large MEG resting state cohort (N=113) and within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), and three frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare four extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI before computing connectivity, map of the (iii) average, or (iv) maximum connectivity after computing connectivity for each element of the seed. Hierarchical clustering is then applied to compare connectivity outputs across multiple strategies, followed by direct contrasts across extraction methods. Finally, the results are validated by using a set of realistic simulations. We show that ROI-based connectivity maps vary remarkably across strategies in terms of connectivity magnitude and spatial distribution. Dimensionality reduction procedures conducted after computing connectivity are more similar to each-other, while PCA before approach is the most dissimilar to other approaches. Although differences across methods are consistent across frequency bands, they are influenced by the connectivity metric and ROI size. Greater differences were observed for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed that after aggregation procedures are generally more accurate but have lower specificity (higher rate of false positive connections). Though computationally demanding, after dimensionality reduction strategies should be preferred when higher sensitivity is desired. Given the remarkable differences across aggregation procedures, caution is warranted in comparing results across studies applying different methods.
Collapse
Affiliation(s)
| | - Sara Sommariva
- Dipartimento di Matematica, Università di Genova, Genova, Italy
| | - Anna-Lisa Schuler
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Annalisa Pascarella
- Istituto per le Applicazioni del Calcolo "M. Picone", National Research Council, Rome, Italy
| | | | - Silvia L Isabella
- IRCCS San Camillo, Venice, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Rome, Italy
| | | | | | - Javier Rasero
- CoAx Lab, Carnegie Mellon University, Pittsburgh, USA; School of Data Science, University of Virginia, Charlottesville, USA.
| | | | - Daniele Marinazzo
- Faculty of Psychology and Educational Sciences, Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| |
Collapse
|
6
|
Jawata A, Nicolás von E, Jean-Marc L, Giovanni P, Giorgio A, Zhengchen C, Tanguy H, Chifaou A, Hassan K, Birgit F, Jean G, Christophe G. Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas. Neuroimage 2023; 274:120158. [PMID: 37149236 DOI: 10.1016/j.neuroimage.2023.120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/27/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.
Collapse
Affiliation(s)
- Afnan Jawata
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Integrated Program in Neuroscience, McGill University, Montréal, Québec H3A 1A1, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.
| | - Ellenrieder Nicolás von
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Lina Jean-Marc
- Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Electrical Engineering Department, École De Technologie Supérieure, Montréal, Québec H3C 1K3, Canada
| | - Pellegrino Giovanni
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Arcara Giorgio
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Cai Zhengchen
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Hedrich Tanguy
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Abdallah Chifaou
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Khajehpour Hassan
- Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Frauscher Birgit
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Gotman Jean
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Grova Christophe
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montréal, Québec, H3A 2B4, Canada; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada; Centre De Recherches En Mathématiques, Montréal, Québec H3C 3J7, Canada; Physics Department and PERFORM Centre, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
7
|
Frauscher B, Bénar CG, Engel JJ, Grova C, Jacobs J, Kahane P, Wiebe S, Zjilmans M, Dubeau F. Neurophysiology, Neuropsychology, and Epilepsy, in 2022: Hills We Have Climbed and Hills Ahead. Neurophysiology in epilepsy. Epilepsy Behav 2023; 143:109221. [PMID: 37119580 DOI: 10.1016/j.yebeh.2023.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023]
Abstract
Since the discovery of the human electroencephalogram (EEG), neurophysiology techniques have become indispensable tools in our armamentarium to localize epileptic seizures. New signal analysis techniques and the prospects of artificial intelligence and big data will offer unprecedented opportunities to further advance the field in the near future, ultimately resulting in improved quality of life for many patients with drug-resistant epilepsy. This article summarizes selected presentations from Day 1 of the two-day symposium "Neurophysiology, Neuropsychology, Epilepsy, 2022: Hills We Have Climbed and the Hills Ahead". Day 1 was dedicated to highlighting and honoring the work of Dr. Jean Gotman, a pioneer in EEG, intracranial EEG, simultaneous EEG/ functional magnetic resonance imaging, and signal analysis of epilepsy. The program focused on two main research directions of Dr. Gotman, and was dedicated to "High-frequency oscillations, a new biomarker of epilepsy" and "Probing the epileptic focus from inside and outside". All talks were presented by colleagues and former trainees of Dr. Gotman. The extended summaries provide an overview of historical and current work in the neurophysiology of epilepsy with emphasis on novel EEG biomarkers of epilepsy and source imaging and concluded with an outlook on the future of epilepsy research, and what is needed to bring the field to the next level.
Collapse
Affiliation(s)
- B Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada.
| | - C G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - J Jr Engel
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - C Grova
- Multimodal Functional Imaging Lab, PERFORM Centre, Department of Physics, Concordia University, Montreal, QC, Canada; Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, QC, Canada; Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| | - J Jacobs
- Department of Pediatric and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - P Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute Neurosciences, Department of Neurology, 38000 Grenoble, France
| | - S Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - M Zjilmans
- Stichting Epilepsie Instellingen Nederland, The Netherlands; Brain Center, University Medical Center Utrecht, The Netherlands
| | - F Dubeau
- Montreal Neurological Institute and Hospital, Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Coelli S, Medina Villalon S, Bonini F, Velmurugan J, López-Madrona VJ, Carron R, Bartolomei F, Badier JM, Bénar CG. Comparison of beamformer and ICA for dynamic connectivity analysis: A simultaneous MEG-SEEG study. Neuroimage 2023; 265:119806. [PMID: 36513288 DOI: 10.1016/j.neuroimage.2022.119806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful tool for estimating brain connectivity with both good spatial and temporal resolution. It is particularly helpful in epilepsy to characterize non-invasively the epileptic networks. However, using MEG to map brain networks requires solving a difficult inverse problem that introduces uncertainty in the activity localization and connectivity measures. Our goal here was to compare independent component analysis (ICA) followed by dipole source localization and the linearly constrained minimum-variance beamformer (LCMV-BF) for characterizing regions with interictal epileptic activity and their dynamic connectivity. After a simulation study, we compared ICA and LCMV-BF results with intracerebral EEG (stereotaxic EEG, SEEG) recorded simultaneously in 8 epileptic patients, which provide a unique 'ground truth' to which non-invasive results can be confronted. We compared the signal time courses extracted applying ICA and LCMV-BF on MEG data to that of SEEG, both for the actual signals and the dynamic connectivity computed using cross-correlation (evolution of links in time). With our simulations, we illustrated the different effect of the temporal and spatial correlation among sources on the two methods. While ICA was more affected by the temporal correlation but robust against spatial configurations, LCMV-BF showed opposite behavior. Moreover, ICA seems more suited to retrieve the simulated networks. In case of real patient data, good MEG/SEEG correlation and good localization were obtained in 6 out of 8 patients. In 4 of them ICA had the best performance (higher correlation, lower localization distance). In terms of dynamic connectivity, the evolution in time of the cross-correlation links could be retrieved in 5 patients out of 6, however, with more variable results in terms of correlation and distance. In two patients LCMV-BF had better results than ICA. In one patient the two methods showed equally good outcomes, and in the remaining two patients ICA performed best. In conclusion, our results obtained by exploiting simultaneous MEG/SEEG recordings suggest that ICA and LCMV-BF have complementary qualities for retrieving the dynamics of interictal sources and their network interactions.
Collapse
Affiliation(s)
- Stefania Coelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Samuel Medina Villalon
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Francesca Bonini
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Jayabal Velmurugan
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | | | - Romain Carron
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; APHM, Timone Hospital, Epileptology and Cerebral Rythmology, Marseille, France
| | - Jean-Michel Badier
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Christian-G Bénar
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
9
|
Chirkov V, Kryuchkova A, Koptelova A, Stroganova T, Kuznetsova A, Kleeva D, Ossadtchi A, Fedele T. Data-driven approach for the delineation of the irritative zone in epilepsy in MEG. PLoS One 2022; 17:e0275063. [PMID: 36282803 PMCID: PMC9595543 DOI: 10.1371/journal.pone.0275063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022] Open
Abstract
The reliable identification of the irritative zone (IZ) is a prerequisite for the correct clinical evaluation of medically refractory patients affected by epilepsy. Given the complexity of MEG data, visual analysis of epileptiform neurophysiological activity is highly time consuming and might leave clinically relevant information undetected. We recorded and analyzed the interictal activity from seven patients affected by epilepsy (Vectorview Neuromag), who successfully underwent epilepsy surgery (Engel > = II). We visually marked and localized characteristic epileptiform activity (VIS). We implemented a two-stage pipeline for the detection of interictal spikes and the delineation of the IZ. First, we detected candidate events from peaky ICA components, and then clustered events around spatio-temporal patterns identified by convolutional sparse coding. We used the average of clustered events to create IZ maps computed at the amplitude peak (PEAK), and at the 50% of the peak ascending slope (SLOPE). We validated our approach by computing the distance of the estimated IZ (VIS, SLOPE and PEAK) from the border of the surgically resected area (RA). We identified 25 spatiotemporal patterns mimicking the underlying interictal activity (3.6 clusters/patient). Each cluster was populated on average by 22.1 [15.0–31.0] spikes. The predicted IZ maps had an average distance from the resection margin of 8.4 ± 9.3 mm for visual analysis, 12.0 ± 16.5 mm for SLOPE and 22.7 ±. 16.4 mm for PEAK. The consideration of the source spread at the ascending slope provided an IZ closer to RA and resembled the analysis of an expert observer. We validated here the performance of a data-driven approach for the automated detection of interictal spikes and delineation of the IZ. This computational framework provides the basis for reproducible and bias-free analysis of MEG recordings in epilepsy.
Collapse
Affiliation(s)
- Valerii Chirkov
- Berlin School of Mind and Brain, Humboldt University, Berlin, Germany
| | - Anna Kryuchkova
- Center for Neurocognitive Research, MEG Center, MSUPE, Moscow, Russian Federation
| | - Alexandra Koptelova
- Center for Neurocognitive Research, MEG Center, MSUPE, Moscow, Russian Federation
| | - Tatiana Stroganova
- Center for Neurocognitive Research, MEG Center, MSUPE, Moscow, Russian Federation
| | - Alexandra Kuznetsova
- Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Daria Kleeva
- Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Alexei Ossadtchi
- Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
| | - Tommaso Fedele
- Institute of Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russian Federation
- * E-mail:
| |
Collapse
|
10
|
Cai Z, Pellegrino G, Lina J, Benali H, Grova C. Hierarchical Bayesian modeling of the relationship between task-related hemodynamic responses and cortical excitability. Hum Brain Mapp 2022; 44:876-900. [PMID: 36250709 PMCID: PMC9875942 DOI: 10.1002/hbm.26107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/10/2022] [Accepted: 09/18/2022] [Indexed: 01/28/2023] Open
Abstract
Investigating the relationship between task-related hemodynamic responses and cortical excitability is challenging because it requires simultaneous measurement of hemodynamic responses while applying noninvasive brain stimulation. Moreover, cortical excitability and task-related hemodynamic responses are both associated with inter-/intra-subject variability. To reliably assess such a relationship, we applied hierarchical Bayesian modeling. This study involved 16 healthy subjects who underwent simultaneous Paired Associative Stimulation (PAS10, PAS25, Sham) while monitoring brain activity using functional Near-Infrared Spectroscopy (fNIRS), targeting the primary motor cortex (M1). Cortical excitability was measured by Motor Evoked Potentials (MEPs), and the motor task-related hemodynamic responses were measured using fNIRS 3D reconstructions. We constructed three models to investigate: (1) PAS effects on the M1 excitability, (2) PAS effects on fNIRS hemodynamic responses to a finger tapping task, and (3) the correlation between PAS effects on M1 excitability and PAS effects on task-related hemodynamic responses. Significant increase in cortical excitability was found following PAS25, whereas a small reduction of the cortical excitability was shown after PAS10 and a subtle increase occurred after sham. Both HbO and HbR absolute amplitudes increased after PAS25 and decreased after PAS10. The probability of the positive correlation between modulation of cortical excitability and hemodynamic activity was 0.77 for HbO and 0.79 for HbR. We demonstrated that PAS stimulation modulates task-related cortical hemodynamic responses in addition to M1 excitability. Moreover, the positive correlation between PAS modulations of excitability and hemodynamics brought insight into understanding the fundamental properties of cortical function and cortical excitability.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Habib Benali
- PERFORM CentreConcordia UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada,Electrical and Computer Engineering Department, Concordia UniversityMontréalCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of PhysicsConcordia UniversityMontréalQuébecCanada,PERFORM CentreConcordia UniversityMontréalQuébecCanada,Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada,Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
11
|
Mozaffari K, Hofmann K, Boyd P, Chalif E, Pasupuleti A, Gaillard WD, Oluigbo C. The Impact of Magnetoencephalography-Directed Stereo-Electroencephalography Depth Electrode Implantation on Seizure Control Outcome in Children. Cureus 2022; 14:e29860. [PMID: 36348878 PMCID: PMC9630048 DOI: 10.7759/cureus.29860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 06/16/2023] Open
Abstract
Introduction The use of magnetoencephalography (MEG) in localizing epileptic foci and directing surgical treatment of medically refractory epilepsy is well established in clinical practice; however, it has not yet been incorporated into the routine planning of stereo-electroencephalography (EEG) (SEEG) depth electrode trajectories during invasive intracranial evaluation for epileptic foci localization. In this study, we assess the impact of MEG-directed SEEG on seizure outcomes in a pediatric cohort. Methods A retrospective analysis was performed on a single-institution cohort of pediatric patients with medically refractory epilepsy who underwent epilepsy surgery. The primary endpoint was the reduction in seizure burden as determined by dichotomized Engel scores (favorable outcome: Engel scores I and II; poor outcome: Engel scores III and IV). Results Thirty-seven patients met the inclusion criteria (24 males and 13 females). The median age at seizure onset was three years, the median age at surgery was 14.1 years, and the median follow-up length was 30.8 months. Concordance was noted in 7/10 (70%) patients who received MEG-directed SEEG. Good clinical outcomes were achieved in 70% of MEG-directed SEEG patients, compared to 59.4% in their counterparts; however, this difference was not statistically significant (p=0.72). We noted no statistically significant association between sex, disease laterality, or age at surgery and good clinical outcomes. Conclusions Patients who underwent MEG-directed SEEG had favorable clinical outcomes, which demonstrated the practicability of this technique for determining SEEG electrode placement. Although no significant difference in clinical outcomes was obtained between the two groups, this may have been due to low statistical power. Future prospective, multi-institutional investigations to assess the benefit of MEG-directed SEEG are warranted.
Collapse
Affiliation(s)
- Khashayar Mozaffari
- Department of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Katherine Hofmann
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Paul Boyd
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - Eric Chalif
- Department of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Archana Pasupuleti
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - William D Gaillard
- Department of Neurology, Children's National Hospital, Washington, DC, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
12
|
Ricci L, Matarrese M, Peters JM, Tamilia E, Madsen JR, Pearl PL, Papadelis C. Virtual implantation using conventional scalp EEG delineates seizure onset and predicts surgical outcome in children with epilepsy. Clin Neurophysiol 2022; 139:49-57. [PMID: 35526353 PMCID: PMC10026594 DOI: 10.1016/j.clinph.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Delineation of the seizure onset zone (SOZ) is required in children with drug resistant epilepsy (DRE) undergoing neurosurgery. Intracranial EEG (icEEG) serves as gold standard but has limitations. Here, we examine the utility of virtual implantation with electrical source imaging (ESI) on ictal scalp EEG for mapping the SOZ and predict surgical outcome. METHODS We retrospectively analyzed EEG data from 35 children with DRE who underwent surgery and dichotomized into seizure-free (SF) and non-seizure-free (NSF). We estimated virtual sensors (VSs) at brain locations that matched icEEG implantation and compared ictal patterns at VSs vs icEEG. We calculated the agreement between VSs SOZ and clinically defined SOZ and built receiver operating characteristic (ROC) curves to test whether it predicted outcome. RESULTS Twenty-one patients were SF after surgery. Moderate agreement between virtual and icEEG patterns was observed (kappa = 0.45, p < 0.001). Virtual SOZ agreement with clinically defined SOZ was higher in SF vs NSF patients (66.6% vs 41.6%, p = 0.01). Anatomical concordance of virtual SOZ with clinically defined SOZ predicted outcome (AUC = 0.73; 95% CI: 0.57-0.89; sensitivity = 66.7%; specificity = 78.6%; accuracy = 71.4%). CONCLUSIONS Virtual implantation on ictal scalp EEG can approximate the SOZ and predict outcome. SIGNIFICANCE SOZ mapping with VSs may contribute to tailoring icEEG implantation and predict outcome.
Collapse
Affiliation(s)
- Lorenzo Ricci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Margherita Matarrese
- Unit of Non-Linear Physics and Mathematical Modelling, Engineering Department, University Campus Bio-Medico of Rome, Rome, Italy; Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jurriaan M Peters
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora Tamilia
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, TX, USA; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA; School of Medicine, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
13
|
Abdallah C, Hedrich T, Koupparis A, Afnan J, Hall JA, Gotman J, Dubeau F, von Ellenrieder N, Frauscher B, Kobayashi E, Grova C. Clinical Yield of Electromagnetic Source Imaging and Hemodynamic Responses in Epilepsy: Validation With Intracerebral Data. Neurology 2022; 98:e2499-e2511. [PMID: 35473762 PMCID: PMC9231837 DOI: 10.1212/wnl.0000000000200337] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Accurate delineation of the seizure-onset zone (SOZ) in focal drug-resistant epilepsy often requires stereo-EEG (SEEG) recordings. Our aims were to propose a truly objective and quantitative comparison between EEG/magnetoencephalography (MEG) source imaging (EMSI), EEG/fMRI responses for similar spikes with primary irritative zone (PIZ) and SOZ defined by SEEG and to evaluate the value of EMSI and EEG/fMRI to predict postsurgical outcome. METHODS We identified patients with drug-resistant epilepsy who underwent EEG/MEG, EEG/fMRI, and subsequent SEEG at the Epilepsy Service from the Montreal Neurological Institute and Hospital. We quantified multimodal concordance within the SEEG channel space as spatial overlap with PIZ/SOZ and distances to the spike-onset, spike maximum amplitude and seizure core intracerebral channels by applying a new methodology consisting of converting EMSI results into SEEG electrical potentials (EMSIe-SEEG) and projecting the most significant fMRI response on the SEEG channels (fMRIp-SEEG). Spatial overlaps with PIZ/SOZ (AUCPIZ, AUCSOZ) were assessed by using the area under the receiver operating characteristic curve (AUC). Here, AUC represents the probability that a randomly picked active contact exhibited higher amplitude when located inside the spatial reference than outside. RESULTS Seventeen patients were included. Mean spatial overlaps with the PIZ and SOZ were 0.71 and 0.65 for EMSIe-SEEG and 0.57 and 0.62 for fMRIp-SEEG. Good EMSIe-SEEG spatial overlap with the PIZ was associated with smaller distance from the maximum EMSIe-SEEG contact to the spike maximum amplitude channel (median distance 14 mm). Conversely, good fMRIp-SEEG spatial overlap with the SOZ was associated with smaller distances from the maximum fMRIp-SEEG contact to the spike-onset and seizure core channels (median distances 10 and 5 mm, respectively). Surgical outcomes were correctly predicted by EEG/MEG in 12 of 15 (80%) patients and EEG/fMRI in 6 of 11(54%) patients. DISCUSSION With the use of a unique quantitative approach estimating EMSI and fMRI results in the reference SEEG channel space, EEG/MEG and EEG/fMRI accurately localized the SOZ and the PIZ. Precisely, EEG/MEG more accurately localized the PIZ, whereas EEG/fMRI was more sensitive to the SOZ. Both neuroimaging techniques provide complementary localization that can help guide SEEG implantation and select good candidates for surgery.
Collapse
Affiliation(s)
- Chifaou Abdallah
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada.
| | - Tanguy Hedrich
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Andreas Koupparis
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Jawata Afnan
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Jeffrey Alan Hall
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Jean Gotman
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Francois Dubeau
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Nicolas von Ellenrieder
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Birgit Frauscher
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| | - Christophe Grova
- From the Multimodal Functional Imaging Lab (C.A., T.H., J.A., C.G.), Biomedical Engineering Department, Montreal Neurological Institute and Hospital (C.A., A.K., J.A., J.A.H., J.G., F.D., N.v.E., B.F., E.K., C.G.), Neurology and Neurosurgery Department, and Analytical Neurophysiology Lab (T.H., B.F.), McGill University; and Multimodal Functional Imaging Lab (C.G.), PERFORM Centre, Department of Physics, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Cai Z, Machado A, Chowdhury RA, Spilkin A, Vincent T, Aydin Ü, Pellegrino G, Lina JM, Grova C. Diffuse optical reconstructions of functional near infrared spectroscopy data using maximum entropy on the mean. Sci Rep 2022; 12:2316. [PMID: 35145148 PMCID: PMC8831678 DOI: 10.1038/s41598-022-06082-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) measures the hemoglobin concentration changes associated with neuronal activity. Diffuse optical tomography (DOT) consists of reconstructing the optical density changes measured from scalp channels to the oxy-/deoxy-hemoglobin concentration changes within the cortical regions. In the present study, we adapted a nonlinear source localization method developed and validated in the context of Electro- and Magneto-Encephalography (EEG/MEG): the Maximum Entropy on the Mean (MEM), to solve the inverse problem of DOT reconstruction. We first introduced depth weighting strategy within the MEM framework for DOT reconstruction to avoid biasing the reconstruction results of DOT towards superficial regions. We also proposed a new initialization of the MEM model improving the temporal accuracy of the original MEM framework. To evaluate MEM performance and compare with widely used depth weighted Minimum Norm Estimate (MNE) inverse solution, we applied a realistic simulation scheme which contained 4000 simulations generated by 250 different seeds at different locations and 4 spatial extents ranging from 3 to 40[Formula: see text] along the cortical surface. Our results showed that overall MEM provided more accurate DOT reconstructions than MNE. Moreover, we found that MEM was remained particularly robust in low signal-to-noise ratio (SNR) conditions. The proposed method was further illustrated by comparing to functional Magnetic Resonance Imaging (fMRI) activation maps, on real data involving finger tapping tasks with two different montages. The results showed that MEM provided more accurate HbO and HbR reconstructions in spatial agreement with the main fMRI cluster, when compared to MNE.
Collapse
Affiliation(s)
- Zhengchen Cai
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada.
| | - Alexis Machado
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
| | - Amanda Spilkin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
| | - Thomas Vincent
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de médecine préventive et d'activité physique, Montréal Heart Institute, Montréal, Canada
| | - Ümit Aydin
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jean-Marc Lina
- École de technologie supérieure de l'Université du Québec, Montréal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| | - Christophe Grova
- Department of Physics and PERFORM Centre, Concordia University, Montreal, Canada
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Canada
| |
Collapse
|
15
|
Hadriche A, Behy I, Necibi A, Kachouri A, Amar CB, Jmail N. Assessment of Effective Network Connectivity among MEG None Contaminated Epileptic Transitory Events. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6406362. [PMID: 34992674 PMCID: PMC8727131 DOI: 10.1155/2021/6406362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Characterizing epileptogenic zones EZ (sources responsible of excessive discharges) would assist a neurologist during epilepsy diagnosis. Locating efficiently these abnormal sources among magnetoencephalography (MEG) biomarker is obtained by several inverse problem techniques. These techniques present different assumptions and particular epileptic network connectivity. Here, we proposed to evaluate performances of distributed inverse problem in defining EZ. First, we applied an advanced technique based on Singular Value Decomposition (SVD) to recover only pure transitory activities (interictal epileptiform discharges). We evaluated our technique's robustness in separation between transitory and ripples versus frequency range, transitory shapes, and signal to noise ratio on simulated data (depicting both epileptic biomarkers and respecting time series and spectral properties of realistic data). We validated our technique on MEG signal using detector precision on 5 patients. Then, we applied four methods of inverse problem to define cortical areas and neural generators of excessive discharges. We computed network connectivity of each technique. Then, we confronted obtained noninvasive networks to intracerebral EEG transitory network connectivity using nodes in common, connection strength, distance metrics between concordant nodes of MEG and IEEG, and average propagation delay. Coherent Maximum Entropy on the Mean (cMEM) proved a high matching between MEG network connectivity and IEEG based on distance between active sources, followed by Exact low-resolution brain electromagnetic tomography (eLORETA), Dynamical Statistical Parametric Mapping (dSPM), and Minimum norm estimation (MNE). Clinical performance was interesting for entire methods providing in an average of 73.5% of active sources detected in depth and seen in MEG, and vice versa, about 77.15% of active sources were detected from MEG and seen in IEEG. Investigated problem techniques succeed at least in finding one part of seizure onset zone. dSPM and eLORETA depict the highest connection strength among all techniques. Propagation delay varies in this range [18, 25]ms, knowing that eLORETA ensures the lowest propagation delay (18 ms) and the closet one to IEEG propagation delay.
Collapse
Affiliation(s)
- Abir Hadriche
- REGIM Lab, ENIS, Sfax University, Tunisia
- Digital Research Center of Sfax, Tunisia
| | | | | | | | | | - Nawel Jmail
- MIRACL Lab, Sfax University, Tunisia
- LETI Lab, ENIS, Sfax University, Tunisia
| |
Collapse
|
16
|
Cai Z, Uji M, Aydin Ü, Pellegrino G, Spilkin A, Delaire É, Abdallah C, Lina J, Grova C. Evaluation of a personalized functional near infra-red optical tomography workflow using maximum entropy on the mean. Hum Brain Mapp 2021; 42:4823-4843. [PMID: 34342073 PMCID: PMC8449120 DOI: 10.1002/hbm.25566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
Abstract
In the present study, we proposed and evaluated a workflow of personalized near infra-red optical tomography (NIROT) using functional near-infrared spectroscopy (fNIRS) for spatiotemporal imaging of cortical hemodynamic fluctuations. The proposed workflow from fNIRS data acquisition to local 3D reconstruction consists of: (a) the personalized optimal montage maximizing fNIRS channel sensitivity to a predefined targeted brain region; (b) the optimized fNIRS data acquisition involving installation of optodes and digitalization of their positions using a neuronavigation system; and (c) the 3D local reconstruction using maximum entropy on the mean (MEM) to accurately estimate the location and spatial extent of fNIRS hemodynamic fluctuations along the cortical surface. The workflow was evaluated on finger-tapping fNIRS data acquired from 10 healthy subjects for whom we estimated the reconstructed NIROT spatiotemporal images and compared with functional magnetic resonance imaging (fMRI) results from the same individuals. Using the fMRI activation maps as our reference, we quantitatively compared the performance of two NIROT approaches, the MEM framework and the conventional minimum norm estimation (MNE) method. Quantitative comparisons were performed at both single subject and group-level. Overall, our results suggested that MEM provided better spatial accuracy than MNE, while both methods offered similar temporal accuracy when reconstructing oxygenated (HbO) and deoxygenated hemoglobin (HbR) concentration changes evoked by finger-tapping. Our proposed complete workflow was made available in the brainstorm fNIRS processing plugin-NIRSTORM, thus providing the opportunity for other researchers to further apply it to other tasks and on larger populations.
Collapse
Affiliation(s)
- Zhengchen Cai
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Makoto Uji
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
- Social, Genetic and Developmental Psychiatry CentreInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Amanda Spilkin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Édouard Delaire
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
| | - Chifaou Abdallah
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
| | - Jean‐Marc Lina
- Département de Génie ElectriqueÉcole de Technologie SupérieureMontréalQuébecCanada
- Centre De Recherches En MathématiquesMontréalQuébecCanada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM CentreConcordia UniversityMontréalQuébecCanada
- Neurology and Neurosurgery Department, Montreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
- Multimodal Functional Imaging Lab, Biomedical Engineering DepartmentMcGill UniversityMontréalQuébecCanada
- Centre De Recherches En MathématiquesMontréalQuébecCanada
| |
Collapse
|
17
|
Xu N, Shan W, Qi J, Wu J, Wang Q. Presurgical Evaluation of Epilepsy Using Resting-State MEG Functional Connectivity. Front Hum Neurosci 2021; 15:649074. [PMID: 34276321 PMCID: PMC8283278 DOI: 10.3389/fnhum.2021.649074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
Epilepsy is caused by abnormal electrical discharges (clinically identified by electrophysiological recording) in a specific part of the brain [originating in only one part of the brain, namely, the epileptogenic zone (EZ)]. Epilepsy is now defined as an archetypical hyperexcited neural network disorder. It can be investigated through the network analysis of interictal discharges, ictal discharges, and resting-state functional connectivity. Currently, there is an increasing interest in embedding resting-state connectivity analysis into the preoperative evaluation of epilepsy. Among the various neuroimaging technologies employed to achieve brain functional networks, magnetoencephalography (MEG) with the excellent temporal resolution is an ideal tool for estimating the resting-state connectivity between brain regions, which can reveal network abnormalities in epilepsy. What value does MEG resting-state functional connectivity offer for epileptic presurgical evaluation? Regarding this topic, this paper introduced the origin of MEG and the workflow of constructing source-space functional connectivity based on MEG signals. Resting-state functional connectivity abnormalities correlate with epileptogenic networks, which are defined by the brain regions involved in the production and propagation of epileptic activities. This paper reviewed the evidence of altered epileptic connectivity based on low- or high-frequency oscillations (HFOs) and the evidence of the advantage of using simultaneous MEG and intracranial electroencephalography (iEEG) recordings. More importantly, this review highlighted that MEG-based resting-state functional connectivity has the potential to predict postsurgical outcomes. In conclusion, resting-state MEG functional connectivity has made a substantial progress toward serving as a candidate biomarker included in epileptic presurgical evaluations.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Shan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Qi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
18
|
Zhang S, Cao C, Quinn A, Vivekananda U, Zhan S, Liu W, Sun B, Woolrich M, Lu Q, Litvak V. Dynamic analysis on simultaneous iEEG-MEG data via hidden Markov model. Neuroimage 2021; 233:117923. [PMID: 33662572 PMCID: PMC8204269 DOI: 10.1016/j.neuroimage.2021.117923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Intracranial electroencephalography (iEEG) recordings are used for clinical evaluation prior to surgical resection of the focus of epileptic seizures and also provide a window into normal brain function. A major difficulty with interpreting iEEG results at the group level is inconsistent placement of electrodes between subjects making it difficult to select contacts that correspond to the same functional areas. Recent work using time delay embedded hidden Markov model (HMM) applied to magnetoencephalography (MEG) resting data revealed a distinct set of brain states with each state engaging a specific set of cortical regions. Here we use a rare group dataset with simultaneously acquired resting iEEG and MEG to test whether there is correspondence between HMM states and iEEG power changes that would allow classifying iEEG contacts into functional clusters. METHODS Simultaneous MEG-iEEG recordings were performed at rest on 11 patients with epilepsy whose intracranial electrodes were implanted for pre-surgical evaluation. Pre-processed MEG sensor data was projected to source space. Time delay embedded HMM was then applied to MEG time series. At the same time, iEEG time series were analyzed with time-frequency decomposition to obtain spectral power changes with time. To relate MEG and iEEG results, correlations were computed between HMM probability time courses of state activation and iEEG power time course from the mid contact pair for each electrode in equally spaced frequency bins and presented as correlation spectra for the respective states and iEEG channels. Association of iEEG electrodes with HMM states based on significant correlations was compared to that based on the distance to peaks in subject-specific state topographies. RESULTS Five HMM states were inferred from MEG. Two of them corresponded to the left and the right temporal activations and had a spectral signature primarily in the theta/alpha frequency band. All the electrodes had significant correlations with at least one of the states (p < 0.05 uncorrected) and for 27/50 electrodes these survived within-subject FDR correction (q < 0.05). These correlations peaked in the theta/alpha band. There was a highly significant dependence between the association of states and electrodes based on functional correlations and that based on spatial proximity (p = 5.6e-6,χ2 test for independence). Despite the potentially atypical functional anatomy and physiological abnormalities related to epilepsy, HMM model estimated from the patient group was very similar to that estimated from healthy subjects. CONCLUSION Epilepsy does not preclude HMM analysis of interictal data. The resulting group functional states are highly similar to those reported for healthy controls. Power changes recorded with iEEG correlate with HMM state time courses in the alpha-theta band and the presence of this correlation can be related to the spatial location of electrode contacts close to the individual peaks of the corresponding state topographies. Thus, the hypothesized relation between iEEG contacts and HMM states exists and HMM could be further explored as a method for identifying comparable iEEG channels across subjects for the purposes of group analysis.
Collapse
Affiliation(s)
- Siqi Zhang
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China; Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK
| | - Chunyan Cao
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew Quinn
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Umesh Vivekananda
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK; National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Shikun Zhan
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, affiliated Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, University of Oxford, Warneford Hospital, Oxford, UK
| | - Qing Lu
- Key Laboratory of Child Development and Learning Science of Ministry of Education, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, Jiangsu, China.
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
19
|
Noninvasive high-frequency oscillations riding spikes delineates epileptogenic sources. Proc Natl Acad Sci U S A 2021; 118:2011130118. [PMID: 33875582 PMCID: PMC8092606 DOI: 10.1073/pnas.2011130118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Millions of people affected by epilepsy may undergo surgical resection of the epileptic tissues to stop seizures if such epileptic foci can be accurately delineated. High-frequency oscillations (HFOs), existing in electroencephalography, are highly correlated with epileptic brain, which is promising for guiding successful neurosurgery. However, it is unclear whether and how pathological HFOs can be differentiated to localize the epileptogenic tissues given the presence of various nonepileptic high-frequency activities. Here, we show morphological and source imaging evidence that pathological HFOs can be identified by the concurrence of epileptiform spikes. We describe a framework to delineate the underlying epileptogenicity using this biomarker. Our work may offer translational tools to improve treatments by noninvasively demarking pathological activities and hence epileptic foci. High-frequency oscillations (HFOs) are a promising biomarker for localizing epileptogenic brain and guiding successful neurosurgery. However, the utility and translation of noninvasive HFOs, although highly desirable, is impeded by the difficulty in differentiating pathological HFOs from nonepileptiform high-frequency activities and localizing the epileptic tissue using noninvasive scalp recordings, which are typically contaminated with high noise levels. Here, we show that the consistent concurrence of HFOs with epileptiform spikes (pHFOs) provides a tractable means to identify pathological HFOs automatically, and this in turn demarks an epileptiform spike subgroup with higher epileptic relevance than the other spikes in a cohort of 25 temporal epilepsy patients (including a total of 2,967 interictal spikes and 1,477 HFO events). We found significant morphological distinctions of HFOs and spikes in the presence/absence of this concurrent status. We also demonstrated that the proposed pHFO source imaging enhanced localization of epileptogenic tissue by 162% (∼5.36 mm) for concordance with surgical resection and by 186% (∼12.48 mm) with seizure-onset zone determined by invasive studies, compared to conventional spike imaging, and demonstrated superior congruence with the surgical outcomes. Strikingly, the performance of spike imaging was selectively boosted by the presence of spikes with pHFOs, especially in patients with multitype spikes. Our findings suggest that concurrent HFOs and spikes reciprocally discriminate pathological activities, providing a translational tool for noninvasive presurgical diagnosis and postsurgical evaluation in vulnerable patients.
Collapse
|
20
|
Opoku EA, Ahmed SE, Song Y, Nathoo FS. Ant Colony System Optimization for Spatiotemporal Modelling of Combined EEG and MEG Data. ENTROPY 2021; 23:e23030329. [PMID: 33799662 PMCID: PMC7999289 DOI: 10.3390/e23030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022]
Abstract
Electroencephalography/Magnetoencephalography (EEG/MEG) source localization involves the estimation of neural activity inside the brain volume that underlies the EEG/MEG measures observed at the sensor array. In this paper, we consider a Bayesian finite spatial mixture model for source reconstruction and implement Ant Colony System (ACS) optimization coupled with Iterated Conditional Modes (ICM) for computing estimates of the neural source activity. Our approach is evaluated using simulation studies and a real data application in which we implement a nonparametric bootstrap for interval estimation. We demonstrate improved performance of the ACS-ICM algorithm as compared to existing methodology for the same spatiotemporal model.
Collapse
Affiliation(s)
- Eugene A. Opoku
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada; (Y.S.); (F.S.N.)
- Correspondence:
| | - Syed Ejaz Ahmed
- Department of Mathematics and Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Yin Song
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada; (Y.S.); (F.S.N.)
| | - Farouk S. Nathoo
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada; (Y.S.); (F.S.N.)
| |
Collapse
|
21
|
Aydin Ü, Pellegrino G, Ali OBK, Abdallah C, Dubeau F, Lina JM, Kobayashi E, Grova C. Magnetoencephalography resting state connectivity patterns as indicatives of surgical outcome in epilepsy patients. J Neural Eng 2020; 17:035007. [PMID: 32191632 DOI: 10.1088/1741-2552/ab8113] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Focal epilepsy is a disorder affecting several brain networks; however, epilepsy surgery usually targets a restricted region, the so-called epileptic focus. There is a growing interest in embedding resting state (RS) connectivity analysis into pre-surgical workup. APPROACH In this retrospective study, we analyzed Magnetoencephalography (MEG) long-range RS functional connectivity patterns in patients with drug-resistant focal epilepsy. MEG recorded prior to surgery from seven seizure-free (Engel Ia) and five non seizure-free (Engel III or IV) patients were analyzed (minimum 2-years post-surgical follow-up). MEG segments without any detectable epileptic activity were source localized using wavelet-based Maximum Entropy on the Mean method. Amplitude envelope correlation in the theta (4-8 Hz), alpha (8-13 Hz), and beta (13-26 Hz) bands were used for assessing connectivity. MAIN RESULTS For seizure-free patients, we found an isolated epileptic network characterized by weaker connections between the brain region where interictal epileptic discharges (IED) are generated and the rest of the cortex, when compared to connectivity between the corresponding contralateral homologous region and the rest of the cortex. Contrarily, non seizure-free patients exhibited a widespread RS epileptic network characterized by stronger connectivity between the IED generator and the rest of the cortex, in comparison to the contralateral region and the cortex. Differences between the two seizure outcome groups concerned mainly distant long-range connections and were found in the alpha-band. SIGNIFICANCE Importantly, these connectivity patterns suggest specific mechanisms describing the underlying organization of the epileptic network and were detectable at the individual patient level, supporting the prospect use of MEG connectivity patterns in epilepsy to predict post-surgical seizure outcome.
Collapse
Affiliation(s)
- Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada. Authors to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pellegrino G, Xu M, Alkuwaiti A, Porras-Bettancourt M, Abbas G, Lina JM, Grova C, Kobayashi E. Effects of Independent Component Analysis on Magnetoencephalography Source Localization in Pre-surgical Frontal Lobe Epilepsy Patients. Front Neurol 2020; 11:479. [PMID: 32582009 PMCID: PMC7280485 DOI: 10.3389/fneur.2020.00479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/01/2020] [Indexed: 01/18/2023] Open
Abstract
Objective: Magnetoencephalography source imaging (MSI) of interictal epileptiform discharges (IED) is a useful presurgical tool in the evaluation of drug-resistant frontal lobe epilepsy (FLE) patients. Yet, failures in MSI can arise related to artifacts and to interference of background activity. Independent component analysis (ICA) is a popular denoising procedure but its clinical application remains challenging, as the selection of multiple independent components (IC) is controversial, operator dependent, and time consuming. We evaluated whether selecting only one IC of interest based on its similarity with the average IED field improves MSI in FLE. Methods: MSI was performed with the equivalent current dipole (ECD) technique and two distributed magnetic source imaging (dMSI) approaches: minimum norm estimate (MNE) and coherent Maximum Entropy on the Mean (cMEM). MSI accuracy was evaluated under three conditions: (1) ICA of continuous data (Cont_ICA), (2) ICA at the time of IED (IED_ICA), and (3) without ICA (No_ICA). Localization performance was quantitatively measured as actual distance of the source maximum in relation to the focus (Dmin), and spatial dispersion (SD) for dMSI. Results: After ICA, ECD Dmin did not change significantly (p > 0.200). For both dMSI techniques, ICA application worsened the source localization accuracy. We observed a worsening of both MNE Dmin (p < 0.05, consistently) and MNE SD (p < 0.001, consistently) for both ICA approaches. A similar behaviour was observed for cMEM, for which, however, Cont_ICA seemed less detrimental. Conclusion: We demonstrated that a simplified ICA approach selecting one IC of interest in combination with distributed magnetic source imaging can be detrimental. More complex approaches may provide better results but would be rather difficult to apply in real-world clinical setting. In a broader perspective, caution should be taken in applying ICA for source localization of interictal activity. To ensure optimal and useful results, effort should focus on acquiring good quality data, minimizing artifacts, and determining optimal candidacy for MEG, rather than counting on data cleaning techniques.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Min Xu
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Abdulla Alkuwaiti
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Manuel Porras-Bettancourt
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghada Abbas
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jean-Marc Lina
- Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, McGill University, Montreal, QC, Canada.,Département de Génie Électrique, École de Technologie Supérieure, Montreal, QC, Canada.,Centre de Recherches Mathematiques, Univeristé de Montréal, Montreal, QC, Canada
| | - Christophe Grova
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Multimodal Functional Imaging Laboratory, Biomedical Engineering Department, McGill University, Montreal, QC, Canada.,Département de Génie Électrique, École de Technologie Supérieure, Montreal, QC, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Pellegrino G, Hedrich T, Porras-Bettancourt M, Lina JM, Aydin Ü, Hall J, Grova C, Kobayashi E. Accuracy and spatial properties of distributed magnetic source imaging techniques in the investigation of focal epilepsy patients. Hum Brain Mapp 2020; 41:3019-3033. [PMID: 32386115 PMCID: PMC7336148 DOI: 10.1002/hbm.24994] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/18/2020] [Accepted: 03/11/2020] [Indexed: 02/03/2023] Open
Abstract
Source localization of interictal epileptiform discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. We aimed to compare the performance of four different distributed magnetic source imaging (dMSI) approaches: Minimum norm estimate (MNE), dynamic statistical parametric mapping (dSPM), standardized low-resolution electromagnetic tomography (sLORETA), and coherent maximum entropy on the mean (cMEM). We also evaluated whether a simple average of maps obtained from multiple inverse solutions (Ave) can improve localization accuracy. We analyzed dMSI of 206 IEDs derived from magnetoencephalography recordings in 28 focal epilepsy patients who had a well-defined focus determined through intracranial EEG (iEEG), epileptogenic MRI lesions or surgical resection. dMSI accuracy and spatial properties were quantitatively estimated as: (a) distance from the epilepsy focus, (b) reproducibility, (c) spatial dispersion (SD), (d) map extension, and (e) effect of thresholding on map properties. Clinical performance was excellent for all methods (median distance from the focus MNE = 2.4 mm; sLORETA = 3.5 mm; cMEM = 3.5 mm; dSPM = 6.8 mm, Ave = 0 mm). Ave showed the lowest distance between the map maximum and epilepsy focus (Dmin lower than cMEM, MNE, and dSPM, p = .021, p = .008, p < .001, respectively). cMEM showed the best spatial features, with lowest SD outside the focus (SD lower than all other methods, p < .001 consistently) and high contrast between the generator and surrounding regions. The average map Ave provided the best localization accuracy, whereas cMEM exhibited the lowest amount of spurious distant activity. dMSI techniques have the potential to significantly improve identification of iEEG targets and to guide surgical planning, especially when multiple methods are combined.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,IRCCS Fondazione San Camillo Hospital, Venice, Italy.,Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Tanguy Hedrich
- Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Manuel Porras-Bettancourt
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Marc Lina
- Departement de Genie Electrique, Ecole de Technologie Superieure, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Quebec, Canada
| | - Ümit Aydin
- Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Jeffery Hall
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christophe Grova
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Multimodal Functional Imaging Lab, Biomedical Engineering, McGill University, Montreal, Quebec, Canada.,Centre de Recherches Mathematiques, Montréal, Quebec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
24
|
Tamilia E, Dirodi M, Alhilani M, Grant PE, Madsen JR, Stufflebeam SM, Pearl PL, Papadelis C. Scalp ripples as prognostic biomarkers of epileptogenicity in pediatric surgery. Ann Clin Transl Neurol 2020; 7:329-342. [PMID: 32096612 PMCID: PMC7086004 DOI: 10.1002/acn3.50994] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Objective To assess the ability of high‐density Electroencephalography (HD‐EEG) and magnetoencephalography (MEG) to localize interictal ripples, distinguish between ripples co‐occurring with spikes (ripples‐on‐spike) and independent from spikes (ripples‐alone), and evaluate their localizing value as biomarkers of epileptogenicity in children with medically refractory epilepsy. Methods We retrospectively studied 20 children who underwent epilepsy surgery. We identified ripples on HD‐EEG and MEG data, localized their generators, and compared them with intracranial EEG (icEEG) ripples. When ripples and spikes co‐occurred, we performed source imaging distinctly on the data above 80 Hz (to localize ripples) and below 70 Hz (to localize spikes). We assessed whether missed resection of ripple sources predicted poor outcome, separately for ripples‐on‐spikes and ripples‐alone. Similarly, predictive value of spikes was calculated. Results We observed scalp ripples in 16 patients (10 good outcome). Ripple sources were highly concordant to the icEEG ripples (HD‐EEG concordance: 79%; MEG: 83%). When ripples and spikes co‐occurred, their sources were spatially distinct in 83‐84% of the cases. Removing the sources of ripples‐on‐spikes predicted good outcome with 90% accuracy for HD‐EEG (P = 0.008) and 86% for MEG (P = 0.044). Conversely, removing ripples‐alone did not predict outcome. Resection of spike sources (generated at the same time as ripples) predicted good outcome for HD‐EEG (P = 0.036; accuracy = 87%), while did not reach significance for MEG (P = 0.1; accuracy = 80%). Interpretation HD‐EEG and MEG localize interictal ripples with high precision in children with refractory epilepsy. Scalp ripples‐on‐spikes are prognostic, noninvasive biomarkers of epileptogenicity, since removing their cortical generators predicts good outcome. Conversely, scalp ripples‐alone are most likely generated by non‐epileptogenic areas.
Collapse
Affiliation(s)
- Eleonora Tamilia
- Laboratory of Children’s Brain DynamicsDivision of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMassachusetts
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterDivision of Newborn MedicineDepartment of MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Matilde Dirodi
- G. Tec Medical Engineering GmbHGuger Technologies OGGrazAustria
| | - Michel Alhilani
- Laboratory of Children’s Brain DynamicsDivision of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMassachusetts
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterDivision of Newborn MedicineDepartment of MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - P. Ellen Grant
- Fetal‐Neonatal Neuroimaging and Developmental Science CenterDivision of Newborn MedicineDepartment of MedicineBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Joseph R. Madsen
- Division of Epilepsy SurgeryDepartment of NeurosurgeryBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Steven M. Stufflebeam
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Phillip L. Pearl
- Division of Epilepsy and Clinical NeurophysiologyDepartment of NeurologyBoston Children’s HospitalHarvard Medical SchoolBostonMassachusetts
| | - Christos Papadelis
- Laboratory of Children’s Brain DynamicsDivision of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMassachusetts
- Jane and John Justin Neurosciences CenterCook Children's Health Care SystemFort WorthTexas
- School of MedicineTexas Christian University and University of North Texas Health Science CenterFort WorthTexas
- Department of BioengineeringUniversity of Texas at ArlingtonArlingtonTexas
| |
Collapse
|
25
|
Magnetoencephalographic Mapping of Epileptic Spike Population Using Distributed Source Analysis: Comparison With Intracranial Electroencephalographic Spikes. J Clin Neurophysiol 2018; 35:339-345. [PMID: 29746391 DOI: 10.1097/wnp.0000000000000476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION This study evaluates magnetoencephalographic (MEG) spike population as compared with intracranial electroencephalographic (IEEG) spikes using a quantitative method based on distributed source analysis. METHODS We retrospectively studied eight patients with medically intractable epilepsy who had an MEG and subsequent IEEG monitoring. Fifty MEG spikes were analyzed in each patient using minimum norm estimate. For individual spikes, each vertex in the source space was considered activated when its source amplitude at the peak latency was higher than a threshold, which was set at 50% of the maximum amplitude over all vertices. We mapped the total count of activation at each vertex. We also analyzed 50 IEEG spikes in the same manner over the intracranial electrodes and created the activation count map. The location of the electrodes was obtained in the MEG source space by coregistering postimplantation computed tomography to MRI. We estimated the MEG- and IEEG-active regions associated with the spike populations using the vertices/electrodes with a count over 25. RESULTS The activation count maps of MEG spikes demonstrated the localization associated with the spike population by variable count values at each vertex. The MEG-active region overlapped with 65 to 85% of the IEEG-active region in our patient group. CONCLUSIONS Mapping the MEG spike population is valid for demonstrating the trend of spikes clustering in patients with epilepsy. In addition, comparison of MEG and IEEG spikes quantitatively may be informative for understanding their relationship.
Collapse
|
26
|
Juárez-Martinez EL, Nissen IA, Idema S, Velis DN, Hillebrand A, Stam CJ, van Straaten ECW. Virtual localization of the seizure onset zone: Using non-invasive MEG virtual electrodes at stereo-EEG electrode locations in refractory epilepsy patients. Neuroimage Clin 2018; 19:758-766. [PMID: 30009129 PMCID: PMC6041424 DOI: 10.1016/j.nicl.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/22/2018] [Accepted: 06/01/2018] [Indexed: 12/11/2022]
Abstract
In some patients with medically refractory epilepsy, EEG with intracerebrally placed electrodes (stereo-electroencephalography, SEEG) is needed to locate the seizure onset zone (SOZ) for successful epilepsy surgery. SEEG has limitations and entails risk of complications because of its invasive character. Non-invasive magnetoencephalography virtual electrodes (MEG-VEs) may overcome SEEG limitations and optimize electrode placement making SOZ localization safer. Our purpose was to assess whether interictal activity measured by MEG-VEs and SEEG at identical anatomical locations were comparable, and whether MEG-VEs activity properties could determine the location of a later resected brain area (RA) as an approximation of the SOZ. We analyzed data from nine patients who underwent MEG and SEEG evaluation, and surgery for medically refractory epilepsy. MEG activity was retrospectively reconstructed using beamforming to obtain VEs at the anatomical locations corresponding to those of SEEG electrodes. Spectral, functional connectivity and functional network properties were obtained for both, MEG-VEs and SEEG time series, and their correlation and reliability were established. Based on these properties, the approximation of the SOZ was characterized by the differences between RA and non-RA (NRA). We found significant positive correlation and reliability between MEG-VEs and SEEG spectral measures (particularly in delta [0.5-4 Hz], alpha2 [10-13 Hz], and beta [13-30 Hz] bands) and broadband functional connectivity. Both modalities showed significantly slower activity and a tendency towards increased broadband functional connectivity in the RA compared to the NRA. Our findings show that spectral and functional connectivity properties of non-invasively obtained MEG-VEs match those of invasive SEEG recordings, and can characterize the SOZ. This suggests that MEG-VEs might be used for optimal SEEG planning and fewer depth electrode implantations, making the localization of the SOZ safer and more successful.
Collapse
Affiliation(s)
| | - Ida A Nissen
- Department of Neurology and Clinical Neurophysiology, Amsterdam, the Netherlands
| | - Sander Idema
- Department of Neurosurgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Demetrios N Velis
- Department of Neurology and Clinical Neurophysiology, Amsterdam, the Netherlands
| | - Arjan Hillebrand
- Department of Neurology and Clinical Neurophysiology, Amsterdam, the Netherlands
| | - Cornelis J Stam
- Department of Neurology and Clinical Neurophysiology, Amsterdam, the Netherlands
| | | |
Collapse
|
27
|
Chowdhury RA, Pellegrino G, Aydin Ü, Lina JM, Dubeau F, Kobayashi E, Grova C. Reproducibility of EEG-MEG fusion source analysis of interictal spikes: Relevance in presurgical evaluation of epilepsy. Hum Brain Mapp 2017; 39:880-901. [PMID: 29164737 DOI: 10.1002/hbm.23889] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022] Open
Abstract
Fusion of electroencephalography (EEG) and magnetoencephalography (MEG) data using maximum entropy on the mean method (MEM-fusion) takes advantage of the complementarities between EEG and MEG to improve localization accuracy. Simulation studies demonstrated MEM-fusion to be robust especially in noisy conditions such as single spike source localizations (SSSL). Our objective was to assess the reliability of SSSL using MEM-fusion on clinical data. We proposed to cluster SSSL results to find the most reliable and consistent source map from the reconstructed sources, the so-called consensus map. Thirty-four types of interictal epileptic discharges (IEDs) were analyzed from 26 patients with well-defined epileptogenic focus. SSSLs were performed on EEG, MEG, and fusion data and consensus maps were estimated using hierarchical clustering. Qualitative (spike-to-spike reproducibility rate, SSR) and quantitative (localization error and spatial dispersion) assessments were performed using the epileptogenic focus as clinical reference. Fusion SSSL provided significantly better results than EEG or MEG alone. Fusion found at least one cluster concordant with the clinical reference in all cases. This concordant cluster was always the one involving the highest number of spikes. Fusion yielded highest reproducibility (SSR EEG = 55%, MEG = 71%, fusion = 90%) and lowest localization error. Also, using only few channels from either modality (21EEG + 272MEG or 54EEG + 25MEG) was sufficient to reach accurate fusion. MEM-fusion with consensus map approach provides an objective way of finding the most reliable and concordant generators of IEDs. We, therefore, suggest the pertinence of SSSL using MEM-fusion as a valuable clinical tool for presurgical evaluation of epilepsy.
Collapse
Affiliation(s)
- Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | | | - Ümit Aydin
- Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Ecole de Technologie Supérieure, Montréal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada
| | - François Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Multimodal Functional Imaging Lab, Department of Physics and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|
28
|
Pellegrino G, Hedrich T, Chowdhury RA, Hall JA, Dubeau F, Lina JM, Kobayashi E, Grova C. Clinical yield of magnetoencephalography distributed source imaging in epilepsy: A comparison with equivalent current dipole method. Hum Brain Mapp 2017; 39:218-231. [PMID: 29024165 DOI: 10.1002/hbm.23837] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Source localization of interictal epileptic discharges (IEDs) is clinically useful in the presurgical workup of epilepsy patients. It is usually obtained by equivalent current dipole (ECD) which localizes a point source and is the only inverse solution approved by clinical guidelines. In contrast, magnetic source imaging using distributed methods (dMSI) provides maps of the location and the extent of the generators, but its yield has not been clinically validated. We systematically compared ECD versus dMSI performed using coherent Maximum Entropy on the Mean (cMEM), a method sensitive to the spatial extent of the generators. METHODS 340 source localizations of IEDs derived from 49 focal epilepsy patients with foci well-defined through intracranial EEG, MRI lesions, and surgery were analyzed. The comparison was based on the assessment of the sublobar concordance with the focus and of the distance between the source and the focus. RESULTS dMSI sublobar concordance was significantly higher than ECD (81% vs 69%, P < 0.001), especially for extratemporal lobe sources (dMSI = 84%; ECD = 67%, P < 0.001) and for seizure free patients (dMSI = 83%; ECD = 70%, P < 0.001). The median distance from the focus was 4.88 mm for ECD and 3.44 mm for dMSI (P < 0.001). ECD dipoles were often wrongly localized in deep brain regions. CONCLUSIONS dMSI using cMEM exhibited better accuracy. dMSI also offered the advantage of recovering more realistic maps of the generator, which could be exploited for neuronavigation aimed at targeting invasive EEG and surgical resection. Therefore, dMSI may be preferred to ECD in clinical practice. Hum Brain Mapp 39:218-231, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,IRCCS Fondazione San Camillo Hospital, Venice, Italy
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada
| | - Rasheda Arman Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada
| | - Jeffery A Hall
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Francois Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-Marc Lina
- Departement de Génie Electrique, Ecole de Technologie Supérieure, Montreal, Quebec, Canada.,Centre De Recherches En Mathématiques, Montreal, Quebec, Canada.,Centre D'études Avancées En Médecine Du Sommeil, Centre De Recherche De L'hôpital Sacré-Coeur De Montréal, Montreal, Quebec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Centre De Recherches En Mathématiques, Montreal, Quebec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Wang Q, Teng P, Luan G. Magnetoencephalography in Preoperative Epileptic Foci Localization: Enlightenment from Cognitive Studies. Front Comput Neurosci 2017; 11:58. [PMID: 28701945 PMCID: PMC5487414 DOI: 10.3389/fncom.2017.00058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
Over 30% epileptic patients are refractory to medication, who are amenable to neurosurgical treatment. Non-invasive brain imaging technologies including video-electroencephalogram (EEG), magnetic resonance imaging (MRI), and magnetoencephalography (MEG) are widely used in presurgical assessment of epileptic patients. This review mainly discussed the current development of clinical MEG imaging as a diagnose approach, and its correlations with the golden standard intracranial electroencephalogram (iEEG). More importantly, this review discussed the possible applications of functional networks in preoperative epileptic foci localization in future studies.
Collapse
Affiliation(s)
- Qian Wang
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China
| | - Pengfei Teng
- Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China
| | - Guoming Luan
- Beijing Key Laboratory of Epilepsy, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical UniversityBeijing, China.,Beijing Institute for Brain Disorders, Capital Medical UniversityBeijing, China
| |
Collapse
|
30
|
van Mierlo P, Strobbe G, Keereman V, Birot G, Gadeyne S, Gschwind M, Carrette E, Meurs A, Van Roost D, Vonck K, Seeck M, Vulliémoz S, Boon P. Automated long-term EEG analysis to localize the epileptogenic zone. Epilepsia Open 2017; 2:322-333. [PMID: 29588961 PMCID: PMC5862106 DOI: 10.1002/epi4.12066] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2017] [Indexed: 11/10/2022] Open
Abstract
Objective We investigated the performance of automatic spike detection and subsequent electroencephalogram (EEG) source imaging to localize the epileptogenic zone (EZ) from long-term EEG recorded during video-EEG monitoring. Methods In 32 patients, spikes were automatically detected in the EEG and clustered according to their morphology. The two spike clusters with most single events in each patient were averaged and localized in the brain at the half-rising time and peak of the spike using EEG source imaging. On the basis of the distance from the sources to the resection and the known patient outcome after surgery, the performance of the automated EEG analysis to localize the EZ was quantified. Results In 28 out of the 32 patients, the automatically detected spike clusters corresponded with the reported interictal findings. The median distance to the resection in patients with Engel class I outcome was 6.5 and 15 mm for spike cluster 1 and 27 and 26 mm for cluster 2, at the peak and the half-rising time of the spike, respectively. Spike occurrence (cluster 1 vs. cluster 2) and spike timing (peak vs. half-rising) significantly influenced the distance to the resection (p < 0.05). For patients with Engel class II, III, and IV outcomes, the median distance increased to 36 and 36 mm for cluster 1. Localizing spike cluster 1 at the peak resulted in a sensitivity of 70% and specificity of 100%, positive prediction value (PPV) of 100%, and negative predictive value (NPV) of 53%. Including the results of spike cluster 2 led to an increased sensitivity of 79% NPV of 55% and diagnostic OR of 11.4, while the specificity dropped to 75% and the PPV to 90%. Significance We showed that automated analysis of long-term EEG recordings results in a high sensitivity and specificity to localize the epileptogenic focus.
Collapse
Affiliation(s)
- Pieter van Mierlo
- Medical Image and Signal Processing Group Department of Electronics and Information Systems Ghent University-iMinds Medical IT Department Ghent Belgium.,Functional Brain Mapping Laboratory Department of Fundamental Neurosciences University of Geneva Geneva Switzerland
| | - Gregor Strobbe
- Medical Image and Signal Processing Group Department of Electronics and Information Systems Ghent University-iMinds Medical IT Department Ghent Belgium
| | - Vincent Keereman
- Medical Image and Signal Processing Group Department of Electronics and Information Systems Ghent University-iMinds Medical IT Department Ghent Belgium.,Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| | - Gwénael Birot
- Functional Brain Mapping Laboratory Department of Fundamental Neurosciences University of Geneva Geneva Switzerland
| | - Stefanie Gadeyne
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| | - Markus Gschwind
- Functional Brain Mapping Laboratory Department of Fundamental Neurosciences University of Geneva Geneva Switzerland.,Epilepsy and EEG Unit University Hospital of Geneva Geneva Switzerland
| | - Evelien Carrette
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| | - Alfred Meurs
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| | - Dirk Van Roost
- Department of Neurosurgery Ghent University Hospital Ghent Belgium
| | - Kristl Vonck
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| | - Margitta Seeck
- Epilepsy and EEG Unit University Hospital of Geneva Geneva Switzerland
| | - Serge Vulliémoz
- Functional Brain Mapping Laboratory Department of Fundamental Neurosciences University of Geneva Geneva Switzerland.,Epilepsy and EEG Unit University Hospital of Geneva Geneva Switzerland
| | - Paul Boon
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology Department of Neurology Ghent University Hospital Ghent Belgium
| |
Collapse
|
31
|
Zijlmans M, Worrell GA, Dümpelmann M, Stieglitz T, Barborica A, Heers M, Ikeda A, Usui N, Le Van Quyen M. How to record high-frequency oscillations in epilepsy: A practical guideline. Epilepsia 2017. [PMID: 28622421 DOI: 10.1111/epi.13814] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Technology for localizing epileptogenic brain regions plays a central role in surgical planning. Recent improvements in acquisition and electrode technology have revealed that high-frequency oscillations (HFOs) within the 80-500 Hz frequency range provide the neurophysiologist with new information about the extent of the epileptogenic tissue in addition to ictal and interictal lower frequency events. Nevertheless, two decades after their discovery there remain questions about HFOs as biomarkers of epileptogenic brain and there use in clinical practice. METHODS In this review, we provide practical, technical guidance for epileptologists and clinical researchers on recording, evaluation, and interpretation of ripples, fast ripples, and very high-frequency oscillations. RESULTS We emphasize the importance of low noise recording to minimize artifacts. HFO analysis, either visual or with automatic detection methods, of high fidelity recordings can still be challenging because of various artifacts including muscle, movement, and filtering. Magnetoencephalography and intracranial electroencephalography (iEEG) recordings are subject to the same artifacts. SIGNIFICANCE High-frequency oscillations are promising new biomarkers in epilepsy. This review provides interested researchers and clinicians with a review of current state of the art of recording and identification and potential challenges to clinical translation.
Collapse
Affiliation(s)
- Maeike Zijlmans
- Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Gregory A Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, U.S.A
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering-IMTEK and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, Germany
| | | | - Marcel Heers
- Epilepsy Center, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Brainlinks-Braintools, Cluster of Excellence, University of Freiburg, Freiburg, Germany.,Ruhr-Epileptology/Department of Neurology, University Hospital Bochum, Bochum, Germany
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naotaka Usui
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Michel Le Van Quyen
- Institute for Brain and Spinal Cord, Pitié-Salpêtrière University Hospital, Paris, France
| |
Collapse
|
32
|
Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. Neuroimage 2017; 157:531-544. [PMID: 28619655 DOI: 10.1016/j.neuroimage.2017.06.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/29/2017] [Accepted: 06/09/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study aims at evaluating and comparing electrical and magnetic distributed source imaging methods applied to high-density Electroencephalography (hdEEG) and Magnetoencephalography (MEG) data. We used resolution matrices to characterize spatial resolution properties of Minimum Norm Estimate (MNE), dynamic Statistical Parametric Mapping (dSPM), standardized Low-Resolution Electromagnetic Tomography (sLORETA) and coherent Maximum Entropy on the Mean (cMEM, an entropy-based technique). The resolution matrix provides information of the Point Spread Functions (PSF) and of the Crosstalk functions (CT), this latter being also called source leakage, as it reflects the influence of a source on its neighbors. METHODS The spatial resolution of the inverse operators was first evaluated theoretically and then with real data acquired using electrical median nerve stimulation on five healthy participants. We evaluated the Dipole Localization Error (DLE) and the Spatial Dispersion (SD) of each PSF and CT map. RESULTS cMEM showed the smallest spatial spread (SD) for both PSF and CT maps, whereas localization errors (DLE) were similar for all methods. Whereas cMEM SD values were lower in MEG compared to hdEEG, the other methods slightly favored hdEEG over MEG. In real data, cMEM provided similar localization error and significantly less spatial spread than other methods for both MEG and hdEEG. Whereas both MEG and hdEEG provided very accurate localizations, all the source imaging methods actually performed better in MEG compared to hdEEG according to all evaluation metrics, probably due to the higher signal-to-noise ratio of the data in MEG. CONCLUSION Our overall results show that all investigated methods provide similar localization errors, suggesting very accurate localization for both MEG and hdEEG when similar number of sensors are considered for both modalities. Intrinsic properties of source imaging methods as well as their behavior for well-controlled tasks, suggest an overall better performance of cMEM in regards to spatial resolution and spatial leakage for both hdEEG and MEG. This indicates that cMEM would be a good candidate for studying source localization of focal and extended generators as well as functional connectivity studies.
Collapse
Affiliation(s)
- T Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada.
| | - G Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada; San Camillo Hospital IRCCS, Venice, Italy
| | - E Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - J M Lina
- Département de Génie Électrique, École de Technologie Supérieure, Canada; Centre de recherches mathémathiques, Université de Montréal, Montreal, Canada; Center for Advanced Research on Sleep Medecine (CEAMS), hôpital du Sacré-Coeur, Montreal, Canada
| | - C Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Dpt., McGill University, Montreal, Canada; Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada; Physics Dpt., PERFORM Centre, Concordia University, Canada; Centre de recherches mathémathiques, Université de Montréal, Montreal, Canada
| |
Collapse
|
33
|
Erem B, Hyde DE, Peters JM, Duffy FH, Warfield SK. Dynamic Electrical Source Imaging (DESI) of Seizures and Interictal Epileptic Discharges Without Ensemble Averaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2017; 36:98-110. [PMID: 27479957 PMCID: PMC5217759 DOI: 10.1109/tmi.2016.2595329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose an algorithm for electrical source imaging of epileptic discharges that takes a data-driven approach to regularizing the dynamics of solutions. The method is based on linear system identification on short time segments, combined with a classical inverse solution approach. Whereas ensemble averaging of segments or epochs discards inter-segment variations by averaging across them, our approach explicitly models them. Indeed, it may even be possible to avoid the need for the time-consuming process of marking epochs containing discharges altogether. We demonstrate that this approach can produce both stable and accurate inverse solutions in experiments using simulated data and real data from epilepsy patients. In an illustrative example, we show that we are able to image propagation using this approach. We show that when applied to imaging seizure data, our approach reproducibly localized frequent seizure activity to within the margins of surgeries that led to patients' seizure freedom. The same approach could be used in the planning of epilepsy surgeries, as a way to localize potentially epileptogenic tissue that should be resected.
Collapse
|
34
|
Papadelis C, Tamilia E, Stufflebeam S, Grant PE, Madsen JR, Pearl PL, Tanaka N. Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy. J Vis Exp 2016. [PMID: 28060325 PMCID: PMC5226354 DOI: 10.3791/54883] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Crucial to the success of epilepsy surgery is the availability of a robust biomarker that identifies the Epileptogenic Zone (EZ). High Frequency Oscillations (HFOs) have emerged as potential presurgical biomarkers for the identification of the EZ in addition to Interictal Epileptiform Discharges (IEDs) and ictal activity. Although they are promising to localize the EZ, they are not yet suited for the diagnosis or monitoring of epilepsy in clinical practice. Primary barriers remain: the lack of a formal and global definition for HFOs; the consequent heterogeneity of methodological approaches used for their study; and the practical difficulties to detect and localize them noninvasively from scalp recordings. Here, we present a methodology for the recording, detection, and localization of interictal HFOs from pediatric patients with refractory epilepsy. We report representative data of HFOs detected noninvasively from interictal scalp EEG and MEG from two children undergoing surgery. The underlying generators of HFOs were localized by solving the inverse problem and their localization was compared to the Seizure Onset Zone (SOZ) as this was defined by the epileptologists. For both patients, Interictal Epileptogenic Discharges (IEDs) and HFOs were localized with source imaging at concordant locations. For one patient, intracranial EEG (iEEG) data were also available. For this patient, we found that the HFOs localization was concordant between noninvasive and invasive methods. The comparison of iEEG with the results from scalp recordings served to validate these findings. To our best knowledge, this is the first study that presents the source localization of scalp HFOs from simultaneous EEG and MEG recordings comparing the results with invasive recordings. These findings suggest that HFOs can be reliably detected and localized noninvasively with scalp EEG and MEG. We conclude that the noninvasive localization of interictal HFOs could significantly improve the presurgical evaluation for pediatric patients with epilepsy.
Collapse
Affiliation(s)
- Christos Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School;
| | - Eleonora Tamilia
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School
| | - Steven Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| | - Patricia E Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School
| | - Joseph R Madsen
- Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School
| | - Phillip L Pearl
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School
| | - Naoaki Tanaka
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
35
|
Complex patterns of spatially extended generators of epileptic activity: Comparison of source localization methods cMEM and 4-ExSo-MUSIC on high resolution EEG and MEG data. Neuroimage 2016; 143:175-195. [DOI: 10.1016/j.neuroimage.2016.08.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 11/23/2022] Open
|
36
|
Pellegrino G, Hedrich T, Chowdhury R, Hall JA, Lina JM, Dubeau F, Kobayashi E, Grova C. Source localization of the seizure onset zone from ictal EEG/MEG data. Hum Brain Mapp 2016; 37:2528-46. [PMID: 27059157 DOI: 10.1002/hbm.23191] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Surgical treatment of drug-resistant epilepsy relies on the identification of the seizure onset zone (SOZ) and often requires intracranial EEG (iEEG). We have developed a new approach for non-invasive magnetic and electric source imaging of the SOZ (MSI-SOZ and ESI-SOZ) from ictal magnetoencephalography (MEG) and EEG recordings, using wavelet-based Maximum Entropy on the Mean (wMEM) method. We compared the performance of MSI-SOZ and ESI-SOZ with interictal spike source localization (MSI-spikes and ESI-spikes) and clinical localization of the SOZ (i.e., based on iEEG or lesion topography, denoted as clinical-SOZ). METHODS A total of 46 MEG or EEG seizures from 13 patients were analyzed. wMEM was applied around seizure onset, centered on the frequency band showing the strongest power change. Principal component analysis applied to spatiotemporal reconstructed wMEM sources (0.4-1 s around seizure onset) identified the main spatial pattern of ictal oscillations. Qualitative sublobar concordance and quantitative measures of distance and spatial overlaps were estimated to compare MSI/ESI-SOZ with MSI/ESI-Spikes and clinical-SOZ. RESULTS MSI/ESI-SOZ were concordant with clinical-SOZ in 81% of seizures (MSI 90%, ESI 64%). MSI-SOZ was more accurate and identified sources closer to the clinical-SOZ (P = 0.012) and to MSI-Spikes (P = 0.040) as compared with ESI-SOZ. MSI/ESI-SOZ and MSI/ESI-Spikes did not differ in terms of concordance and distance from the clinical-SOZ. CONCLUSIONS wMEM allows non-invasive localization of the SOZ from ictal MEG and EEG. MSI-SOZ performs better than ESI-SOZ. MSI/ESI-SOZ can provide important additional information to MSI/ESI-Spikes during presurgical evaluation. Hum Brain Mapp 37:2528-2546, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Giovanni Pellegrino
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Tanguy Hedrich
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Rasheda Chowdhury
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada
| | - Jeffery A Hall
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Jean-Marc Lina
- Département de Génie Electrique, École de Technologie Supérieure, Montreal, Québec, Canada.,Centre De Recherches En Mathématiques, Montreal, Québec, Canada.,Centre D'etudes Avancées En Médecine Du Sommeil, Centre De Recherche De L'hôpital Sacré-Coeur De Montréal, Montreal, Québec, Canada
| | - Francois Dubeau
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Eliane Kobayashi
- Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada
| | - Christophe Grova
- Multimodal Functional Imaging Lab, Biomedical Engineering Department, McGill University, Montreal, Québec, Canada.,Neurology and Neurosurgery Department, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada.,Centre De Recherches En Mathématiques, Montreal, Québec, Canada.,Physics Department and PERFORM Centre, Concordia University, Montreal, Québec, Canada
| |
Collapse
|