1
|
Gorodetsky C, Mithani K, Breitbart S, Yan H, Zhang K, Gouveia FV, Warsi N, Suresh H, Wong SM, Huber J, Kerr EN, Kulkarni AV, Taylor MJ, P Hagopian L, Fasano A, Ibrahim GM. Deep Brain Stimulation of the Nucleus Accumbens for Severe Self-Injurious Behavior in Children: A Phase I Pilot Trial. Biol Psychiatry 2024:S0006-3223(24)01784-0. [PMID: 39645140 DOI: 10.1016/j.biopsych.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/26/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Self-injurious behavior (SIB) consists of repetitive, nonaccidental movements that result in physical damage inflicted upon oneself, without suicidal intent. SIB is prevalent among children with autism spectrum disorder and can lead to permanent disability or death. Neuromodulation at a locus of neural circuitry implicated in SIB, the nucleus accumbens (NAc), may directly influence these behaviors. METHODS We completed a phase I, open-label clinical trial of deep brain stimulation (DBS) of the NAc in children with severe, treatment-refractory SIB (ClinicalTrials.gov identifier NCT03982888). Participants were monitored for 12 months following NAc-DBS to assess the primary outcomes of safety and feasibility. Secondary outcomes included serial assessments of SIB and SIB-associated behaviors, ambulatory actigraphy, and changes in brain glucose metabolism induced by DBS. RESULTS Six children (ages 7-14 years) underwent NAc-DBS without serious adverse events. One child was found to have a delayed asymptomatic intracranial hemorrhage adjacent to a DBS electrode that did not require intervention, and 3 children experienced transient worsening in irritability or SIB with titration of stimulation parameters. NAc-DBS resulted in significant reductions in SIB and SIB-associated behaviors across multiple standardized scales, concurrent with clinically meaningful improvements in quality of life. Ambulatory actigraphy showed reductions in high-amplitude limb movements and positron emission tomography revealed treatment-induced reductions in metabolic activity within the thalamus, striatum, and temporoinsular cortex. CONCLUSIONS This first-in-children phase 1 clinical trial demonstrates the safety and feasibility of NAc-DBS in children with severe, refractory SIB at high risk of physical injury and death and supports further investigations.
Collapse
Affiliation(s)
- Carolina Gorodetsky
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Karim Mithani
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Breitbart
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Han Yan
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Kristina Zhang
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Nebras Warsi
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hrishikesh Suresh
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Simeon M Wong
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Joelene Huber
- Division of Pediatric Medicine and Developmental Pediatrics, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth N Kerr
- Department of Psychology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Louis P Hagopian
- Neurobehavioral Unit, Department of Behavioural Psychology, Kennedy Krieger Institute, Baltimore, Maryland
| | - Alfonso Fasano
- Division of Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Krembil Brain Institute, Toronto, Ontario, Canada
| | - George M Ibrahim
- Division of Neurosurgery, The Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Tang R, Buchholz E, Dale AM, Rissman RA, Fennema-Notestine C, Gillespie NA, Hagler DJ, Lyons MJ, Neale MC, Panizzon MS, Puckett OK, Reynolds CA, Franz CE, Kremen WS, Elman JA. Associations of plasma neurofilament light chain with cognition and neuroimaging measures in community-dwelling early old age men. Alzheimers Res Ther 2024; 16:90. [PMID: 38664843 PMCID: PMC11044425 DOI: 10.1186/s13195-024-01464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Plasma neurofilament light chain (NfL) is a promising biomarker of neurodegeneration with potential clinical utility in monitoring the progression of neurodegenerative diseases. However, the cross-sectional associations of plasma NfL with measures of cognition and brain have been inconsistent in community-dwelling populations. METHODS We examined these associations in a large community-dwelling sample of early old age men (N = 969, mean age = 67.57 years, range = 61-73 years), who are either cognitively unimpaired (CU) or with mild cognitive impairment (MCI). Specifically, we investigated five cognitive domains (executive function, episodic memory, verbal fluency, processing speed, visual-spatial ability), as well as neuroimaging measures of gray and white matter. RESULTS After adjusting for age, health status, and young adult general cognitive ability, plasma NfL level was only significantly associated with processing speed and white matter hyperintensity (WMH) volume, but not with other cognitive or neuroimaging measures. The association with processing speed was driven by individuals with MCI, as it was not detected in CU individuals. CONCLUSIONS These results suggest that in early old age men without dementia, plasma NfL does not appear to be sensitive to cross-sectional individual differences in most domains of cognition or neuroimaging measures of gray and white matter. The revealed plasma NfL associations were limited to WMH for all participants and processing speed only within the MCI cohort. Importantly, considering cognitive status in community-based samples will better inform the interpretation of the relationships of plasma NfL with cognition and brain and may help resolve mixed findings in the literature.
Collapse
Affiliation(s)
- Rongxiang Tang
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA.
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA.
| | - Erik Buchholz
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, 92093, USA
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, 92093, USA
| | - Nathan A Gillespie
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald J Hagler
- Department of Neurosciences, University of California San Diego, La Jolla, 92093, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, 02215, USA
| | - Michael C Neale
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Olivia K Puckett
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Chandra A Reynolds
- Department of Psychology and Neurosciences, University of Colorado Boulder, Boulder, 80309, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| | - Jeremy A Elman
- Department of Psychiatry, University of California San Diego, La Jolla, 92093, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, 92093, USA
| |
Collapse
|
3
|
Williams ME, Elman JA, Bell TR, Dale AM, Eyler LT, Fennema-Notestine C, Franz CE, Gillespie NA, Hagler DJ, Lyons MJ, McEvoy LK, Neale MC, Panizzon MS, Reynolds CA, Sanderson-Cimino M, Kremen WS. Higher cortical thickness/volume in Alzheimer's-related regions: protective factor or risk factor? Neurobiol Aging 2023; 129:185-194. [PMID: 37343448 PMCID: PMC10676195 DOI: 10.1016/j.neurobiolaging.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
Some evidence suggests a biphasic pattern of changes in cortical thickness wherein higher, rather than lower, thickness is associated with very early Alzheimer's disease (AD) pathology. We examined whether integrating information from AD brain signatures based on mean diffusivity (MD) can aid in the interpretation of cortical thickness/volume as a risk factor for future AD-related changes. Participants were 572 men in the Vietnam Era Twin Study of Aging who were cognitively unimpaired at baseline (mean age = 56 years; range = 51-60). Individuals with both high thickness/volume signatures and high MD signatures at baseline had lower cortical thickness/volume in AD signature regions and lower episodic memory performance 12 years later compared to those with high thickness/volume and low MD signatures at baseline. Groups did not differ in level of young adult cognitive reserve. Our findings are in line with a biphasic model in which increased cortical thickness may precede future decline and establish the value of examining cortical MD alongside cortical thickness to identify subgroups with differential risk for poorer brain and cognitive outcomes.
Collapse
Affiliation(s)
- McKenna E Williams
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | - Jeremy A Elman
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Tyler R Bell
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Carol E Franz
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Matthew S Panizzon
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Mark Sanderson-Cimino
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Williams ME, Gillespie NA, Bell TR, Dale AM, Elman JA, Eyler LT, Fennema-Notestine C, Franz CE, Hagler DJ, Lyons MJ, McEvoy LK, Neale MC, Panizzon MS, Reynolds CA, Sanderson-Cimino M, Kremen WS. Genetic and Environmental Influences on Structural and Diffusion-Based Alzheimer's Disease Neuroimaging Signatures Across Midlife and Early Old Age. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:918-927. [PMID: 35738479 PMCID: PMC9827615 DOI: 10.1016/j.bpsc.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Composite scores of magnetic resonance imaging-derived metrics in brain regions associated with Alzheimer's disease (AD), commonly termed AD signatures, have been developed to distinguish early AD-related atrophy from normal age-associated changes. Diffusion-based gray matter signatures may be more sensitive to early AD-related changes compared with thickness/volume-based signatures, demonstrating their potential clinical utility. The timing of early (i.e., midlife) changes in AD signatures from different modalities and whether diffusion- and thickness/volume-based signatures each capture unique AD-related phenotypic or genetic information remains unknown. METHODS Our validated thickness/volume signature, our novel mean diffusivity (MD) signature, and a magnetic resonance imaging-derived measure of brain age were used in biometrical analyses to examine genetic and environmental influences on the measures as well as phenotypic and genetic relationships between measures over 12 years. Participants were 736 men from 3 waves of the Vietnam Era Twin Study of Aging (VETSA) (baseline/wave 1: mean age [years] = 56.1, SD = 2.6, range = 51.1-60.2). Subsequent waves occurred at approximately 5.7-year intervals. RESULTS MD and thickness/volume signatures were highly heritable (56%-72%). Baseline MD signatures predicted thickness/volume signatures over a decade later, but baseline thickness/volume signatures showed a significantly weaker relationship with future MD signatures. AD signatures and brain age were correlated, but each measure captured unique phenotypic and genetic variance. CONCLUSIONS Cortical MD and thickness/volume AD signatures are heritable, and each signature captures unique variance that is also not explained by brain age. Moreover, results are in line with changes in MD emerging before changes in cortical thickness, underscoring the utility of MD as a very early predictor of AD risk.
Collapse
Affiliation(s)
- McKenna E Williams
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California.
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Tyler R Bell
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Anders M Dale
- Department of Radiology, University of California San Diego, San Diego, California; Department of Neuroscience, University of California San Diego, San Diego, California
| | - Jeremy A Elman
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Lisa T Eyler
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, San Diego, California; Department of Radiology, University of California San Diego, San Diego, California
| | - Carol E Franz
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, San Diego, California
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, San Diego, California
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Matthew S Panizzon
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, California
| | - Mark Sanderson-Cimino
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California; Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California San Diego, San Diego, California
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| |
Collapse
|
5
|
Watts R, Rader L, Grant J, Filippi CG. Genetic and Environmental Contributions to Subcortical Gray Matter Microstructure and Volume in the Developing Brain. Behav Genet 2023; 53:208-218. [PMID: 37129746 PMCID: PMC10154259 DOI: 10.1007/s10519-023-10142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Using baseline (ages 9-10) and two-year follow-up (ages 11-12) data from monozygotic and dizygotic twins enrolled in the longitudinal Adolescent Brain Cognitive DevelopmentSM Study, we investigated the genetic and environmental contributions to microstructure and volume of nine subcortical gray matter regions. Microstructure was assessed using diffusion MRI data analyzed using restriction spectrum imaging (RSI) and diffusion tensor imaging (DTI) models. The highest heritability estimates (estimate [95% confidence interval]) for microstructure were found using the RSI model in the pallidum (baseline: 0.859 [0.818, 0.889], follow-up: 0.835 [0.787, 0.871]), putamen (baseline: 0.859 [0.819, 0.889], follow-up: 0.874 [0.838, 0.902]), and thalamus (baseline: 0.855 [0.814, 0.887], follow-up: 0.819 [0.769, 0.857]). For volumes the corresponding regions were the caudate (baseline: 0.831 [0.688, 0.992], follow-up: 0.848 [0.701, 1.011]) and putamen (baseline: 0.906 [0.875, 0.914], follow-up: 0.906 [0.885, 0.923]). The subcortical regions displayed high genetic stability (rA = 0.743-1.000) across time and exhibited unique environmental correlations (rE = 0.194-0.610). Individual differences in both gray matter microstructure and volumes can be largely explained by additive genetic effects in this sample.
Collapse
Affiliation(s)
- Richard Watts
- Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT, 06520, USA.
| | - Lydia Rader
- Institute for Behavioral Genetics, Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Justin Grant
- Department of Radiology, Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
6
|
Yan H, Shlobin NA, Jung Y, Zhang KK, Warsi N, Kulkarni AV, Ibrahim GM. Nucleus accumbens: a systematic review of neural circuitry and clinical studies in healthy and pathological states. J Neurosurg 2023; 138:337-346. [PMID: 35901682 DOI: 10.3171/2022.5.jns212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The nucleus accumbens (NAcc) of the ventral striatum is critically involved in goal- and reward-based behavior. Structural and functional abnormalities of the NAcc or its associated neural systems are involved in neurological and psychiatric disorders. Studies of neural circuitry have shed light on the subtleties of the structural and functional derangements of the NAcc across various diseases. In this systematic review, the authors sought to identify human studies involving the NAcc and provide a synthesis of the literature on the known circuity of the NAcc in healthy and diseased states, as well as the clinical outcomes following neuromodulation. METHODS A systematic review was conducted using the PubMed, Embase, and Scopus databases. Neuroimaging studies that reported on neural circuitry related to the human NAcc with sample sizes greater than 5 patients were included. Demographic data, aim, design and duration, participants, and clinical and neurocircuitry details and outcomes of the studies were extracted. RESULTS Of 3591 resultant articles, 123 were included. The NAcc and its corticolimbic connections to other brain regions, such as the prefrontal cortex, are largely involved in reward and pain processes, with distinct functional circuitry between the shell and core in healthy patients. There is heterogeneity between clinical studies with regard to the NAcc indirect targeting coordinates, methods for postoperative confirmation, and blinded trial design. Neuromodulation studies provided promising clinical results in the context of addiction and substance misuse, obsessive-compulsive disorder, and mood disorders. The most common complications were impaired memory or concentration, and a notable serious complication was hypomania. CONCLUSIONS The functional diversity of the NAcc highlights the importance of studying the NAcc in healthy and pathological states. The results of this review suggest that NAcc neuromodulation has been attempted in the management of diverse psychiatric indications. There is promising, emerging evidence that the NAcc may be an effective target for specific reward- or pain-based pathologies with a reasonable risk profile.
Collapse
Affiliation(s)
- Han Yan
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada.,4McMaster Medical School, Hamilton, Ontario, Canada
| | - Nathan A Shlobin
- 3Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kristina K Zhang
- 5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Nebras Warsi
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and
| | - Abhaya V Kulkarni
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,2Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
| | - George M Ibrahim
- 1Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada.,5Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; and.,6Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
7
|
Choy O, Raine A, Schug R. Larger striatal volume is associated with increased adult psychopathy. J Psychiatr Res 2022; 149:185-193. [PMID: 35279510 DOI: 10.1016/j.jpsychires.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
Prior studies have inconsistently reported increased volumes of the striatum in adults with psychopathy. A meta-analysis presented here indicates an overall effect size of d = 0.44. Nevertheless, variability in findings exist, and questions remain on confounding clinical conditions and generalizability to females. This study tests the hypothesis that striatal volumes are increased in adults with psychopathic traits, and that this relationship is mediated by stimulation-seeking and impulsivity. Striatal volume was assessed using magnetic resonance imaging in 108 adult community-dwelling males alongside psychopathy using the Psychopathy Checklist - Revised. Subsidiary, exploratory analyses were conducted on a small sample of females. Correlational analyses showed that increased striatal volumes were associated with more psychopathic traits (p = .001). Effects were observed for all striatal regions, controlling for age, substance dependence and abuse, antisocial personality disorder, attention deficit hyperactivity disorder, social adversity, and total brain volume. An analysis of 18 psychopathic individuals showed that striatal volumes were increased 9.4% compared with 18 matched controls (p = .01). Psychopathy in females was also significantly associated with increased striatal volume (p = .02). Stimulation-seeking and impulsivity partly mediated the striatal-psychopathy relationship, accounting for 49.4% of this association. Findings from these two samples replicate and build on initial studies indicating striatal enlargement in adults with psychopathy, yielding an updated effect size of d = 0.48. Results are consistent with the notion that striatal abnormalities in individuals with psychopathy partly reflect increased sensation-seeking and impulsivity, and support the hypothesis of abnormal reward processing in psychopathy.
Collapse
Affiliation(s)
- Olivia Choy
- Department of Psychology, Nanyang Technological University, Singapore.
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, USA.
| | - Robert Schug
- School of Criminology, Criminal Justice, and Emergency Management, California State University, Long Beach, USA.
| |
Collapse
|
8
|
Gillespie NA, Hatton SN, Hagler DJ, Dale AM, Elman JA, McEvoy LK, Eyler LT, Fennema-Notestine C, Logue MW, McKenzie RE, Puckett OK, Tu XM, Whitsel N, Xian H, Reynolds CA, Panizzon MS, Lyons MJ, Neale MC, Kremen WS, Franz C. The Impact of Genes and Environment on Brain Ageing in Males Aged 51 to 72 Years. Front Aging Neurosci 2022; 14:831002. [PMID: 35493948 PMCID: PMC9051484 DOI: 10.3389/fnagi.2022.831002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Magnetic resonance imaging data are being used in statistical models to predicted brain ageing (PBA) and as biomarkers for neurodegenerative diseases such as Alzheimer's Disease. Despite their increasing application, the genetic and environmental etiology of global PBA indices is unknown. Likewise, the degree to which genetic influences in PBA are longitudinally stable and how PBA changes over time are also unknown. We analyzed data from 734 men from the Vietnam Era Twin Study of Aging with repeated MRI assessments between the ages 51-72 years. Biometrical genetic analyses "twin models" revealed significant and highly correlated estimates of additive genetic heritability ranging from 59 to 75%. Multivariate longitudinal modeling revealed that covariation between PBA at different timepoints could be explained by a single latent factor with 73% heritability. Our results suggest that genetic influences on PBA are detectable in midlife or earlier, are longitudinally very stable, and are largely explained by common genetic influences.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behaviour Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States,QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,*Correspondence: Nathan A. Gillespie,
| | - Sean N. Hatton
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States,Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Donald J. Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Anders M. Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States,Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, United States,Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA, United States
| | - Jeremy A. Elman
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Linda K. McEvoy
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, United States
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, United States,Department of Psychiatry and Biomedical Genetics Section, Boston University School of Medicine, Boston, MA, United States,Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | - Ruth E. McKenzie
- Department of Psychology, Boston University, Boston, MA, United States,School of Education and Social Policy, Merrimack College, North Andover, MA, United States
| | - Olivia K. Puckett
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Xin M. Tu
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States,Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, United States
| | - Nathan Whitsel
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Hong Xian
- Department of Epidemiology and Biostatistics, Saint. Louis University, St. Louis, MO, United States,Research Service, VA St. Louis Healthcare System, St. Louis, MO, United States
| | - Chandra A. Reynolds
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behaviour Genetics, Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, United States,Department of Biological Psychology, Free University of Amsterdam, Amsterdam, Netherlands
| | - William S. Kremen
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, La Jolla, CA, United States,William S. Kremen,
| | - Carol Franz
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States,Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, United States,Carol Franz,
| |
Collapse
|
9
|
Farrow E, Chiocchetti AG, Rogers JC, Pauli R, Raschle NM, Gonzalez-Madruga K, Smaragdi A, Martinelli A, Kohls G, Stadler C, Konrad K, Fairchild G, Freitag CM, Chechlacz M, De Brito SA. SLC25A24 gene methylation and gray matter volume in females with and without conduct disorder: an exploratory epigenetic neuroimaging study. Transl Psychiatry 2021; 11:492. [PMID: 34561420 PMCID: PMC8463588 DOI: 10.1038/s41398-021-01609-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 11/09/2022] Open
Abstract
Conduct disorder (CD), a psychiatric disorder characterized by a repetitive pattern of antisocial behaviors, results from a complex interplay between genetic and environmental factors. The clinical presentation of CD varies both according to the individual's sex and level of callous-unemotional (CU) traits, but it remains unclear how genetic and environmental factors interact at the molecular level to produce these differences. Emerging evidence in males implicates methylation of genes associated with socio-affective processes. Here, we combined an epigenome-wide association study with structural neuroimaging in 51 females with CD and 59 typically developing (TD) females to examine DNA methylation in relation to CD, CU traits, and gray matter volume (GMV). We demonstrate an inverse pattern of correlation between CU traits and methylation of a chromosome 1 region in CD females (positive) as compared to TD females (negative). The identified region spans exon 1 of the SLC25A24 gene, central to energy metabolism due to its role in mitochondrial function. Increased SLC25A24 methylation was also related to lower GMV in multiple brain regions in the overall cohort. These included the superior frontal gyrus, prefrontal cortex, and supramarginal gyrus, secondary visual cortex and ventral posterior cingulate cortex, which are regions that have previously been implicated in CD and CU traits. While our findings are preliminary and need to be replicated in larger samples, they provide novel evidence that CU traits in females are associated with methylation levels in a fundamentally different way in CD and TD, which in turn may relate to observable variations in GMV across the brain.
Collapse
Affiliation(s)
- Elizabeth Farrow
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Andreas G. Chiocchetti
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jack C. Rogers
- grid.6572.60000 0004 1936 7486School of Psychology and Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Ruth Pauli
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Nora M. Raschle
- grid.7400.30000 0004 1937 0650Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | | | | | - Anne Martinelli
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gregor Kohls
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | | | - Kerstin Konrad
- grid.1957.a0000 0001 0728 696XRWTH Aachen University, Aachen, Germany
| | - Graeme Fairchild
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Bath, UK
| | - Christine M. Freitag
- grid.7839.50000 0004 1936 9721Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Magdalena Chechlacz
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Stephane A. De Brito
- grid.6572.60000 0004 1936 7486School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
10
|
Williams ME, Elman JA, McEvoy LK, Andreassen OA, Dale AM, Eglit GML, Eyler LT, Fennema-Notestine C, Franz CE, Gillespie NA, Hagler DJ, Hatton SN, Hauger RL, Jak AJ, Logue MW, Lyons MJ, McKenzie RE, Neale MC, Panizzon MS, Puckett OK, Reynolds CA, Sanderson-Cimino M, Toomey R, Tu XM, Whitsel N, Xian H, Kremen WS. 12-year prediction of mild cognitive impairment aided by Alzheimer's brain signatures at mean age 56. Brain Commun 2021; 3:fcab167. [PMID: 34396116 PMCID: PMC8361427 DOI: 10.1093/braincomms/fcab167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/26/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Neuroimaging signatures based on composite scores of cortical thickness and hippocampal volume predict progression from mild cognitive impairment to Alzheimer's disease. However, little is known about the ability of these signatures among cognitively normal adults to predict progression to mild cognitive impairment. Towards that end, a signature sensitive to microstructural changes that may predate macrostructural atrophy should be useful. We hypothesized that: (i) a validated MRI-derived Alzheimer's disease signature based on cortical thickness and hippocampal volume in cognitively normal middle-aged adults would predict progression to mild cognitive impairment; and (ii) a novel grey matter mean diffusivity signature would be a better predictor than the thickness/volume signature. This cohort study was part of the Vietnam Era Twin Study of Aging. Concurrent analyses compared cognitively normal and mild cognitive impairment groups at each of three study waves (ns = 246-367). Predictive analyses included 169 cognitively normal men at baseline (age = 56.1, range = 51-60). Our previously published thickness/volume signature derived from independent data, a novel mean diffusivity signature using the same regions and weights as the thickness/volume signature, age, and an Alzheimer's disease polygenic risk score were used to predict incident mild cognitive impairment an average of 12 years after baseline (follow-up age = 67.2, range = 61-71). Additional analyses adjusted for predicted brain age difference scores (chronological age minus predicted brain age) to determine if signatures were Alzheimer-related and not simply ageing-related. In concurrent analyses, individuals with mild cognitive impairment had higher (worse) mean diffusivity signature scores than cognitively normal participants, but thickness/volume signature scores did not differ between groups. In predictive analyses, age and polygenic risk score yielded an area under the curve of 0.74 (sensitivity = 80.00%; specificity = 65.10%). Prediction was significantly improved with addition of the mean diffusivity signature (area under the curve = 0.83; sensitivity = 85.00%; specificity = 77.85%; P = 0.007), but not with addition of the thickness/volume signature. A model including both signatures did not improve prediction over a model with only the mean diffusivity signature. Results held up after adjusting for predicted brain age difference scores. The novel mean diffusivity signature was limited by being yoked to the thickness/volume signature weightings. An independently derived mean diffusivity signature may thus provide even stronger prediction. The young age of the sample at baseline is particularly notable. Given that the brain signatures were examined when participants were only in their 50 s, our results suggest a promising step towards improving very early identification of Alzheimer's disease risk and the potential value of mean diffusivity and/or multimodal brain signatures.
Collapse
Affiliation(s)
- McKenna E Williams
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeremy A Elman
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Linda K McEvoy
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo 0316, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0372, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Graham M L Eglit
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, CA 92093, USA
| | - Christine Fennema-Notestine
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Carol E Franz
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Donald J Hagler
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sean N Hatton
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neuroscience, University of California San Diego, La Jolla, CA 92093, USA
| | - Richard L Hauger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Amy J Jak
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Mark W Logue
- National Center for PTSD: Behavioral Science Division, VA Boston Healthcare System, Boston, MA 02130, USA
- Department of Psychiatry and the Biomedical Genetics Section, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02212, USA
| | - Ruth E McKenzie
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
- School of Education and Social Policy, Merrimack College, North Andover, MA 01845, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Matthew S Panizzon
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Olivia K Puckett
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Chandra A Reynolds
- Department of Psychology, University of California Riverside, Riverside, CA 92521, USA
| | - Mark Sanderson-Cimino
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Rosemary Toomey
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02212, USA
| | - Xin M Tu
- Family Medicine and Public Health, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathan Whitsel
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Hong Xian
- Department of Biostatistics, St. Louis University, St. Louis, MO 63103, USA
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA 92093, USA
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
- Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA 92093, USA
| |
Collapse
|
11
|
Rahmani F, Sanjari Moghaddam H, Aarabi MH. Intact microstructure of the right corticostriatal pathway predicts creative ability in healthy adults. Brain Behav 2020; 10:e01895. [PMID: 33063472 PMCID: PMC7749564 DOI: 10.1002/brb3.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Creativity is one of the most complex functions of the human brain. The corticostriatal pathways have been implicated in creative thinking, yet few studies have addressed the microstructural underpinnings of creative ability, especially those related to the corticostriatal dopaminergic circuitry. We hypothesized that performance in creativity tests can be predicted based on diffusion metrics of the corticostriatal pathways and basal ganglia. METHODS A total of 37 healthy adults were included. Neuropsychological tests of creativity, including the alternative uses task (AUT), test of creative imagery abilities (TCIA), remote associates test (RAT), and creative achievement questionnaire (CAQ), as well as diffusion MRI data were acquired for each participant. RESULTS We demonstrated an independent effect of TCIA originality and TCIA transformativeness subscores, and RAT score in predicting the mean diffusivity (MD), mean axial diffusivity (AD), mean fractional anisotropy (FA), and mean generalized FA of the right corticostriatal pathway. We also observed independent effects of AUT elaboration subscore in predicting the AD of the right substantia nigra, and radial diffusivity (RD) of the right globus pallidus. CONCLUSION Our results put a further spin on the "creative right brain" notion and question the presence of high-creative and low-creative networks in the brain.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | | |
Collapse
|
12
|
Fan CC, Smeland OB, Schork AJ, Chen CH, Holland D, Lo MT, Sundar VS, Frei O, Jernigan TL, Andreassen OA, Dale AM. Beyond heritability: improving discoverability in imaging genetics. Hum Mol Genet 2019. [PMID: 29522091 DOI: 10.1093/hmg/ddy082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Structural neuroimaging measures based on magnetic resonance imaging have been at the forefront of imaging genetics. Global efforts to ensure homogeneity of measurements across study sites have enabled large-scale imaging genetic projects, accumulating nearly 50K samples for genome-wide association studies (GWAS). However, not many novel genetic variants have been identified by these GWAS, despite the high heritability of structural neuroimaging measures. Here, we discuss the limitations of using heritability as a guidance for assessing statistical power of GWAS, and highlight the importance of discoverability-which is the power to detect genetic variants for a given phenotype depending on its unique genomic architecture and GWAS sample size. Further, we present newly developed methods that boost genetic discovery in imaging genetics. By redefining imaging measures independent of traditional anatomical conventions, it is possible to improve discoverability, enabling identification of more genetic effects. Moreover, by leveraging enrichment priors from genomic annotations and independent GWAS of pleiotropic traits, we can better characterize effect size distributions, and identify reliable and replicable loci associated with structural neuroimaging measures. Statistical tools leveraging novel insights into the genetic discoverability of human traits, promises to accelerate the identification of genetic underpinnings underlying brain structural variation.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew J Schork
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Capital Region of Denmark, Denmark
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Dominic Holland
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Min-Tzu Lo
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - V S Sundar
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Yrondi A, Nemmi F, Billoux S, Giron A, Sporer M, Taib S, Salles J, Pierre D, Thalamas C, Schmitt L, Péran P, Arbus C. Significant Decrease in Hippocampus and Amygdala Mean Diffusivity in Treatment-Resistant Depression Patients Who Respond to Electroconvulsive Therapy. Front Psychiatry 2019; 10:694. [PMID: 31607967 PMCID: PMC6761799 DOI: 10.3389/fpsyt.2019.00694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Introduction: The hippocampus plays a key role in depressive disorder, and the amygdala is involved in depressive disorder through the key role that it plays in emotional regulation. Electroconvulsive therapy (ECT) may alter the microstructure of these two regions. Since mean diffusivity (MD), is known to be an indirect marker of microstructural integrity and can be derived from diffusion tensor imaging (DTI) scans, we aim to test the hypothesis that treatment-resistant depression (TRD) patients undergoing bilateral (BL) ECT exhibit a decrease of MD in their hippocampus and amygdala. Methods: Patients, between 50 and 70 years of age, diagnosed with TRD were recruited from the University Hospital of Toulouse and assessed clinically (Hamilton Depression Rating Scale, HAM-D) and by DTI scans at three time points: baseline, V2 (during treatment), and V3 within 1 week of completing ECT. Results: We included 15 patients, who were all responders. The left and right hippocampi and the left amygdala showed a significant decrease in MD at V3, compared to baseline [respectively: β = -2.78, t = -1.97, p = 0.04; β = -2.56, t = -2, p = 0.04; β = -2.5, t = -2.3, p = 0.04, false discovery rate (FDR) corrected]. MD did not decrease in the right amygdala. Only the left amygdala was significantly associated with a reduction in HAM-D (ρ = 0.55, p = 0.049, FDR corrected). Conclusion: MD is an indirect microstructural integrity marker, which decreases in the hippocampus and the left amygdala, during BL ECT in TRD populations. This could be interpreted as a normalization of microstructural integrity in these structures.
Collapse
Affiliation(s)
- Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Federico Nemmi
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Sophie Billoux
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Service de médicine légale, CHU Toulouse, Toulouse, France
| | - Aurélie Giron
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France.,Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Marie Sporer
- Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Simon Taib
- Service de Psychiatrie et de Psychologie Médicale, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Juliette Salles
- Service de Psychiatrie et de Psychologie Médicale, CHU de Toulouse, Hospital Purpan, Toulouse, France
| | - Damien Pierre
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, Toulouse, France
| | - Claire Thalamas
- CIC 1436, Service de Pharmacologie Clinique, CHU de Toulouse, INSERM, Université de Toulouse, UPS, Toulouse, France
| | - Laurent Schmitt
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, Toulouse, France
| | - Patrice Péran
- ToNIC, Toulouse NeuroImaging Center, University of Toulouse, Inserm, UPS, Toulouse, France
| | - Christophe Arbus
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU Toulouse, Hospital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|