1
|
Makowski C, Shafiei G, Martinho M, Hagler DJ, Pecheva D, Dale AM, Fennema-Notestine C, Bischoff-Grethe A, Wierenga CE. Multivariate patterns linking brain microstructure to temperament and behavior in adolescent eating disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.24.24317857. [PMID: 39649610 PMCID: PMC11623734 DOI: 10.1101/2024.11.24.24317857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Eating disorders (EDs) are multifaceted psychiatric disorders characterized by varying behaviors, traits, and cognitive profiles thought to drive symptom heterogeneity and severity. Non-invasive neuroimaging methods have been critical to elucidate the neurobiological circuitry involved in ED-related behaviors, but often focused on a limited set of regions of interest and/or symptoms. The current study harnesses multivariate methods to map microstructural and morphometric patterns across the entire brain to multiple domains of behavior and symptomatology in patients. Diffusion-weighted images, modeled with restriction spectrum imaging, were analyzed for 91 adolescent patients with an ED and 48 healthy controls. Partial least squares analysis was applied to map 38 behavioral measures (encompassing cognition, temperament, and ED symptoms) to restricted diffusion in white matter tracts and subcortical structures across 65 regions of interest. The first significant latent variable explained 46.9% of the covariance between microstructure and behavior. This latent variable retained a significant brain-behavior correlation in held-out data, where an 'undercontrolled' behavioral profile (e.g., higher emotional dysregulation, novelty seeking; lower effortful control and interoceptive awareness) was linked to increased restricted diffusion across white matter tracts, particularly those joining frontal, limbic, and thalamic regions. Individually-derived brain and behavior scores for this latent variable were higher in patients with binge-purge symptoms, compared to those with only restrictive eating symptoms. Findings demonstrate the value of applying multivariate modeling to the array of brain-behavior relationships inherent to the clinical presentation of EDs, and their relevance for providing a neurobiologically-informed model for future clinical subtyping and prediction efforts.
Collapse
Affiliation(s)
- Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Megan Martinho
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Donald J Hagler
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Diliana Pecheva
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Christine Fennema-Notestine
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | | | - Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
de la Cruz F, Schumann A, Rieger K, Giuliano MD, Bär KJ. Fibre-specific white matter changes in anorexia nervosa. Psychiatry Res Neuroimaging 2023; 336:111736. [PMID: 39492096 DOI: 10.1016/j.pscychresns.2023.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
A large body of literature exists on white matter (WM) abnormalities in individuals with anorexia nervosa (AN). However, these studies have primarily relied on the diffusion tensor imaging (DTI), a technique known for its limited ability to resolve complex WM fibre arrangements. To overcome limitations of DTI, this study employed fixel-based analysis (FBA) to investigate fibre-specific WM abnormalities in AN. FBA, which incorporates information on connectivity and crossing-fibres, offers greater anatomical specificity and interpretability than DTI. Twenty-six acute AN patients and thirty-one healthy controls underwent diffusion-weighted imaging scanning, and FBA and DTI metrics were compared between groups. Results revealed significant reductions in fibre-bundle cross-section within the anterior corona radiata and genu of corpus callosum, indicating morphological atrophy in AN patients. These specific tracts, identified by FBA, connect brain regions involved in the symptomatology of AN. DTI showed increased axial diffusivity in the cerebellar peduncles of AN patients but did not show significant differences in other metrics. Notably, there was no overlap between findings of FBA and DTI analyses. Overall, this study highlights the potential of FBA to detect WM abnormalities not accounted for by DTI and suggests that myelin loss contributes to the observed clinical picture in AN patients.
Collapse
Affiliation(s)
- Feliberto de la Cruz
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Andy Schumann
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Katrin Rieger
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Monica Di Giuliano
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Karl-Jürgen Bär
- Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Laczkovics C, Nenning KH, Wittek T, Schmidbauer V, Schwarzenberg J, Maurer ES, Wagner G, Seidel S, Philipp J, Prayer D, Kasprian G, Karwautz A. White matter integrity is disrupted in adolescents with acute anorexia nervosa: A diffusion tensor imaging study. Psychiatry Res Neuroimaging 2022; 320:111427. [PMID: 34952446 DOI: 10.1016/j.pscychresns.2021.111427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Anorexia nervosa (AN) is a highly debilitating mental illness with multifactorial etiology. It oftentimes begins in adolescence, therefore understanding the pathophysiology in this period is important. Few studies investigated the possible impact of the acute state of illness on white matter (WM) tissue properties in the developing adolescent brain. The present study expands our understanding of the implications of AN and starvation on WM integrity. 67 acutely ill adolescent patients suffering from AN restricting type were compared with 32 healthy controls using diffusion tensor imaging assessing fractional anisotropy (FA) and mean diffusivity (MD). We found widespread alterations in the vast majority of the WM regions with significantly decreased FA and increased MD in the AN group. In this highly selective sample in the acute stage of AN, the alterations are likely to be the consequence of starvation. Still, we cannot rule out that some of the affected regions might play a key role in AN-specific psychopathology.
Collapse
Affiliation(s)
- Clarissa Laczkovics
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria.
| | - Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Tanja Wittek
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Victor Schmidbauer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Schwarzenberg
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Elisabeth Sophie Maurer
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Gudrun Wagner
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Stefan Seidel
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Julia Philipp
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| | - Daniela Prayer
- Department of Neurology, Medical University of Vienna, Austria
| | - Gregor Kasprian
- Department of Neurology, Medical University of Vienna, Austria
| | - Andreas Karwautz
- Eating Disorders Unit, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Austria
| |
Collapse
|
4
|
Pappaianni E, Borsarini B, Doucet GE, Hochman A, Frangou S, Micali N. Initial evidence of abnormal brain plasticity in anorexia nervosa: an ultra-high field study. Sci Rep 2022; 12:2589. [PMID: 35173174 PMCID: PMC8850617 DOI: 10.1038/s41598-022-06113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Anorexia Nervosa has been associated with white matter abnormalities implicating subcortical abnormal myelination. Extending these findings to intracortical myelin has been challenging but ultra-high field neuroimaging offers new methodological opportunities. To test the integrity of intracortical myelin in AN we used 7 T neuroimaging to acquire T1-weighted images optimized for intracortical myelin from seven females with AN (age range: 18-33) and 11 healthy females (age range: 23-32). Intracortical T1 values (inverse index of myelin concentration) were extracted from 148 cortical regions at ten depth-levels across the cortical ribbon. Across all cortical regions, these levels were averaged to generate estimates of total intracortical myelin concentration and were clustered using principal component analyses into two clusters; the outer cluster comprised T1 values across depth-levels ranging from the CSF boundary to the middle of the cortical regions and the inner cluster comprised T1 values across depth-levels ranging from the middle of the cortical regions to the gray/white matter boundary. Individuals with AN exhibited higher T1 values (i.e., decreased intracortical myelin concentration) in all three metrics. It remains to be established if these abnormalities result from undernutrition or specific lipid nutritional imbalances, or are trait markers; and whether they may contribute to neurobiological deficits seen in AN.
Collapse
Affiliation(s)
- Edoardo Pappaianni
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | - Bianca Borsarini
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland
| | | | - Ayelet Hochman
- Department of Psychology, St. John's University, Queens, NY, USA
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Nadia Micali
- Department of Psychiatry, Faculty of Medicine, University of Geneva, 2 Rue Verte, 1205, Geneva, Switzerland. .,Great Ormond Street Institute of Child Health, University College London, London, UK. .,Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
5
|
Geisler D, King JA, Bahnsen K, Bernardoni F, Doose A, Müller DK, Marxen M, Roessner V, van den Heuvel M, Ehrlich S. Altered White Matter Connectivity in Young Acutely Underweight Patients With Anorexia Nervosa. J Am Acad Child Adolesc Psychiatry 2022; 61:331-340. [PMID: 33989747 DOI: 10.1016/j.jaac.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Reductions of gray matter volume and cortical thickness in anorexia nervosa (AN) are well documented. However, findings regarding the integrity of white matter (WM) as studied via diffusion weighted imaging (DWI) are remarkably heterogeneous, and WM connectivity has been examined only in small samples using a limited number of regions of interest. The present study investigated whole-brain WM connectivity for the first time in a large sample of acutely underweight patients with AN. METHOD DWI data from predominantly adolescent patients with acute AN (n = 96, mean age = 16.3 years) and age-matched healthy control participants (n = 96, mean age = 17.2 years) were analyzed. WM connectivity networks were generated from fiber-tractography-derived streamlines connecting 233 cortical/subcortical regions. To identify group differences, network-based statistic was used while taking head motion, WM, and ventricular volume into account. RESULTS Patients with AN were characterized by 6 WM subnetworks with abnormal architecture, as indicated by increased fractional anisotropy located primarily in parietal-occipital regions and accompanied by reduced radial diffusivity. Group differences based on number of streamlines reached only nominal significance. CONCLUSION Our study reveals pronounced alterations in the WM connectome in young patients with AN. In contrast to known reductions in gray matter in the acutely underweight state of AN, this pattern does not necessarily indicate a deterioration of the WM network. Future studies using advanced MRI sequences will have to clarify interrelations with axonal packing or myelination, and whether the changes should be considered a consequence of undernutrition or a vulnerability for developing or maintaining AN.
Collapse
Affiliation(s)
- Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaas Bahnsen
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Arne Doose
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dirk K Müller
- Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Veit Roessner
- Child and Adolescent Psychiatry, University Hospital C. G. Carus, Technische Universität Dresden, Dresden, Germany
| | - Martijn van den Heuvel
- Connectome Lab, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Eating Disorder Treatment and Research Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Mishima R, Isobe M, Noda T, Tose K, Kawabata M, Noma S, Murai T. Structural brain changes in severe and enduring anorexia nervosa: A multimodal magnetic resonance imaging study of gray matter volume, cortical thickness, and white matter integrity. Psychiatry Res Neuroimaging 2021; 318:111393. [PMID: 34670165 DOI: 10.1016/j.pscychresns.2021.111393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Whole-brain T1-weighted imaging and diffusion tensor imaging was performed in 35 adult women with anorexia nervosa (AN) and 35 healthy controls. We conducted voxel-based group comparisons for gray matter volume (GMV), cortical thickness (CT), and fractional anisotropy (FA) values, using age and total intracranial volume as nuisance covariates. We then conducted the same group comparisons for these three measures, but this time also controlled for the following global pathological measures: total GMV, mean CT across the whole brain, and mean FA across the entire white matter skeleton. Compared with the healthy controls, AN patients had lower GMV and CT in widespread cortical regions, and smaller FA values in widespread white matter regions. After controlling for global parameters, almost all of the differences between the two groups disappeared, except for higher CT in the medial orbital gyrus and parietal operculum in the AN group. Structural brain changes in AN are likely to be composed of both global and region-specific changes. The former changes are likely to have a dominant impact, while the latter changes might in part explain the disease-specific pathophysiology of AN.
Collapse
Affiliation(s)
- Ryo Mishima
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Masanori Isobe
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan.
| | - Tomomi Noda
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Keima Tose
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Michiko Kawabata
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| | - Shun'ichi Noma
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan; Noma Kokoro Clinic, 5-322-1 Fukakusa-Sujikaibashi, Fushimi-ku, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaracho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Griffiths KR, Martin Monzon B, Madden S, Kohn MR, Touyz S, Sachdev PS, Clarke S, Foroughi N, Hay P. White matter microstructural differences in underweight adolescents with anorexia nervosa and a preliminary longitudinal investigation of change following short-term weight restoration. Eat Weight Disord 2021; 26:1903-1914. [PMID: 33051857 DOI: 10.1007/s40519-020-01041-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Anorexia nervosa (AN) affects approximately 2.9% of females and has the highest mortality rate among all psychiatric disorders. Despite several advances, the neurobiology of this disorder is still not well understood. Several studies have reported abnormalities in the white matter, but it is not know if these are disease-related or secondary to undernutrition. This study aimed to further our understanding of white matter pathology using diffusion-weighted imaging in underweight adolescents with AN, and to examine changes occurring after short-term weight restoration. METHODS Analyses were conducted on diffusion-weighted imaging from 24 female adolescents with AN and 17 age- and gender-matched healthy controls (HC), aged 14-19 years. Groups were compared on fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) using tract-based spatial statistics analysis and DTI measures were correlated with eating disorder examination questionnaire (EDE-Q) subscales and body mass index (BMI). Preliminary repeated-measure analyses were also conducted on eight participants after short-term weight restoration (median 41 days). RESULTS Widespread increases in MD of up to 9% were found in underweight AN relative to HC, particularly in the corpus callosum. This was associated with both increased AD and RD, suggestive of dys- or de-myelination. There were no significant group differences in FA, and no significant correlations between DTI measures, BMI or EDE-Q subscale score. Weight restoration therapy significantly reduced MD, to levels significantly lower than HC, but did not consistently alter FA across individuals. CONCLUSIONS White matter microstructure is significantly altered in female adolescents with AN, with preliminary longitudinal data suggesting that it may be reversible with short-term weight restoration. LEVEL OF EVIDENCE Level III: evidence obtained from well-designed cohort or case-control analytic studies.
Collapse
Affiliation(s)
- Kristi R Griffiths
- Brain Dynamics Centre, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, Sydney, NSW, 2145, Australia.
| | - Beatriz Martin Monzon
- Translational Health Research Institute (THRI), School of Medicine, Western Sydney University, Sydney, Australia
| | - Sloane Madden
- School of Medicine, University of Sydney, Sydney, Australia
| | - Michael R Kohn
- Centre for Research Into Adolescents' Health (CRASH), University of Sydney, Sydney, Australia
| | - Stephen Touyz
- Clinical Psychology Unit, School of Psychology, University of Sydney, Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, and Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Simon Clarke
- Centre for Research Into Adolescents' Health (CRASH), University of Sydney, Sydney, Australia
| | - Nasim Foroughi
- Translational Health Research Institute (THRI), School of Medicine, Western Sydney University, Sydney, Australia
| | - Phillipa Hay
- Translational Health Research Institute (THRI), School of Medicine, Western Sydney University, Sydney, Australia
| |
Collapse
|
8
|
Lee J, Ju G, Son JW, Shin CJ, Lee SI, Park H, Kim S. White matter integrity in alcohol-dependent patients with long-term abstinence. Medicine (Baltimore) 2021; 100:e26078. [PMID: 34032740 PMCID: PMC8154411 DOI: 10.1097/md.0000000000026078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022] Open
Abstract
Based on association studies on amounts of alcohol consumed and cortical and subcortical structural shrinkage, we investigated the effect of chronic alcohol consumption on white matter pathways using probabilistic tractography.Twenty-three alcohol-dependent men (with an average sobriety of 13.1 months) from a mental health hospital and 22 age-matched male healthy social drinkers underwent 3T magnetic resonance imaging. Eighteen major white matter pathways were reconstructed using the TRActs Constrained by UnderLying Anatomy tool (provided by the FreeSurfer). The hippocampal volumes were estimated using an automated procedure. The lifetime drinking history interview, Alcohol Use Disorder Identification Test, Brief Michigan Alcoholism Screening Test, and pack-years of smoking were also evaluated.Analysis of covariance controlling for age, cigarette smoking, total motion index indicated that there was no definite difference of diffusion parameters between the 2 groups after multiple comparison correction. As hippocampal volume decreased, the fractional anisotropy of the right cingulum-angular bundle decreased. Additionally, the axial diffusivity of right cingulum-angular bundle was positively correlated with the alcohol abstinence period.The results imply resilience of white matter in patients with alcohol dependence. Additional longitudinal studies with multimodal methods and neuropsychological tests may improve our findings of the changes in white matter pathways in patients with alcohol dependence.
Collapse
Affiliation(s)
- Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Gawon Ju
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Jung-Woo Son
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Chul-Jin Shin
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Sang Ick Lee
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Hyemi Park
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University Hospital
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju, South Korea
| |
Collapse
|
9
|
Kappou K, Ntougia M, Kourtesi A, Panagouli E, Vlachopapadopoulou E, Michalacos S, Gonidakis F, Mastorakos G, Psaltopoulou T, Tsolia M, Bacopoulou F, Sergentanis TN, Tsitsika A. Neuroimaging Findings in Adolescents and Young Adults with Anorexia Nervosa: A Systematic Review. CHILDREN (BASEL, SWITZERLAND) 2021; 8:137. [PMID: 33673193 PMCID: PMC7918703 DOI: 10.3390/children8020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Anorexia nervosa (AN) is a serious, multifactorial mental disorder affecting predominantly young females. This systematic review examines neuroimaging findings in adolescents and young adults up to 24 years old, in order to explore alterations associated with disease pathophysiology. METHODS Eligible studies on structural and functional brain neuroimaging were sought systematically in PubMed, CENTRAL and EMBASE databases up to 5 October 2020. RESULTS Thirty-three studies were included, investigating a total of 587 patients with a current diagnosis of AN and 663 healthy controls (HC). Global and regional grey matter (GM) volume reduction as well as white matter (WM) microstructure alterations were detected. The mainly affected regions were the prefrontal, parietal and temporal cortex, hippocampus, amygdala, insula, thalamus and cerebellum as well as various WM tracts such as corona radiata and superior longitudinal fasciculus (SLF). Regarding functional imaging, alterations were pointed out in large-scale brain networks, such as default mode network (DMN), executive control network (ECN) and salience network (SN). Most findings appear to reverse after weight restoration. Specific limitations of neuroimaging studies in still developing individuals are also discussed. CONCLUSIONS Structural and functional alterations are present in the early course of the disease, most of them being partially or totally reversible. Nonetheless, neuroimaging findings have been open to many biological interpretations. Thus, more studies are needed to clarify their clinical significance.
Collapse
Affiliation(s)
- Kalliopi Kappou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Myrto Ntougia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Aikaterini Kourtesi
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Eleni Panagouli
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Elpis Vlachopapadopoulou
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Stefanos Michalacos
- Department of Endocrinology-Growth and Development, “P. & A. Kyriakou” Children’s Hospital, 115 27 Athens, Greece; (E.V.); (S.M.)
| | - Fragiskos Gonidakis
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 115 28 Athens, Greece;
| | - Georgios Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Theodora Psaltopoulou
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Maria Tsolia
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair Adolescent Health Care, First Department of Pediatrics, “Agia Sophia” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Theodoros N. Sergentanis
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
- Department of Clinical Therapeutics, “Alexandra” Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Artemis Tsitsika
- MSc “Strategies of Developmental and Adolescent Health”, 2nd Department of Pediatrics, “P. & A. Kyriakou” Children’s Hospital, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (K.K.); (M.N.); (A.K.); (E.P.); (T.P.); (M.T.); (T.N.S.)
| |
Collapse
|
10
|
Alfano V, Mele G, Cotugno A, Longarzo M. Multimodal neuroimaging in anorexia nervosa. J Neurosci Res 2020; 98:2178-2207. [PMID: 32770570 DOI: 10.1002/jnr.24674] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/26/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
Anorexia nervosa (AN) is a severe and complex psychiatric disorder characterized by intense fear about weight gain and finalized to food-related control behaviors. Growing interest has been demonstrated about neurobiological processes subtend to AN physiopathology. The present review aimed to collect neurostructural and neurofunctional available data from 2010 to 2019. Results have been organized according to the neuroimaging technique employed, also including a specific section on electroencephalographic results, mostly neglected in previous reviews. Diffuse cerebral vulnerability has been demonstrated and the contribution of several structures has been identified. Insula, cingulate cortex, parietal and frontal areas are primarily involved both by structural and functional perspectives. Moreover, consistent alterations in white matter integrity and brain electrical activity have been reported. Neuroimaging findings give a substantial contribution to AN pathophysiological description, also in order to understand altered but reversible processes in the passage from acute illness phase to disorder's remission, useful also for defining therapy.
Collapse
|
11
|
Jung M, Takiguchi S, Hamamura S, Mizuno Y, Kosaka H, Tomoda A. Thalamic Volume Is Related to Increased Anterior Thalamic Radiations in Children with Reactive Attachment Disorder. Cereb Cortex 2020; 30:4238-4245. [PMID: 32147718 DOI: 10.1093/cercor/bhaa051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reactive attachment disorder (RAD) is associated with childhood maltreatment and affects approximately 1% of the general population. Recent data suggest that childhood maltreatment is associated with brain alterations in white and gray matter. However, the neural mechanisms of RAD-related brain alterations remain unknown. Herein, we evaluated the white matter pathways and gray matter volumes in 31 and 41 age-matched children with RAD and typical development (TD), respectively, by analyzing T1- and diffusion-weighted images. An increased fractional anisotropy (FA) and axial diffusivity in the anterior thalamic radiations (ATR) and an increased volume in the bilateral pallidum and right thalamus were observed in children with RAD compared with those with TD. Moreover, the volume of the thalamus was associated with increased ATR FA in children with RAD. Our study confirmed the existence of atypical neurodevelopment processes in the thalamus, pallidum, and ATR in children with RAD and highlighted an interdependent relationship between the alterations in the thalamus and ATR. These findings may help to improve our understanding of the comprehensive neural mechanisms of RAD.
Collapse
Affiliation(s)
- Minyoung Jung
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Biomedical Imaging Research Center, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Shinichiro Takiguchi
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan
| | - Shoko Hamamura
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan
| | - Yoshifumi Mizuno
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan
| | - Akemi Tomoda
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Child and Adolescent Psychological Medicine, University of Fukui Hospital, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
12
|
Zhang S, Wang W, Su X, Li L, Yang X, Su J, Tan Q, Zhao Y, Sun H, Kemp GJ, Gong Q, Yue Q. White Matter Abnormalities in Anorexia Nervosa: Psychoradiologic Evidence From Meta-Analysis of Diffusion Tensor Imaging Studies Using Tract Based Spatial Statistics. Front Neurosci 2020; 14:159. [PMID: 32194371 PMCID: PMC7063983 DOI: 10.3389/fnins.2020.00159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/11/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Anorexia nervosa (AN) is a debilitating illness whose neural basis remains unclear. Studies using tract-based spatial statistics (TBSS) with diffusion tensor imaging (DTI) have demonstrated differences in white matter (WM) microarchitecture in AN, but the findings are inconclusive and controversial. Objectives: To identify the most consistent WM abnormalities among previous TBSS studies of differences in WM microarchitecture in AN. Methods: By systematically searching online databases, a total of 11 datasets were identified, including 245 patients with AN and 246 healthy controls (HC). We used Seed-based d Mapping to analyze fractional anisotropy (FA) differences between AN patients and HC, and performed meta-regression analysis to explore the effects of clinical characteristics on WM abnormalities in AN. Results: The pooled results of all AN patients showed robustly lower FA in the corpus callosum (CC) and the cingulum compared to HC. These two regions preserved significance in the sensitivity analysis as well as in all subgroup analyses. Fiber tracking showed that the WM tracts primarily involved were the body of the CC and the cingulum bundle. Meta-regression analysis revealed that the body mass index and mean age were not linearly correlated with the lower FA. Conclusions: The most consistent WM microstructural differences in AN were in the interhemispheric connections and limbic association fibers. These common “targets” advance our understanding of the complex neural mechanisms underlying the puzzling symptoms of AN, and may help in developing early treatment approaches.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Weina Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xiaorui Su
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Xibiao Yang
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingkai Su
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiaoyue Tan
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Yue
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Geisler D, Borchardt V, Boehm I, King JA, Tam FI, Marxen M, Biemann R, Roessner V, Walter M, Ehrlich S. Altered global brain network topology as a trait marker in patients with anorexia nervosa. Psychol Med 2020; 50:107-115. [PMID: 30621808 DOI: 10.1017/s0033291718004002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Resting state functional magnetic resonance imaging studies have identified functional connectivity patterns associated with acute undernutrition in anorexia nervosa (AN), but few have investigated recovered patients. Thus, a trait connectivity profile characteristic of the disorder remains elusive. Using state-of-the-art graph-theoretic methods in acute AN, the authors previously found abnormal global brain network architecture, possibly driven by local network alterations. To disentangle trait from starvation effects, the present study examines network organization in recovered patients. METHODS Graph-theoretic metrics were used to assess resting-state network properties in a large sample of female patients recovered from AN (recAN, n = 55) compared with pairwise age-matched healthy controls (HC, n = 55). RESULTS Indicative of an altered global network structure, recAN showed increased assortativity and reduced global clustering as well as small-worldness compared with HC, while no group differences at an intermediate or local network level were evident. However, using support-vector classifier on local metrics, recAN and HC could be separated with an accuracy of 70.4%. CONCLUSIONS This pattern of results suggests that long-term recovered patients have an aberrant global brain network configuration, similar to acutely underweight patients. While the finding of increased assortativity may represent a trait marker of AN, the remaining findings could be seen as a scar following prolonged undernutrition.
Collapse
Affiliation(s)
- Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Viola Borchardt
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Ilka Boehm
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Friederike I Tam
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Ronald Biemann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Clinic for Psychiatry and Psychotherapy, Eberhard-Karls University, Tuebingen, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neuroscience, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Child and Adolescent Psychiatry, Eating Disorder Treatment and Research Center, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Meneguzzo P, Collantoni E, Solmi M, Tenconi E, Favaro A. Anorexia nervosa and diffusion weighted imaging: An open methodological question raised by a systematic review and a fractional anisotropy anatomical likelihood estimation meta-analysis. Int J Eat Disord 2019; 52:1237-1250. [PMID: 31518016 DOI: 10.1002/eat.23160] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Anorexia nervosa (AN) is characterized by white matter abnormalities in neuroimaging studies. Fractional anisotropy (FA) is a diffusion tensor imaging (DTI) index that is considered an instrument for the evaluation of white matter alterations. However, the literature has recently pointed out the role of the partial volume effect (PVE) as a confounding factor for the identification of juxtaposed tissues. Our goal was to review the DTI literature in AN and evaluate possible confounding factors linked to the reported results. METHOD A systematic review of the literature was conducted to identify Diffusion Tensor Imaging studies of individuals with AN and, subsequently, an anatomical likelihood estimation (ALE) meta-analysis was performed on studies published before March 18, 2019. RESULTS Twenty-four studies (AN = 517, controls = 542) were included in the qualitative systematic review of the literature. Ten published studies underwent the ALE-analysis (AN = 210, controls = 229), plus data from an unpublished cohort (AN = 38, controls = 38). Two clusters of decreased FA were identified, namely in the left corona radiata, and in the left thalamus. Only one article took the PVE correction analysis into account. CONCLUSIONS The alterations identified must be considered within the limits of a possible methodological bias regarding PVE and free water and re-analysis of the data may be recommended. The preliminary data showed that the alteration of white matter pathways between the limbic structures and brain cortex may be linked to the processing of somatosensory information that could play a key role in the psychopathology of the disorder.
Collapse
Affiliation(s)
- Paolo Meneguzzo
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Marco Solmi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Elena Tenconi
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
15
|
Abstract
Eating disorders are severe psychiatric illnesses with a typical age of onset in adolescence. Brain research in youth and young adults may help us identify specific neurobiology that contributes to onset and maintenance of those disorders. This article provides a state-of-the-art review of our current understanding of the neurobiology of anorexia nervosa and bulimia nervosa. This includes brain structure and function studies to understand food restriction, binge-eating or purging behaviors, cognitive and emotional factors, as well as interoception. Binge-eating disorder and avoidant restrictive food intake disorder are also discussed, but the literature is still very small.
Collapse
|
16
|
Gaudio S, Carducci F, Piervincenzi C, Olivo G, Schiöth HB. Altered thalamo–cortical and occipital–parietal– temporal–frontal white matter connections in patients with anorexia and bulimia nervosa: a systematic review of diffusion tensor imaging studies. J Psychiatry Neurosci 2019; 44:324-339. [PMID: 30994310 PMCID: PMC6710091 DOI: 10.1503/jpn.180121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Anorexia nervosa and bulimia nervosa are complex mental disorders, and their etiology is still not fully understood. This paper reviews the literature on diffusion tensor imaging studies in patients with anorexia nervosa and bulimia nervosa to explore the usefulness of white matter microstructural analysis in understanding the pathophysiology of eating disorders. METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to identify diffusion tensor imaging studies that compared patients with an eating disorder to control groups. We searched relevant databases for studies published from database inception to August 2018, using combinations of select keywords. We categorized white matter tracts according to their 3 main classes: projection (i.e., thalamo–cortical), association (i.e., occipital–parietal–temporal–frontal) and commissural (e.g., corpus callosum). RESULTS We included 19 papers that investigated a total of 427 participants with current or previous eating disorders and 444 controls. Overall, the studies used different diffusion tensor imaging approaches and showed widespread white matter abnormalities in patients with eating disorders. Despite differences among the studies, patients with anorexia nervosa showed mainly white matter microstructural abnormalities of thalamo–cortical tracts (i.e., corona radiata, thalamic radiations) and occipital–parietal–temporal–frontal tracts (i.e., left superior longitudinal and inferior fronto-occipital fasciculi). It was less clear whether white matter alterations persist after recovery from anorexia nervosa. Available data on bulimia nervosa were partially similar to those for anorexia nervosa. LIMITATIONS Study sample composition and diffusion tensor imaging analysis techniques were heterogeneous. The number of studies on bulimia nervosa was too limited to be conclusive. CONCLUSION White matter microstructure appears to be affected in anorexia nervosa, and these alterations may play a role in the pathophysiology of this eating disorder. Although we found white matter alterations in bulimia nervosa that were similar to those in anorexia nervosa, white matter changes in bulimia nervosa remain poorly investigated, and these findings were less conclusive. Further studies with longitudinal designs and multi-approach analyses are needed to better understand the role of white matter changes in eating disorders.
Collapse
Affiliation(s)
- Santino Gaudio
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Filippo Carducci
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Claudia Piervincenzi
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Gaia Olivo
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| | - Helgi B. Schiöth
- From the Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden (Gaudio, Olivo, Schiöth); the Centre for Integrated Research, Area of Diagnostic Imaging, Universita Campus Bio-Medico di Roma, Rome, Italy (Gaudio); the Department of Physiology and Pharmacology, Neuroimaging Laboratory, Sapienza University, Rome, Italy (Carducci, Piervincenzi); and the Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia (Schiöth)
| |
Collapse
|
17
|
Jung M, Mody M, Fujioka T, Kimura Y, Okazawa H, Kosaka H. Sex Differences in White Matter Pathways Related to Language Ability. Front Neurosci 2019; 13:898. [PMID: 31555075 PMCID: PMC6723765 DOI: 10.3389/fnins.2019.00898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/12/2019] [Indexed: 11/13/2022] Open
Abstract
Evidence from functional imaging studies points to a role for gender in language ability. However, recent studies suggest that sex differences in the neural basis of language are still unclear, reflecting a complex interaction between sex and language ability. We used diffusion weighted magnetic resonance imaging and global probabilistic tractography to investigate white matter (WM) pathways between 32 male and 35 age- and IQ-matched female adult participants in relation to their verbal abilities. Males showed higher fractional anisotropy (FA) in the left anterior thalamic radiations (ATR), right cingulum-angular bundle, right corticospinal tract, bilateral superior longitudinal fasciculus-temporal terminations, bilateral uncinate fasciculus (UNC), and corpus callosum-forceps minor when compared with the female group. In contrast, females showed higher radial diffusivity (RD) in the left ATR and left UNC when compared to the male group. The relationship between WM metrics and verbal ability also differed across the two groups: a negative correlation between verbal comprehension index (VCI) and FA as well as axial diffusivity (AD) in left cingulum-cingulate gyrus (CCG) supracallosal bundle in males but not in females; a negative correlation between verbal IQ (VIQ) and FA in the right corticospinal tract (CST), and a positive correlation between VCI and RD in corpus callosum-forceps minor in the female but not in the male group. A direct comparison of these correlation coefficients yielded significant differences between the groups for the VCI-AD and VIQ -FA associations. The findings may reflect sex differences in WM related to language ability.
Collapse
Affiliation(s)
- Minyoung Jung
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Japan.,Biomedical Imaging Research Center, University of Fukui, Eiheiji, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Toru Fujioka
- Special Needs Education Subcourse, Primary Education Course, School of Education, University of Fukui, Eiheiji, Japan
| | - Yukari Kimura
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, Eiheiji, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, University of Fukui, Eiheiji, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Japan
| |
Collapse
|
18
|
Nickel K, Tebartz van Elst L, Holovics L, Feige B, Glauche V, Fortenbacher T, Endres D, Zeeck A, Tüscher O, Joos A, Maier S. White Matter Abnormalities in the Corpus Callosum in Acute and Recovered Anorexia Nervosa Patients-A Diffusion Tensor Imaging Study. Front Psychiatry 2019; 10:490. [PMID: 31338044 PMCID: PMC6628864 DOI: 10.3389/fpsyt.2019.00490] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/21/2019] [Indexed: 12/26/2022] Open
Abstract
Objective: Severe malnutrition in patients with anorexia nervosa (AN) as well as possible trait-related aberrations lead to pronounced structural brain changes whose reversibility after recovery is currently unclear. Previous diffusion tensor imaging (DTI) studies investigating white matter (WM) microstructure alterations in AN are inconsistent. Methods: In this so far largest DTI study in adults, we investigated 33 AN patients, 20 recovered (REC), and 33 healthy women. DTI data were processed using the "DTI and Fiber tools," and the Computational Anatomy Toolbox. WM integrity, both in terms of fractional anisotropy (FA) and mean diffusivity (MD), was assessed. Results: We found a significant FA decrease in the corpus callosum (body) and an MD decrease in the posterior thalamic radiation in the AN group. The REC group displayed FA decrease in the corpus callosum in comparison to HC, whereas there were no MD differences between the REC and HC groups. Conclusion: Despite prolonged restoration of weight in the REC group, no significant regeneration of WM integrity in terms of FA could be observed. Transient changes in MD likely represent a reversible consequence of the acute state of starvation or result from dehydration. Reduction of FA either may be due to WM damage resulting from malnutrition or may be considered a pre-morbid marker.
Collapse
Affiliation(s)
- Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Holovics
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Volkmar Glauche
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tina Fortenbacher
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Almut Zeeck
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University of Mainz, Mainz, Germany
| | - Andreas Joos
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychotherapeutic Neurology, Kliniken Schmieder, Gailingen, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Psychosomatic Medicine and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
von Schwanenflug N, Müller DK, King JA, Ritschel F, Bernardoni F, Mohammadi S, Geisler D, Roessner V, Biemann R, Marxen M, Ehrlich S. Dynamic changes in white matter microstructure in anorexia nervosa: findings from a longitudinal study. Psychol Med 2019; 49:1555-1564. [PMID: 30149815 DOI: 10.1017/s003329171800212x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Gray matter (GM) 'pseudoatrophy' is well-documented in patients with anorexia nervosa (AN), but changes in white matter (WM) are less well understood. Here we investigated the dynamics of microstructural WM brain changes in AN patients during short-term weight restoration in a combined longitudinal and cross-sectional study design. METHODS Diffusion-weighted images were acquired in young AN patients before (acAN-Tp1, n = 56) and after (acAN-Tp2, n = 44) short-term weight restoration as well as in age-matched healthy controls (HC, n = 60). Images were processed using Tract-Based-Spatial-Statistics to compare fractional anisotropy (FA) across groups and timepoints. RESULTS In the cross-sectional comparison, FA was significantly reduced in the callosal body in acAN-Tp1 compared with HC, while no differences were found between acAN-Tp2 and HC. In the longitudinal arm, FA increased with weight gain in acAN-Tp2 relative to acAN-Tp1 in large parts of the callosal body and the fornix, while it decreased in the right corticospinal tract. CONCLUSIONS Our findings reveal that dynamic, bidirectional changes in WM microstructure in young underweight patients with AN can be reversed with brief weight restoration therapy. These results parallel those previously observed in GM and suggest that alterations in WM in non-chronic AN are also state-dependent and rapidly reversible with successful intervention.
Collapse
Affiliation(s)
- Nina von Schwanenflug
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| | - Dirk K Müller
- Department of Psychiatry and Neuroimaging Center,Technische Universität Dresden,Dresden,Germany
| | - Joseph A King
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| | - Franziska Ritschel
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| | - Fabio Bernardoni
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| | - Siawoosh Mohammadi
- Department of Systems Neuroscience,Medical Center Hamburg-Eppendorf,Hamburg,Germany
| | - Daniel Geisler
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry,Faculty of Medicine,Eating Disorder Research and Treatment Center, Technische Universität Dresden,Dresden,Germany
| | - Ronald Biemann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University,Magdeburg,Germany
| | - Michael Marxen
- Department of Psychiatry and Neuroimaging Center,Technische Universität Dresden,Dresden,Germany
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neuroscience,Faculty of Medicine,Technische Universität Dresden,Dresden,Germany
| |
Collapse
|
20
|
Barona M, Brown M, Clark C, Frangou S, White T, Micali N. White matter alterations in anorexia nervosa: Evidence from a voxel-based meta-analysis. Neurosci Biobehav Rev 2019; 100:285-295. [PMID: 30851283 DOI: 10.1016/j.neubiorev.2019.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/08/2019] [Accepted: 03/05/2019] [Indexed: 02/06/2023]
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder with a complex and poorly understood etiology. Recent studies have sought to investigate differences in white matter microstructure in AN, with significant results in several brain regions. A systematic literature search of Embase, PubMed and Psychinfo databases was conducted in order to identify Diffusion Tensor Imaging (DTI) studies of patients with AN and controls. We performed a meta-analysis of studies that met our inclusion criteria (N = 13) using effect size-signed differential mapping (AES-SDM) to detect differences in Fractional Anisotropy (FA) in patients with AN (N = 227) compared to healthy controls (N = 243). The quantitative meta-analysis of DTI studies identified decreased FA in the posterior areas of the corpus callosum, the left superior longitudinal fasciculus II, and the left precentral gyrus, as well as increased FA in the right cortico-spinal projections, and lingual gyrus in AN vs. controls. Studies of WM architecture are still limited in AN; further studies with longitudinal design are needed to better understand the complexity of abnormalities, and their persistence.
Collapse
Affiliation(s)
- Manuela Barona
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Melanie Brown
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Nadia Micali
- UCL Great Ormond Street Institute of Child Health, London, UK; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
21
|
Olivo G, Swenne I, Zhukovsky C, Tuunainen A, Saaid A, Salonen‐Ros H, Larsson E, Brooks SJ, Schiöth HB. Preserved white matter microstructure in adolescent patients with atypical anorexia nervosa. Int J Eat Disord 2019; 52:166-174. [PMID: 30676658 PMCID: PMC6590352 DOI: 10.1002/eat.23012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Patients with atypical anorexia nervosa (AN) are often in the normal-weight range at presentation; however, signs of starvation and medical instability are not rare. White matter (WM) microstructural correlates of atypical AN have not yet been investigated, leaving an important gap in our knowledge regarding the neural pathogenesis of this disorder. METHOD We investigated WM microstructural integrity in 25 drug-naïve adolescent patients with atypical AN and 25 healthy controls, using diffusion tensor imaging (DTI) with a tract-based spatial statistics (TBSS) approach. Psychological variables related to the eating disorder and depressive symptoms were also evaluated by administering the eating disorder examination questionnaire (EDE-Q) and the Montgomery-Åsberg depression rating scale (MADRS-S) respectively, to all participants. RESULTS Patients and controls were in the normal-weight range and did not differ from the body mass index standard deviations for their age. No between groups difference in WM microstructure could be detected. DISCUSSION Our findings support the hypothesis that brain structural alterations may not be associated to early-stage atypical AN. These findings also suggest that previous observations of alterations in WM microstructure in full syndrome AN may constitute state-related consequences of severe weight loss. Whether the preservation of WM structure is a pathogenetically discriminant feature of atypical AN or only an effect of a less severe nutritional disturbance, will have to be verified by future studies on larger samples, possibly directly comparing AN and atypical AN.
Collapse
Affiliation(s)
- Gaia Olivo
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Ingemar Swenne
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
| | - Christina Zhukovsky
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Anna‐Kaisa Tuunainen
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Avista Saaid
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| | - Helena Salonen‐Ros
- Department of Neuroscience, Child and Adolescent PsychiatryUppsala UniversityUppsalaSweden
| | - Elna‐Marie Larsson
- Department of Surgical Sciences, RadiologyUppsala UniversityUppsalaSweden
| | - Samantha J. Brooks
- Department of Human BiologyUniversity of Cape TownCape TownSouth Africa,School of Natural Sciences and PsychologyResearch Centre for Brain & BehaviourLiverpoolUnited Kingdom
| | - Helgi B. Schiöth
- Department of Neuroscience, Functional PharmacologyUppsala UniversityUppsalaSweden
| |
Collapse
|
22
|
Myrvang AD, Vangberg TR, Stedal K, Rø Ø, Endestad T, Rosenvinge JH, Aslaksen PM. Hippocampal subfields in adolescent anorexia nervosa. Psychiatry Res Neuroimaging 2018; 282:24-30. [PMID: 30384147 DOI: 10.1016/j.pscychresns.2018.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 01/30/2023]
Abstract
Patients with anorexia nervosa (AN) exhibit volume reduction in cerebral gray matter (GM), and several studies report reduced hippocampus volume. The hippocampal subfields (HS) are functionally and structurally distinct, and appear to respond differently to neuropathology. The aim of this study was to investigate HS volumes in adolescent females with restrictive AN compared to a healthy age-matched control group (HC). The FreeSurfer v6.0 package was used to extract brain volumes, and segment HS in 58 female adolescents (AN = 30, HC = 28). We investigated group differences in GM, white matter (WM), whole hippocampus and 12 HS volumes. AN patients had significantly lower total GM and total hippocampal volume. No group difference was found in WM. Volume reduction was found in 11 of the 12 HS, and most results remained significant when adjusting for global brain volume reduction. Investigations of clinical covariates revealed statistically significant relationships between the whole hippocampus, several HS and scores on depression and anxiety scales in AN. Results from this study show that young AN patients exhibit reduced volume in most subfields of the hippocampus, and that this reduction may be more extensive than the observed global cerebral volume loss.
Collapse
Affiliation(s)
- Anna D Myrvang
- Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, USA.
| | - Torgil R Vangberg
- Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway; Department of Clinical Medicine, University Hospital of North Norway, Norway
| | - Kristin Stedal
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Norway
| | - Øyvind Rø
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Tor Endestad
- Department of Psychology, Faculty of Social Sciences, University of Oslo, Norway
| | - Jan H Rosenvinge
- Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway
| | - Per M Aslaksen
- Department of Psychology, Faculty of Health Sciences, UiT The Artic University of Norway, Tromsø, Norway; Regional Center for Eating Disorders, University hospital of North Norway, Norway
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review delineates issues in the conceptualization and operationalization of eating disorder recovery, highlights recent findings about recovery (since 2016), and proposes future directions. RECENT FINDINGS A longstanding problem in the field is that there are almost as many different definitions of recovery in eating disorders as there are studies on the topic. Yet, there has been a general shift to accepting that psychological/cognitive symptoms are important to recovery in addition to physical and behavioral indices. Further, several operationalizations of recovery have been proposed over the past two decades, and some efforts to validate operationalizations exist. However, this work has had limited impact and uptake, such that the field is suffering from "broken record syndrome," where calls are made for universal definitions time and time again. It is critical that proposed operationalizations be compared empirically to help arrive at a consensus definition and that institutional/organizational support help facilitate this. Themes in recent recovery research include identifying predictors, examining biological/neuropsychological factors, and considering severe and enduring anorexia nervosa. From qualitative research, those who have experienced eating disorders highlight recovery as a journey, as well as factors such as hope, self-acceptance, and benefiting from support from others as integral to the process of recovery. The field urgently needs to implement a universal definition of recovery that is backed by evidence, that can parsimoniously be implemented in clinical practice, and that will lead to greater harmonization of scientific findings.
Collapse
|
24
|
Structural Neuroimaging of Anorexia Nervosa: Future Directions in the Quest for Mechanisms Underlying Dynamic Alterations. Biol Psychiatry 2018; 83:224-234. [PMID: 28967386 PMCID: PMC6053269 DOI: 10.1016/j.biopsych.2017.08.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and extreme weight loss. Pseudoatrophic brain changes are often readily visible in individual brain scans, and AN may be a valuable model disorder to study structural neuroplasticity. Structural magnetic resonance imaging studies have found reduced gray matter volume and cortical thinning in acutely underweight patients to normalize following successful treatment. However, some well-controlled studies have found regionally greater gray matter and persistence of structural alterations following long-term recovery. Findings from diffusion tensor imaging studies of white matter integrity and connectivity are also inconsistent. Furthermore, despite the severity of AN, the number of existing structural neuroimaging studies is still relatively low, and our knowledge of the underlying cellular and molecular mechanisms for macrostructural brain changes is rudimentary. We critically review the current state of structural neuroimaging in AN and discuss the potential neurobiological basis of structural brain alterations in the disorder, highlighting impediments to progress, recent developments, and promising future directions. In particular, we argue for the utility of more standardized data collection, adopting a connectomics approach to understanding brain network architecture, employing advanced magnetic resonance imaging methods that quantify biomarkers of brain tissue microstructure, integrating data from multiple imaging modalities, strategic longitudinal observation during weight restoration, and large-scale data pooling. Our overarching objective is to motivate carefully controlled research of brain structure in eating disorders, which will ultimately help predict therapeutic response and improve treatment.
Collapse
|
25
|
Bang L, Rø Ø, Endestad T. Normal white matter microstructure in women long-term recovered from anorexia nervosa: A diffusion tensor imaging study. Int J Eat Disord 2018; 51:46-52. [PMID: 29120488 DOI: 10.1002/eat.22802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Studies point to white matter (WM) microstructure alterations in both adolescent and adult patients with anorexia nervosa (AN). These include reduced fractional anisotropy in several WM fiber tracts, suggesting reduced WM integrity. The extent to which these alterations are reversible with recovery from AN is unclear. There is a paucity of research investigating the presence of WM microstructure alterations in recovered AN patients, and results are inconsistent. This study aimed to investigate the presence of WM microstructure alterations in women long-term recovered from AN. METHOD Twenty-one adult women who were recovered from AN for at least 1 year were compared to 21 adult comparison women. Participants were recruited via user-organizations for eating disorders, local advertisements, and online forums. Diffusion tensor imaging was used to compare WM microstructure between groups. Correlations between WM microstructure and clinical characteristics were also explored. RESULTS There were no statistically significant between-group differences in WM microstructure. These null findings remained when employing liberal alpha level thresholds. Furthermore, there were no statistically significant correlations between WM microstructure and clinical characteristics. DISCUSSION Our findings showed normal WM microstructure in long-term recovered patients, indicating the alterations observed during the acute phase are reversible. Given the paucity of research and inconsistent findings, future studies are warranted to determine the presence of WM microstructure alterations following recovery from AN.
Collapse
Affiliation(s)
- Lasse Bang
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, P.O. Box 4956 Nydalen, Oslo, 0424, Norway
| | - Øyvind Rø
- Regional Department for Eating Disorders, Division of Mental Health and Addiction, Oslo University Hospital, P.O. Box 4956 Nydalen, Oslo, 0424, Norway.,Division of Mental Health and Addiction, Institute of Clinical Medicine, University of Oslo, P.O. Box 1171 Blindern, Oslo, 0318, Norway
| | - Tor Endestad
- Institute of Psychology, University of Oslo, P.O. Box 1094 Blindern, Oslo, 0317, Norway
| |
Collapse
|
26
|
Neural correlates of altered feedback learning in women recovered from anorexia nervosa. Sci Rep 2017; 7:5421. [PMID: 28710363 PMCID: PMC5511172 DOI: 10.1038/s41598-017-04761-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/19/2017] [Indexed: 12/19/2022] Open
Abstract
Anorexia nervosa (AN) is associated with exaggerated self-control and altered reward-based decision making, but the underlying neural mechanisms are poorly understood. Consistent with the notion of excessive cognitive control, we recently found increased dorsal anterior cingulate cortex (dACC) activation in acutely ill patients (acAN) on lose-shift trials in a probabilistic reversal learning (PRL) task. However, undernutrition may modulate brain function. In attempt to disentangle trait from state factors, the current fMRI study investigated cognitive control in recovered patients (recAN). Thirty-one recAN and 31 healthy controls (HC) completed a PRL task during fMRI. Based on previous findings, we focused on hemodynamic responses during lose-shift behaviour and conducted supplementary functional connectivity analysis. RecAN showed elevated lose-shift behaviour relative to HC. On the neural level, recAN showed normal dACC responses, but increased activation in fronto-parietal control regions. A trend for increased coupling between frontal and parietal regions of interest was also evident in recAN. The current findings in recAN differ from those in our previous study in acAN. While aberrant dACC response to negative feedback may be a correlate of the underweight state in acAN, impaired behavioural adaptation and elevated activation of cognitive control regions in recAN is suggestive of altered neural efficiency.
Collapse
|