1
|
Phylactou P, Shimi A, Konstantinou N. Causal evidence for the role of the sensory visual cortex in visual short-term memory maintenance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230321. [PMID: 37090966 PMCID: PMC10113812 DOI: 10.1098/rsos.230321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
The role of the sensory visual cortex during visual short-term memory (VSTM) remains controversial. This controversy is possibly due to methodological issues in previous attempts to investigate the effects of transcranial magnetic stimulation (TMS) on VSTM. The aim of this study was to use TMS, while covering previous methodological deficits. Sixty-four young adults were recruited to participate in two experiments (Experiment 1: n = 36; Experiment 2: n = 28) using a VSTM orientation change-detection task under TMS. Monocular vision was ensured using red-blue goggles combined with red-blue stimuli. Double-pulse TMS was delivered at different times (Experiment 1: 0, 200 or 1000 ms; Experiment 2: 200, 1000 ms) during a 2 s maintenance phase, on one side of the occipital hemisphere. In Experiment 2, a sham TMS condition was introduced. Decreased detection sensitivity (d') in the ipsilateral occipital hemisphere to visual hemifield, and in the real TMS (compared with sham TMS) condition indicated inhibitory TMS effects, and thus, a causal involvement of the sensory visual cortex during early (200 ms) and late (1000 ms) maintenance in VSTM. These findings are aligned with sensory recruitment, which proposes that both perceptual and memory processes rely upon the same neural substrates in the sensory visual cortex. The methods used in this study were preregistered and had received in-principle acceptance on 6 June 2022 (Stage 1 protocol can be found in: https://doi.org/10.17605/OSF.IO/EMPDT).
Collapse
Affiliation(s)
- Phivos Phylactou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| | - Andria Shimi
- Department of Psychology, Faculty of Social Sciences and Education, University of Cyprus, CY-1678 Nicosia, Cyprus
| | - Nikos Konstantinou
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol 3041, Cyprus
| |
Collapse
|
2
|
Sensory recruitment in visual short-term memory: A systematic review and meta-analysis of sensory visual cortex interference using transcranial magnetic stimulation. Psychon Bull Rev 2022; 29:1594-1624. [PMID: 35606595 DOI: 10.3758/s13423-022-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Sensory visual areas are involved in encoding information in visual short-term memory (VSTM). Yet it remains unclear whether sensory visual cortex is a necessary component of the brain network for maintenance of information in VSTM. Here, we aimed to systematically review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS) and to quantitatively explore these effects using meta-analyses. Fourteen studies were identified and reviewed. Eight studies provided sufficient data for meta-analysis. Two meta-analyses, one regarding the VSTM encoding phase (17 effect sizes) and one regarding the VSTM maintenance phase (15 effect sizes), two meta-regressions (32 effect sizes in each), and one exploratory meta-analysis were conducted. Our results indicate that the sensory visual cortex is similarly involved in both the encoding and maintenance VSTM phase. We suggest that some cases where evidence did not show significant TMS effects was due to low memory or perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in VSTM.
Collapse
|
3
|
Machizawa MG, Driver J, Watanabe T. Gray Matter Volume in Different Cortical Structures Dissociably Relates to Individual Differences in Capacity and Precision of Visual Working Memory. Cereb Cortex 2020; 30:4759-4770. [PMID: 32396203 DOI: 10.1093/cercor/bhaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Visual working memory (VWM) refers to our ability to selectively maintain visual information in a mental representation. While cognitive limits of VWM greatly influence a variety of mental operations, it remains controversial whether the quantity or quality of representations in mind constrains VWM. Here, we examined behavior-to-brain anatomical relations as well as brain activity to brain anatomy associations with a "neural" marker specific to the retention interval of VWM. Our results consistently indicated that individuals who maintained a larger number of items in VWM tended to have a larger gray matter (GM) volume in their left lateral occipital region. In contrast, individuals with a superior ability to retain with high precision tended to have a larger GM volume in their right parietal lobe. These results indicate that individual differences in quantity and quality of VWM may be associated with regional GM volumes in a dissociable manner, indicating willful integration of information in VWM may recruit separable cortical subsystems.
Collapse
Affiliation(s)
- Maro G Machizawa
- Center for Brain, Mind, and KANSEI Sciences Research, Hiroshima University, Hiroshima, 734-8551 Japan.,Institute of Cognitive Neuroscience and Institute of Neurology, University College London WC1N 3AZ, London, UK.,Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Jon Driver
- Institute of Cognitive Neuroscience and Institute of Neurology, University College London WC1N 3AZ, London, UK.,Wellcome Trust Center for Neuroimaging, University College London WC1N 3BG, London, UK
| | - Takeo Watanabe
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
4
|
Cao S, Xia LX. Conscientiousness mediates the link between brain structure and consideration of future consequence. Neuropsychologia 2020; 141:107435. [PMID: 32184099 DOI: 10.1016/j.neuropsychologia.2020.107435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The individual difference in valuing immediate and future outcomes is referred to as consideration of future consequences (CFC, including CFC-Future [CFC-F] and CFC-Immediate [CFC-I]), which significantly influences daily behaviour. Although CFC is believed to be affected by brain features and personalities, the relational model of brain correlates, personalities and CFC has yet to be determined. This study was designed to explore the brain structure related to CFC-F and CFC-I and the mediating role of conscientiousness. We adopted a voxel-based morphometry study and used grey matter density (GMD) as an indication of brain structure. The results showed that GMD in the ventromedial prefrontal cortex (VMPFC) was positively associated with CFC-F; however, we did not find relevant regions affecting CFC-I. Furthermore, conscientiousness was found to mediate the relationship between GMD in the VMPFC and CFC-F. This study provides initial evidence concerning the neural basis of CFC-F and argues that the features of brain structure could be associated with CFC-F through related high-order personality traits. Additionally, the distinction between CFC-F and CFC-I may be based on differences in brain structure.
Collapse
Affiliation(s)
- Shen Cao
- Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Ling-Xiang Xia
- Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Yuk V, Urbain C, Anagnostou E, Taylor MJ. Frontoparietal Network Connectivity During an N-Back Task in Adults With Autism Spectrum Disorder. Front Psychiatry 2020; 11:551808. [PMID: 33033481 PMCID: PMC7509600 DOI: 10.3389/fpsyt.2020.551808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Short-term and working memory (STM and WM) deficits have been demonstrated in individuals with autism spectrum disorder (ASD) and may emerge through atypical functional activity and connectivity of the frontoparietal network, which exerts top-down control necessary for successful STM and WM processes. Little is known regarding the spectral properties of the frontoparietal network during STM or WM processes in ASD, although certain neural frequencies have been linked to specific neural mechanisms. METHODS We analysed magnetoencephalographic data from 39 control adults (26 males; 27.15 ± 5.91 years old) and 40 adults with ASD (26 males; 27.17 ± 6.27 years old) during a 1-back condition (STM) of an n-back task, and from a subset of this sample during a 2-back condition (WM). We performed seed-based connectivity analyses using regions of the frontoparietal network. Interregional synchrony in theta, alpha, and beta bands was assessed with the phase difference derivative and compared between groups during periods of maintenance and recognition. RESULTS During maintenance of newly presented vs. repeated stimuli, the two groups did not differ significantly in theta, alpha, or beta phase synchrony for either condition. Adults with ASD showed alpha-band synchrony in a network containing the right dorsolateral prefrontal cortex, bilateral inferior parietal lobules (IPL), and precuneus in both 1- and 2-back tasks, whereas controls demonstrated alpha-band synchrony in a sparser set of regions, including the left insula and IPL, in only the 1-back task. During recognition of repeated vs. newly presented stimuli, adults with ASD exhibited decreased theta-band connectivity compared to controls in a network with hubs in the right inferior frontal gyrus and left IPL in the 1-back condition. Whilst there were no group differences in connectivity in the 2-back condition, adults with ASD showed no frontoparietal network recruitment during recognition, whilst controls activated networks in the theta and beta bands. CONCLUSIONS Our findings suggest that since adults with ASD performed well on the n-back task, their appropriate, but effortful recruitment of alpha-band mechanisms in the frontoparietal network to maintain items in STM and WM may compensate for atypical modulation of this network in the theta band to recognise previously presented items in STM.
Collapse
Affiliation(s)
- Veronica Yuk
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Charline Urbain
- Neuropsychology and Functional Neuroimaging Research Group, Center for Research in Cognition & Neurosciences and ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.,Laboratoire de Cartographie Fonctionnelle du Cerveau, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Neurosciences & Mental Health Program, SickKids Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Dimond D, Perry R, Iaria G, Bray S. Visuospatial short-term memory and dorsal visual gray matter volume. Cortex 2018; 113:184-190. [PMID: 30660956 DOI: 10.1016/j.cortex.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/14/2018] [Accepted: 12/07/2018] [Indexed: 11/18/2022]
Abstract
Visual short-term memory (VSTM) is an important cognitive capacity that varies across the healthy adult population and is affected in several neurodevelopmental disorders. It has been suggested that neuroanatomy places limits on this capacity through a map architecture that creates competition for cortical space. This suggestion has been supported by the finding that primary visual (V1) gray matter volume (GMV) is positively associated with VSTM capacity. However, evidence from neurodevelopmental disorders suggests that the dorsal visual stream is more broadly vulnerable and atypical volumes of other map-containing regions may therefore play a role. For example, Turner syndrome is associated with concomitantly reduced volume of the right intraparietal sulcus (IPS) and deficits in VSTM. As posterior IPS regions (IPS0-2) contain topographic maps, together this suggests that posterior IPS volumes may also associate with VSTM. In this study, we assessed VSTM using two tasks, as well as a composite score, and used voxel-based morphometry of T1-weighted magnetic resonance images to assess GMV in V1 and right IPS0-2 in 32 healthy young adults (16 female). For comparison with previous work, we also assessed associations between VSTM and voxel-wise GMV on a whole-brain basis. We found that total brain volume (TBV) significantly correlated with VSTM, and that correlations between VSTM and regional GMV were substantially reduced in strength when controlling for TBV. In our whole-brain analysis, we found that VSTM was associated with GMV of clusters centered around the right putamen and left Rolandic operculum, though only when TBV was not controlled for. Our results suggest that VSTM ability is unlikely to be accounted for by the volume of an individual cortical region, and may instead rely on distributed structural properties.
Collapse
Affiliation(s)
- Dennis Dimond
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada.
| | - Rebecca Perry
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Giuseppe Iaria
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Department of Psychology, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Child and Adolescent Imaging Research Program, University of Calgary, Calgary, AB, Canada; Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Hamilton CJ, Mammarella IC, Giofrè D. Autistic-like traits in children are associated with enhanced performance in a qualitative visual working memory task. Autism Res 2018; 11:1494-1499. [DOI: 10.1002/aur.2028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Colin J. Hamilton
- Department of Psychology; Northumbria University; Newcastle upon Tyne UK
| | - Irene C. Mammarella
- Department of Developmental and Social Psychology; University of Padova; Padova Italy
| | - David Giofrè
- Department of Natural Sciences and Psychology; Liverpool John Moores University; Liverpool UK
| |
Collapse
|
8
|
A Method for Simplification of Complex Group Causal Loop Diagrams Based on Endogenisation, Encapsulation and Order-Oriented Reduction. SYSTEMS 2017. [DOI: 10.3390/systems5030046] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|