1
|
Cainelli E, Stramucci G, Bisiacchi P. A light in the darkness: Early phases of development and the emergence of cognition. Dev Cogn Neurosci 2025; 72:101527. [PMID: 39933251 PMCID: PMC11869870 DOI: 10.1016/j.dcn.2025.101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
During the prenatal period, the major brain development milestones are posed and calibrated through different mechanisms, among which endogenous activity, that prepares the "system" to face the external environment. However, the specific nature of the human nervous system, intended for brain plasticity that is varied by brain area and prolonged over time, requires much time for environmental experiences to shape the cerebral circuitries. Therefore, the neonate completely depends on the caregiver, and during the first months of postnatal life, it exhibits a transitory and limited repertoire of behaviors and skills that favors the mother in her new role. This transitory condition will gradually give way to more mature competencies, the milestones of which are posed within 2 years of age. This review takes a new perspective on early development and attempts to trace the remarkable changes from in-utero period to the second year of postnatal life, posing a bridge between the neurobiological substrate and behavioral development. We based our work on the "normal" development, pointing out the risks inherent in any development process.
Collapse
Affiliation(s)
- Elisa Cainelli
- Department of General Psychology, University of Padova, Padova 35131, Italy.
| | - Giulia Stramucci
- Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, University of Siena, Italy; School of Advanced Studies, Center of Neuroscience, University of Camerino, Camerino, MC, Italy; Siena Brain Investigation & Neuromodulation Lab (Si-BIN Lab), Unit of Neurology and Clinical Neurophysiology, Department of Medicine, Surgery and Neuroscience, Camerino, MC, Italy.
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padova, Padova 35131, Italy; Padova Neuroscience Center, PNC, Padova 35131, Italy.
| |
Collapse
|
2
|
Mehraram R, Kries J, De Clercq P, Vandermosten M, Francart T. EEG reveals brain network alterations in chronic aphasia during natural speech listening. Sci Rep 2025; 15:2441. [PMID: 39828755 PMCID: PMC11743778 DOI: 10.1038/s41598-025-86192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Aphasia is a common consequence of a stroke which affects language processing. In search of an objective biomarker for aphasia, we used EEG to investigate how functional network patterns in the cortex are affected in persons with post-stroke chronic aphasia (PWA) compared to healthy controls (HC) while they are listening to a story. EEG was recorded from 22 HC and 27 PWA while they listened to a 25-min-long story. Functional connectivity between scalp regions was measured with the weighted phase lag index. The Network-Based Statistics toolbox was used to detect altered network patterns and to investigate correlations with behavioural tests within the aphasia group. Differences in network geometry were assessed by means of graph theory and a targeted node-attack approach. Group-classification accuracy was obtained with a support vector machine classifier. PWA showed stronger inter-hemispheric connectivity compared to HC in the theta-band (4.5-7 Hz), whilst a weaker subnetwork emerged in the low-gamma band (30.5-49 Hz). Two subnetworks correlated with semantic fluency in PWA respectively in delta- (1-4 Hz) and low-gamma-bands. In the theta-band network, graph alterations in PWA emerged at both local and global level, whilst only local changes were found in the low-gamma-band network. Network metrics discriminated PWA and HC with AUC = 83%. Overall, we demonstrate the potential of EEG-network metrics for the development of informative biomarkers to assess natural speech processing in chronic aphasia. We hypothesize that the detected alterations reflect compensatory mechanisms associated with recovery.
Collapse
Affiliation(s)
- Ramtin Mehraram
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium.
| | - Jill Kries
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Pieter De Clercq
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Maaike Vandermosten
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
3
|
Miraglia F, Cacciotti A, Vecchio F, Scarpelli S, Gorgoni M, De Gennaro L, Rossini PM. EEG brain networks modulation during sleep onset: the effects of aging. GeroScience 2024:10.1007/s11357-024-01473-w. [PMID: 39714568 DOI: 10.1007/s11357-024-01473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of the present study is to investigate differences in brain networks modulation during the pre- and post-sleep onset period, both within and between two groups of young and older individuals. Thirty-six healthy elderly and 40 young subjects participated. EEG signals were recorded during pre- and post-sleep onset periods and functional connectivity analysis, specifically focusing on the small world (SW) index, applied to EEG data (i.e., frequency bands) was examined. Significant differences in SW values were found between the pre-sleep and post-sleep onset phases in both young and older groups, with a reduction in the SW index in the theta band common to both groups. Additionally, an increase in the SW index in the beta band was exclusive to the elderly group during the post-sleep onset period, while an increase in the sigma band was exclusive to the young group. Furthermore, differences between the young and elderly groups were found during both phases, including a decrease in the SW index within the delta band, an increment in the sigma and beta bands in the elderly compared to the young group during the pre-sleep onset period, and a notable absence of sigma band modulation in the elderly group during the post-sleep onset condition. These findings provide insights into age-related changes in sleep-related brain network dynamics and their potential impact on sleep quality and cognitive functions, prompting interventions aimed at supporting healthy aging and addressing age-related cognitive decline.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | | | | | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| |
Collapse
|
4
|
Annarumma L, Reda F, Scarpelli S, D'Atri A, Alfonsi V, Salfi F, Viselli L, Pazzaglia M, De Gennaro L, Gorgoni M. Spatiotemporal EEG dynamics of the sleep onset process in preadolescence. Sleep Med 2024; 119:438-450. [PMID: 38781667 DOI: 10.1016/j.sleep.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND During preadolescence the sleep electroencephalography undergoes massive qualitative and quantitative modifications. Despite these relevant age-related peculiarities, the specific EEG pattern of the wake-sleep transition in preadolescence has not been exhaustively described. METHODS The aim of the present study is to characterize regional and temporal electrophysiological features of the sleep onset (SO) process in a group of 23 preadolescents (9-14 years) and to compare the topographical pattern of slow wave activity and delta/beta ratio of preadolescents with the EEG pattern of young adults. RESULTS Results showed in preadolescence the same dynamics known for adults, but with peculiarities in the delta and beta activity, likely associated with developmental cerebral modifications: the delta power showed a widespread increase during the SO with central maxima, and the lower bins of the beta activity showed a power increase after SO. Compared to adults, preadolescents during the SO exhibited higher delta power only in the slowest bins of the band: before SO slow delta activity was higher in prefrontal, frontal and occipital areas in preadolescents, and, after SO the younger group had higher slow delta activity in occipital areas. In preadolescents delta/beta ratio was higher in more posterior areas both before and after the wake-sleep transition and, after SO, preadolescents showed also a lower delta/beta ratio in frontal areas, compared to adults. CONCLUSION Results point to a general higher homeostatic drive for the developing areas, consistently with plastic-related maturational modifications, that physiologically occur during preadolescence.
Collapse
Affiliation(s)
- Ludovica Annarumma
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy
| | - Flaminia Reda
- SIPRE, Società Italiana di psicoanalisi Della Relazione, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Aurora D'Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Federico Salfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Lorenzo Viselli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Mariella Pazzaglia
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy
| | - Maurizio Gorgoni
- Body and Action Lab, IRCCS Fondazione Santa Lucia, Via Ardeatina 306, 00179, Rome, Italy; Department of Psychology, Sapienza University of Rome, Via Dei Marsi 78, 00185, Rome, Italy.
| |
Collapse
|
5
|
Lacaux C, Strauss M, Bekinschtein TA, Oudiette D. Embracing sleep-onset complexity. Trends Neurosci 2024; 47:273-288. [PMID: 38519370 DOI: 10.1016/j.tins.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/24/2024]
Abstract
Sleep is crucial for many vital functions and has been extensively studied. By contrast, the sleep-onset period (SOP), often portrayed as a mere prelude to sleep, has been largely overlooked and remains poorly characterized. Recent findings, however, have reignited interest in this transitional period and have shed light on its neural mechanisms, cognitive dynamics, and clinical implications. This review synthesizes the existing knowledge about the SOP in humans. We first examine the current definition of the SOP and its limits, and consider the dynamic and complex electrophysiological changes that accompany the descent to sleep. We then describe the interplay between internal and external processing during the wake-to-sleep transition. Finally, we discuss the putative cognitive benefits of the SOP and identify novel directions to better diagnose sleep-onset disorders.
Collapse
Affiliation(s)
- Célia Lacaux
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Institut du Cerveau (Paris Brain Institute), Institut du Cerveau et de la Moelle Épinière (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris 75013, France.
| | - Mélanie Strauss
- Neuropsychology and Functional Neuroimaging Research Group (UR2NF), Center for Research in Cognition and Neurosciences (CRCN), Université Libre de Bruxelles, B-1050 Brussels, Belgium; Departments of Neurology, Psychiatry, and Sleep Medicine, Hôpital Universitaire de Bruxelles, Site Erasme, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Tristan A Bekinschtein
- Cambridge Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Delphine Oudiette
- Institut du Cerveau (Paris Brain Institute), Institut du Cerveau et de la Moelle Épinière (ICM), Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris 75013, France; Assistance Publique - Hopitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Service des Pathologies du Sommeil, National Reference Centre for Narcolepsy, Paris 75013, France.
| |
Collapse
|
6
|
Santamaria L, Koopman ACM, Bekinschtein T, Lewis P. Effects of Targeted Memory Reactivation on Cortical Networks. Brain Sci 2024; 14:114. [PMID: 38391689 PMCID: PMC10886727 DOI: 10.3390/brainsci14020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Sleep is a complex physiological process with an important role in memory consolidation characterised by a series of spatiotemporal changes in brain activity and connectivity. Here, we investigate how task-related responses differ between pre-sleep wake, sleep, and post-sleep wake. To this end, we trained participants on a serial reaction time task using both right and left hands using Targeted Memory Reactivation (TMR), in which auditory cues are associated with learned material and then re-presented in subsequent wake or sleep periods in order to elicit memory reactivation. The neural responses just after each cue showed increased theta band connectivity between frontal and other cortical regions, as well as between hemispheres, in slow wave sleep compared to pre- or post-sleep wake. This pattern was consistent across the cues associated with both right- and left-handed movements. We also searched for hand-specific connectivity and found that this could be identified in within-hemisphere connectivity after TMR cues during sleep and post-sleep sessions. The fact that we could identify which hand had been cued during sleep suggests that these connectivity measures could potentially be used to determine how successfully memory is reactivated by our manipulation. Collectively, these findings indicate that TMR modulates the brain cortical networks showing clear differences between wake and sleep connectivity patterns.
Collapse
Affiliation(s)
| | | | | | - Penelope Lewis
- School of Psychology, Cardiff University, Wales CF10 3AT, UK
| |
Collapse
|
7
|
Fan JM, Kudo K, Verma P, Ranasinghe KG, Morise H, Findlay AM, Vossel K, Kirsch HE, Raj A, Krystal AD, Nagarajan SS. Cortical Synchrony and Information Flow during Transition from Wakefulness to Light Non-Rapid Eye Movement Sleep. J Neurosci 2023; 43:8157-8171. [PMID: 37788939 PMCID: PMC10697405 DOI: 10.1523/jneurosci.0197-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/07/2023] [Accepted: 08/06/2023] [Indexed: 10/05/2023] Open
Abstract
Sleep is a highly stereotyped phenomenon, requiring robust spatiotemporal coordination of neural activity. Understanding how the brain coordinates neural activity with sleep onset can provide insights into the physiological functions subserved by sleep and the pathologic phenomena associated with sleep onset. We quantified whole-brain network changes in synchrony and information flow during the transition from wakefulness to light non-rapid eye movement (NREM) sleep, using MEG imaging in a convenient sample of 14 healthy human participants (11 female; mean 63.4 years [SD 11.8 years]). We furthermore performed computational modeling to infer excitatory and inhibitory properties of local neural activity. The transition from wakefulness to light NREM was identified to be encoded in spatially and temporally specific patterns of long-range synchrony. Within the delta band, there was a global increase in connectivity from wakefulness to light NREM, which was highest in frontoparietal regions. Within the theta band, there was an increase in connectivity in fronto-parieto-occipital regions and a decrease in temporal regions from wakefulness to Stage 1 sleep. Patterns of information flow revealed that mesial frontal regions receive hierarchically organized inputs from broad cortical regions upon sleep onset, including direct inflow from occipital regions and indirect inflow via parieto-temporal regions within the delta frequency band. Finally, biophysical neural mass modeling demonstrated changes in the anterior-to-posterior distribution of cortical excitation-to-inhibition with increased excitation-to-inhibition model parameters in anterior regions in light NREM compared with wakefulness. Together, these findings uncover whole-brain corticocortical structure and the orchestration of local and long-range, frequency-specific cortical interactions in the sleep-wake transition.SIGNIFICANCE STATEMENT Our work uncovers spatiotemporal cortical structure of neural synchrony and information flow upon the transition from wakefulness to light non-rapid eye movement sleep. Mesial frontal regions were identified to receive hierarchically organized inputs from broad cortical regions, including both direct inputs from occipital regions and indirect inputs via the parieto-temporal regions within the delta frequency range. Biophysical neural mass modeling revealed a spatially heterogeneous, anterior-posterior distribution of cortical excitation-to-inhibition. Our findings shed light on the orchestration of local and long-range cortical neural structure that is fundamental to sleep onset, and support an emerging view of cortically driven regulation of sleep homeostasis.
Collapse
Affiliation(s)
- Joline M Fan
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan 243-0460
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Kamalini G Ranasinghe
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
| | - Hirofumi Morise
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
- Medical Imaging Center, Ricoh Company, Ltd., Kanazawa, Japan 243-0460
| | - Anne M Findlay
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Keith Vossel
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
- Mary S. Easton Center for Alzheimer's Disease Research, Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Heidi E Kirsch
- Department of Neurology, University of California-San Francisco, San Francisco, California 94143
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| | - Andrew D Krystal
- Department of Psychiatry, University of California-San Francisco, San Francisco, California 94143
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California-San Francisco, San Francisco, California 94143
| |
Collapse
|
8
|
Yang S, Wu Y, Sun L, Lu Y, Qian K, Kuang H, Meng J, Wu Y. Abnormal Topological Organization of Structural Covariance Networks in Patients with Temporal Lobe Epilepsy Comorbid Sleep Disorder. Brain Sci 2023; 13:1493. [PMID: 37891861 PMCID: PMC10605209 DOI: 10.3390/brainsci13101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE The structural covariance network (SCN) alterations in patients with temporal lobe epilepsy and comorbid sleep disorder (PWSD) remain poorly understood. This study aimed to investigate changes in SCNs using structural magnetic resonance imaging. METHODS Thirty-four PWSD patients, thirty-three patients with temporal lobe epilepsy without sleep disorder (PWoSD), and seventeen healthy controls underwent high-resolution structural MRI imaging. Subsequently, SCNs were constructed based on gray matter volume and analyzed via graph-theoretical approaches. RESULTS PWSD exhibited significantly increased clustering coefficients, shortest path lengths, transitivity, and local efficiency. In addition, various distributions and numbers of SCN hubs were identified in PWSD. Furthermore, PWSD networks were less robust to random and target attacks than those of healthy controls and PWoSD patients. CONCLUSION This study identifies aberrant SCN changes in PWSD that may be related to the susceptibility of patients with epilepsy to sleep disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
9
|
Biabani N, Birdseye A, Higgins S, Delogu A, Rosenzweig J, Cvetkovic Z, Nesbitt A, Drakatos P, Steier J, Kumari V, O’Regan D, Rosenzweig I. The neurophysiologic landscape of the sleep onset: a systematic review. J Thorac Dis 2023; 15:4530-4543. [PMID: 37691675 PMCID: PMC10482638 DOI: 10.21037/jtd-23-325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 09/12/2023]
Abstract
Background The sleep onset process is an ill-defined complex process of transition from wakefulness to sleep, characterized by progressive modifications at the subjective, behavioural, cognitive, and physiological levels. To this date, there is no international consensus which could aid a principled characterisation of this process for clinical research purposes. The current review aims to systemise the current knowledge about the underlying mechanisms of the natural heterogeneity of this process. Methods In this systematic review, studies investigating the process of the sleep onset from 1970 to 2022 were identified using electronic database searches of PsychINFO, MEDLINE, and Embase. Results A total of 139 studies were included; 110 studies in healthy participants and 29 studies in participants with sleep disorders. Overall, there is a limited consensus across a body of research about what distinct biomarkers of the sleep onset constitute. Only sparse data exists on the physiology, neurophysiology and behavioural mechanisms of the sleep onset, with majority of studies concentrating on the non-rapid eye movement stage 2 (NREM 2) as a potentially better defined and a more reliable time point that separates sleep from the wake, on the sleep wake continuum. Conclusions The neurophysiologic landscape of sleep onset bears a complex pattern associated with a multitude of behavioural and physiological markers and remains poorly understood. The methodological variation and a heterogenous definition of the wake-sleep transition in various studies to date is understandable, given that sleep onset is a process that has fluctuating and ill-defined boundaries. Nonetheless, the principled characterisation of the sleep onset process is needed which will allow for a greater conceptualisation of the mechanisms underlying this process, further influencing the efficacy of current treatments for sleep disorders.
Collapse
Affiliation(s)
- Nazanin Biabani
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Adam Birdseye
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sean Higgins
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Alessio Delogu
- James Black Centre, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
| | - Jan Rosenzweig
- Department of Engineering, King’s College London, London, UK
| | - Zoran Cvetkovic
- Department of Engineering, King’s College London, London, UK
| | - Alexander Nesbitt
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Department of Neurology, Guy’s Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Panagis Drakatos
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Joerg Steier
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Veena Kumari
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Centre for Cognitive Neuroscience (CCN), College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - David O’Regan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, UK
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Zanus C, Miladinović A, De Dea F, Skabar A, Stecca M, Ajčević M, Accardo A, Carrozzi M. Sleep Spindle-Related EEG Connectivity in Children with Attention-Deficit/Hyperactivity Disorder: An Exploratory Study. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1244. [PMID: 37761543 PMCID: PMC10530036 DOI: 10.3390/e25091244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurobehavioral disorder with known brain abnormalities but no biomarkers to support clinical diagnosis. Recently, EEG analysis methods such as functional connectivity have rekindled interest in using EEG for ADHD diagnosis. Most studies have focused on resting-state EEG, while connectivity during sleep and spindle activity has been underexplored. Here we present the results of a preliminary study exploring spindle-related connectivity as a possible biomarker for ADHD. We compared sensor-space connectivity parameters in eight children with ADHD and nine age/sex-matched healthy controls during sleep, before, during, and after spindle activity in various frequency bands. All connectivity parameters were significantly different between the two groups in the delta and gamma bands, and Principal Component Analysis (PCA) in the gamma band distinguished ADHD from healthy subjects. Cluster coefficient and path length values in the sigma band were also significantly different between epochs, indicating different spindle-related brain activity in ADHD.
Collapse
Affiliation(s)
- Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Aleksandar Miladinović
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Federica De Dea
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
- Department of Life Science, University of Trieste, 34127 Trieste, Italy
| | - Aldo Skabar
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Matteo Stecca
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| | - Miloš Ajčević
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Agostino Accardo
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy (M.A.); (A.A.)
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”, 34137 Trieste, Italy; (C.Z.); (M.C.)
| |
Collapse
|
11
|
Sun Y, Xu Y, Lv J, Liu Y. Self- and Situation-Focused Reappraisal are not homogeneous: Evidence from behavioral and brain networks. Neuropsychologia 2022; 173:108282. [PMID: 35660514 DOI: 10.1016/j.neuropsychologia.2022.108282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022]
Abstract
Reappraisal is an effective emotion regulation strategy which can be divided into self- and situation-focused subtypes. Previous studies have produced inconsistent findings on the moderating effects and neural mechanisms of reappraisal; thus, further research is necessary to clarify these inconsistencies. In this study, a total of 44 participants were recruited and randomly assigned to two groups. 23 participants were assigned to the self-focused group, while 21 participants were assigned to the situation-focused group. The participants' resting EEG data were collected for 6 minutes before the experiment began, followed by an emotional regulation task. During this task, participants were asked to view emotion-provoking images under four emotion regulation conditions (View, Watch, Increase, and Decrease). Late positive potential (LPP) was obtained when these emotional images were observed. LPP is an effective physiological indicator of emotion regulation, enabling this study to explore emotion regulation under different reappraisal strategies, as well as the functional connectivity and node efficiency within the brain. It was found that, in terms of the effect on emotion regulation, situation-focused reappraisal was significantly better than self-focused reappraisal at enhancing the valence of negative emotion, while self-focused reappraisal was significantly better than situation-focused reappraisal at increasing the arousal of negative emotion. In terms of neural mechanisms, multiple brain regions such as the anterior cingulate cortex, the frontal lobe, the parahippocampal gyrus, parts of the temporal lobe, and parts of the parietal lobe were involved in both reappraisal processes. In addition, there were some differences in brain regions associated with different forms of cognitive reappraisal. Self-focused reappraisal was associated with the posterior cingulate gyrus, fusiform gyrus, and lingual gyrus, and situation-focused reappraisal was associated with the parietal lobule, anterior central gyrus, and angular gyrus. In conclusion, this research demonstrates that self- and situation-focused reappraisal are not homogenous in terms of their effects and neural mechanisms and clarifies the uncertainties over their regulatory effects. Different types of reappraisal activate different brain regions when used, and the functional connectivity or node efficiency of these brain regions seems to be a suitable indicator for assessing the effects of different types of reappraisal.
Collapse
Affiliation(s)
- Yan Sun
- School of Psychology, Liaoning Normal University, Dalian, 116029, China
| | - Yuanyuan Xu
- School of Psychology, Liaoning Normal University, Dalian, 116029, China
| | - Jiaojiao Lv
- School of Psychology, Liaoning Normal University, Dalian, 116029, China; Department of Psychology, Shanxi Datong University, Datong, 037009, China
| | - Yan Liu
- School of Psychology, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
12
|
Zheng R, Wang Z, He Y, Zhang J. EEG-based brain functional connectivity representation using amplitude locking value for fatigue-driving recognition. Cogn Neurodyn 2022; 16:325-336. [PMID: 35401867 PMCID: PMC8934897 DOI: 10.1007/s11571-021-09714-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/15/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022] Open
Abstract
It has been shown that brain functional networks constructed from electroencephalographic signals (EEG) continuously change topology as brain fatigue increases, and extracting the topological properties of the network can characterize the degree of brain fatigue. However, the traditional brain function network construction process often selects only the amplitude or phase components of the signal to measure the relationship between brain regions, and the use of a single component of the signal to construct a brain function network for analysis is rather one-sided. Therefore, we propose a method of functional synchronization analysis of brain regions. This method takes the EEG signal based on empirical modal decomposition (EMD) to obtain multiple intrinsic modal components (IMF) and inputs them into the Hilbert transform to obtain the instantaneous amplitude, and then calculates the amplitude locking value (ALV) to measure the synchronization relationship between all pairs of channels. The topological properties of the brain functional network are extracted to classify awake and fatigue states. The brain functional network is constructed based on the adjacency matrix of each waveform obtained from the ALV between all pairs of channels to realize the synchronization analysis between brain regions. Moreover, we achieved a satisfactory classification accuracy (82.84%) using the discriminative connection features in the Alpha band. In this study, we analyzed the functional network of ALV brain in fatigue and awake state, and the results showed that the connections between brain regions in fatigue state were significantly increased, and the connections between brain regions in the awake state were significantly decreased, and the information interaction between brain regions was more orderly and efficient.
Collapse
Affiliation(s)
- Ronglin Zheng
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Zhongmin Wang
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Yan He
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| | - Jie Zhang
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, 710121 China
| |
Collapse
|
13
|
Brain Connectivity and Graph Theory Analysis in Alzheimer’s and Parkinson’s Disease: The Contribution of Electrophysiological Techniques. Brain Sci 2022; 12:brainsci12030402. [PMID: 35326358 PMCID: PMC8946843 DOI: 10.3390/brainsci12030402] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/31/2022] Open
Abstract
In recent years, applications of the network science to electrophysiological data have increased as electrophysiological techniques are not only relatively low cost, largely available on the territory and non-invasive, but also potential tools for large population screening. One of the emergent methods for the study of functional connectivity in electrophysiological recordings is graph theory: it allows to describe the brain through a mathematic model, the graph, and provides a simple representation of a complex system. As Alzheimer’s and Parkinson’s disease are associated with synaptic disruptions and changes in the strength of functional connectivity, they can be well described by functional connectivity analysis computed via graph theory. The aim of the present review is to provide an overview of the most recent applications of the graph theory to electrophysiological data in the two by far most frequent neurodegenerative disorders, Alzheimer’s and Parkinson’s diseases.
Collapse
|
14
|
Fasiello E, Gorgoni M, Scarpelli S, Alfonsi V, Ferini Strambi L, De Gennaro L. Functional connectivity changes in insomnia disorder: A systematic review. Sleep Med Rev 2022; 61:101569. [PMID: 34902821 DOI: 10.1016/j.smrv.2021.101569] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/05/2023]
Abstract
Insomnia (ID) is the most common sleep disorder; however pathogenetic mechanisms underlying ID symptoms are not fully understood. Adopting a multifactorial view and considering ID a condition that involves interregional neuronal coordination would be useful to understand the ID pathophysiology. Functional connectivity (FC) may help to shed light on functional processes and neural correlates underlying ID symptoms. Despite a growing number of studies assessing FC anomalies, insight into ID pathophysiology is still fragmentary. This systematic review aims to search empirical evidence regarding FC changes in ID during resting-state. Thirty-one studies involving 1052 ID participants met the inclusion criteria for this review. Results suggested several associations between ID symptoms and impaired intra- and inter-hemispheric interactions of principal resting-state networks. Overall, evidence supported the hypothesis that a disrupted organization of the brain functional connectome characterizes ID, resulting in a decline in sleep, cognition, emotion, and memory. However, the wide methodological heterogeneity between reviewed studies and limitations in terms of study protocols and statistical approaches raised from this systematic review, makes it difficult to provide a univocal framework of ID pathophysiology. Future researches in this field should lead towards shared and rigorous search designs to ensure solid research evidence in the ID pathophysiology.
Collapse
Affiliation(s)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza - University of Rome, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, Sapienza - University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Luigi Ferini Strambi
- Vita-Salute San Raffaele University, Milan, Italy; Sleep Disorders Center, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza - University of Rome, Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
15
|
Lian J, Luo Y, Zheng M, Zhang J, Liang J, Wen J, Guo X. Sleep-Dependent Anomalous Cortical Information Interaction in Patients With Depression. Front Neurosci 2022; 15:736426. [PMID: 35069093 PMCID: PMC8772413 DOI: 10.3389/fnins.2021.736426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Depression is a prevalent mental illness with high morbidity and is considered the main cause of disability worldwide. Brain activity while sleeping is reported to be affected by such mental illness. To explore the change of cortical information flow during sleep in depressed patients, a delay symbolic phase transfer entropy of scalp electroencephalography signals was used to measure effective connectivity between cortical regions in various frequency bands and sleep stages. The patient group and the control group shared similar patterns of information flow between channels during sleep. Obvious information flows to the left hemisphere and to the anterior cortex were found. Moreover, the occiput tended to be the information driver, whereas the frontal regions played the role of the receiver, and the right hemispheric regions showed a stronger information drive than the left ones. Compared with healthy controls, such directional tendencies in information flow and the definiteness of role division in cortical regions were both weakened in patients in most frequency bands and sleep stages, but the beta band during the N1 stage was an exception. The computable sleep-dependent cortical interaction may provide clues to characterize cortical abnormalities in depressed patients and should be helpful for the diagnosis of depression.
Collapse
Affiliation(s)
- Jiakai Lian
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments, Sun Yat-sen University, Guangzhou, China
| | - Minglong Zheng
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiaxi Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Jiuxing Liang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jinfeng Wen
- Department of Psychology, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Xinwen Guo
- Department of Psychology, Guangdong 999 Brain Hospital, Guangzhou, China
| |
Collapse
|
16
|
Wang K, Zhang Y, Zhu Y, Luo Y. Associations between cortical activation and network interaction during sleep. Behav Brain Res 2022; 422:113751. [PMID: 35038462 DOI: 10.1016/j.bbr.2022.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/03/2022] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Cortical activation and network interaction, two characterizations of the cortical states, are separately studied in most previous studies. To further clarify the underlying mechanism, the association between these two indicators during sleep was investigated in this study. Twenty healthy individuals were enrolled and all of them underwent overnight polysomnography (PSG) recording. The relative spectral powers and the phase transfer entropy (PTE) of various frequency components were extracted from 6 electroencephalographic (EEG) channels, to assess the cortical activation and network interaction, respectively. Pearson correlation coefficient was employed to estimate their associations. The results suggested that there was a negative correlation between spectral power and phase transfer entropy in δ and α frequency bands during sleep. As the sleep deepened, an increased negative correlation in the δ frequency band was noted, but the negative correlation became less extreme in the α frequency band. The extremum of the correlation coefficient was noted in δ of N3, and α of Wake. Overall, this study provides a connection between these two cortical activity assessments, especially reveals the variable characteristics of different frequency components, which is conducive to better understand sleep state.
Collapse
Affiliation(s)
- Kejie Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yangting Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yongpeng Zhu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Luo
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
17
|
Mohammadi E, Makkiabadi B, Shamsollahi MB, Reisi P, Kermani S. Wavelet-Based Biphase Analysis of Brain Rhythms in Automated Wake-Sleep Classification. Int J Neural Syst 2021; 32:2250004. [PMID: 34967704 DOI: 10.1142/s0129065722500046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many studies in the field of sleep have focused on connectivity and coherence. Still, the nonstationary nature of electroencephalography (EEG) makes many of the previous methods unsuitable for automatic sleep detection. Time-frequency representations and high-order spectra are applied to nonstationary signal analysis and nonlinearity investigation, respectively. Therefore, combining wavelet and bispectrum, wavelet-based bi-phase (Wbiph) was proposed and used as a novel feature for sleep-wake classification. The results of the statistical analysis with emphasis on the importance of the gamma rhythm in sleep detection show that the Wbiph is more potent than coherence in the wake-sleep classification. The Wbiph has not been used in sleep studies before. However, the results and inherent advantages, such as the use of wavelet and bispectrum in its definition, suggest it as an excellent alternative to coherence. In the next part of this paper, a convolutional neural network (CNN) classifier was applied for the sleep-wake classification by Wbiph. The classification accuracy was 97.17% in nonLOSO and 95.48% in LOSO cross-validation, which is the best among previous studies on sleep-wake classification.
Collapse
Affiliation(s)
- Ehsan Mohammadi
- Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan, University of Medical Sciences, Isfahan, Iran
| | - Bahador Makkiabadi
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical, Sciences, Tehran, Iran
| | - Mohammad Bagher Shamsollahi
- Biomedical Signal and Image Processing Laboratory, Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Kermani
- Department of Bioelectrics and Biomedical Engineering, School of Advanced Technologies in Medicine, Isfahan, University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Gorgoni M, Scarpelli S, Annarumma L, D’Atri A, Alfonsi V, Ferrara M, De Gennaro L. The Regional EEG Pattern of the Sleep Onset Process in Older Adults. Brain Sci 2021; 11:1261. [PMID: 34679326 PMCID: PMC8534130 DOI: 10.3390/brainsci11101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
Healthy aging is characterized by macrostructural sleep changes and alterations of regional electroencephalographic (EEG) sleep features. However, the spatiotemporal EEG pattern of the wake-sleep transition has never been described in the elderly. The present study aimed to assess the topographical and temporal features of the EEG during the sleep onset (SO) in a group of 36 older participants (59-81 years). The topography of the 1 Hz bins' EEG power and the time course of the EEG frequency bands were assessed. Moreover, we compared the delta activity and delta/beta ratio between the older participants and a group of young adults. The results point to several peculiarities in the elderly: (a) the generalized post-SO power increase in the slowest frequencies did not include the 7 Hz bin; (b) the alpha power revealed a frequency-specific pattern of post-SO modifications; (c) the sigma activity exhibited only a slight post-SO increase, and its highest bins showed a frontotemporal power decrease. Older adults showed a generalized reduction of delta power and delta/beta ratio in both pre- and post-SO intervals compared to young adults. From a clinical standpoint, the regional EEG activity may represent a target for brain stimulation techniques to reduce SO latency and sleep fragmentation.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | | | - Aurora D’Atri
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Valentina Alfonsi
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.D.); (M.F.)
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (S.S.); (V.A.); (L.D.G.)
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| |
Collapse
|
19
|
Wang H, Liu X, Li J, Xu T, Bezerianos A, Sun Y, Wan F. Driving Fatigue Recognition With Functional Connectivity Based on Phase Synchronization. IEEE Trans Cogn Dev Syst 2021. [DOI: 10.1109/tcds.2020.2985539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Imperatori LS, Cataldi J, Betta M, Ricciardi E, Ince RAA, Siclari F, Bernardi G. Cross-participant prediction of vigilance stages through the combined use of wPLI and wSMI EEG functional connectivity metrics. Sleep 2021; 44:5998102. [PMID: 33220055 DOI: 10.1093/sleep/zsaa247] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 11/01/2020] [Indexed: 11/12/2022] Open
Abstract
Functional connectivity (FC) metrics describe brain inter-regional interactions and may complement information provided by common power-based analyses. Here, we investigated whether the FC-metrics weighted Phase Lag Index (wPLI) and weighted Symbolic Mutual Information (wSMI) may unveil functional differences across four stages of vigilance-wakefulness (W), NREM-N2, NREM-N3, and REM sleep-with respect to each other and to power-based features. Moreover, we explored their possible contribution in identifying differences between stages characterized by distinct levels of consciousness (REM+W vs. N2+N3) or sensory disconnection (REM vs. W). Overnight sleep and resting-state wakefulness recordings from 24 healthy participants (27 ± 6 years, 13F) were analyzed to extract power and FC-based features in six classical frequency bands. Cross-validated linear discriminant analyses (LDA) were applied to investigate the ability of extracted features to discriminate (1) the four vigilance stages, (2) W+REM vs. N2+N3, and (3) W vs. REM. For the four-way vigilance stages classification, combining features based on power and both connectivity metrics significantly increased accuracy relative to considering only power, wPLI, or wSMI features. Delta-power and connectivity (0.5-4 Hz) represented the most relevant features for all the tested classifications, in line with a possible involvement of slow waves in consciousness and sensory disconnection. Sigma-FC, but not sigma-power (12-16 Hz), was found to strongly contribute to the differentiation between states characterized by higher (W+REM) and lower (N2+N3) probabilities of conscious experiences. Finally, alpha-FC resulted as the most relevant FC-feature for distinguishing among wakefulness and REM sleep and may thus reflect the level of disconnection from the external environment.
Collapse
Affiliation(s)
- Laura Sophie Imperatori
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.,Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Jacinthe Cataldi
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Monica Betta
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy
| | | | - Robin A A Ince
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Giulio Bernardi
- MoMiLab, IMT School for Advanced Studies Lucca, Lucca, Italy.,Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
21
|
Brain network motifs are markers of loss and recovery of consciousness. Sci Rep 2021; 11:3892. [PMID: 33594110 PMCID: PMC7887248 DOI: 10.1038/s41598-021-83482-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 02/03/2021] [Indexed: 01/12/2023] Open
Abstract
Motifs are patterns of inter-connections between nodes of a network, and have been investigated as building blocks of directed networks. This study explored the re-organization of 3-node motifs during loss and recovery of consciousness. Nine healthy subjects underwent a 3-h anesthetic protocol while 128-channel electroencephalography (EEG) was recorded. In the alpha (8-13 Hz) band, 5-min epochs of EEG were extracted for: Baseline; Induction; Unconscious; 30-, 10- and 5-min pre-recovery of responsiveness; 30- and 180-min post-recovery of responsiveness. We constructed a functional brain network using the weighted and directed phase lag index, on which we calculated the frequency and topology of 3-node motifs. Three motifs (motifs 1, 2 and 5) were significantly present across participants and epochs, when compared to random networks (p < 0.05). The topology of motifs 1 and 5 changed significantly between responsive and unresponsive epochs (p-values < 0.01; Kendall's W = 0.664 (motif 1) and 0.529 (motif 5)). Motif 1 was constituted of long-range chain-like connections, while motif 5 was constituted of short-range, loop-like connections. Our results suggest that anesthetic-induced unconsciousness is associated with a topological re-organization of network motifs. As motif topological re-organization may precede (motif 5) or accompany (motif 1) the return of responsiveness, motifs could contribute to the understanding of the neural correlates of consciousness.
Collapse
|
22
|
Wu J, Zhou Q, Li J, Chen Y, Shao S, Xiao Y. Decreased resting-state alpha-band activation and functional connectivity after sleep deprivation. Sci Rep 2021; 11:484. [PMID: 33436726 PMCID: PMC7804319 DOI: 10.1038/s41598-020-79816-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Cognitive abilities are impaired by sleep deprivation and can be recovered when sufficient sleep is obtained. Changes in alpha-band oscillations are considered to be closely related to sleep deprivation. In this study, power spectrum, source localization and functional connectivity analyses were used to investigate the changes in resting-state alpha-band activity after normal sleep, sleep deprivation and recovery sleep. The results showed that the global alpha power spectrum decreased and source activation was notably reduced in the precuneus, posterior cingulate cortex, cingulate gyrus, and paracentral lobule after sleep deprivation. Functional connectivity analysis after sleep deprivation showed a weakened functional connectivity pattern in a widespread network with the precuneus and posterior cingulate cortex as the key nodes. Furthermore, the changes caused by sleep deprivation were reversed to a certain extent but not significantly after one night of sleep recovery, which may be due to inadequate time for recovery sleep. In conclusion, large-scale resting-state alpha-band activation and functional connectivity were weakened after sleep deprivation, and the inhibition of default mode network function with the precuneus and posterior cingulate cortex as the pivotal nodes may be an important cause of cognitive impairment. These findings provide new insight into the physiological response to sleep deprivation and determine how sleep deprivation disrupts brain alpha-band oscillations.
Collapse
Affiliation(s)
- Jintao Wu
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China ,grid.418516.f0000 0004 1791 7464National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094 China ,grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
| | - Qianxiang Zhou
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Jiaxuan Li
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Yang Chen
- grid.64939.310000 0000 9999 1211School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191 China
| | - Shuyu Shao
- grid.443259.d0000 0004 0632 4890School of Logistics, Beijing Wuzi University, Beijing, 101149 China
| | - Yi Xiao
- grid.418516.f0000 0004 1791 7464National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, 100094 China
| |
Collapse
|
23
|
Miraglia F, Tomino C, Vecchio F, Gorgoni M, De Gennaro L, Rossini PM. The brain network organization during sleep onset after deprivation. Clin Neurophysiol 2021; 132:36-44. [PMID: 33254098 DOI: 10.1016/j.clinph.2020.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/13/2020] [Accepted: 10/11/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Aim of the present study is to investigate the alterations of brain networks derived from EEG analysis in pre- and post-sleep onset conditions after 40 h of sleep deprivation (SD) compared to sleep onset after normal sleep in 39 healthy subjects. METHODS Functional connectivity analysis was made on electroencelographic (EEG) cortical sources of current density and small world (SW) index was evaluated in the EEG frequency bands (delta, theta, alpha, sigma and beta). RESULTS Comparing pre- vs. post-sleep onset conditions after a night of SD a significant decrease of SW in delta and theta bands in post-sleep onset condition was found together with an increase of SW in sigma band. Comparing pre-sleep onset after sleep SD versus pre-sleep onset after a night of normal sleep a decreased of SW index in beta band in pre-sleep onset in SD compared to pre-sleep onset in normal sleep was evidenced. CONCLUSIONS Brain functional network architecture is influenced by the SD in different ways. Brain networks topology during wake resting state needs to be further explored to reveal SD-related changes in order to prevent possible negative effects of SD on behaviour and brain function during wakefulness. SIGNIFICANCE The SW modulations as revealed by the current study could be used as an index of an altered balance between brain integration and segregation processes after SD.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy.
| | - Carlo Tomino
- Scientific Directorate, IRCCS San Raffaele Pisana, Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Dept. Neuroscience & Neurorehabilitation, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
24
|
Ghaderi AH, Baltaretu BR, Andevari MN, Bharmauria V, Balci F. Synchrony and Complexity in State-Related EEG Networks: An Application of Spectral Graph Theory. Neural Comput 2020; 32:2422-2454. [DOI: 10.1162/neco_a_01327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The brain may be considered as a synchronized dynamic network with several coherent dynamical units. However, concerns remain whether synchronizability is a stable state in the brain networks. If so, which index can best reveal the synchronizability in brain networks? To answer these questions, we tested the application of the spectral graph theory and the Shannon entropy as alternative approaches in neuroimaging. We specifically tested the alpha rhythm in the resting-state eye closed (rsEC) and the resting-state eye open (rsEO) conditions, a well-studied classical example of synchrony in neuroimaging EEG. Since the synchronizability of alpha rhythm is more stable during the rsEC than the rsEO, we hypothesized that our suggested spectral graph theory indices (as reliable measures to interpret the synchronizability of brain signals) should exhibit higher values in the rsEC than the rsEO condition. We performed two separate analyses of two different datasets (as elementary and confirmatory studies). Based on the results of both studies and in agreement with our hypothesis, the spectral graph indices revealed higher stability of synchronizability in the rsEC condition. The k-mean analysis indicated that the spectral graph indices can distinguish the rsEC and rsEO conditions by considering the synchronizability of brain networks. We also computed correlations among the spectral indices, the Shannon entropy, and the topological indices of brain networks, as well as random networks. Correlation analysis indicated that although the spectral and the topological properties of random networks are completely independent, these features are significantly correlated with each other in brain networks. Furthermore, we found that complexity in the investigated brain networks is inversely related to the stability of synchronizability. In conclusion, we revealed that the spectral graph theory approach can be reliably applied to study the stability of synchronizability of state-related brain networks.
Collapse
Affiliation(s)
- Amir Hossein Ghaderi
- Centre for Vision Research and Canada Vision: Science to Applications Program, York University, Toronto M3J 1P3, Canada, and Iranian Neuro-Wave Lab., No. 32, Vilashahr, Isfahan, Iran
| | | | | | - Vishal Bharmauria
- Centre for Vision Research, York University, Toronto M3J 1P3, Canada
| | - Fuat Balci
- Department of Psychology and Research Center for Translational Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
25
|
Pini L, Wennberg A, Mitolo M, Meneghello F, Burgio F, Semenza C, Venneri A, Mantini D, Vallesi A. Quality of sleep predicts increased frontoparietal network connectivity in patients with mild cognitive impairment. Neurobiol Aging 2020; 95:205-213. [DOI: 10.1016/j.neurobiolaging.2020.07.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/13/2020] [Accepted: 07/25/2020] [Indexed: 11/27/2022]
|
26
|
Approximate Entropy of Brain Network in the Study of Hemispheric Differences. ENTROPY 2020; 22:e22111220. [PMID: 33286988 PMCID: PMC7711834 DOI: 10.3390/e22111220] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Human brain, a dynamic complex system, can be studied with different approaches, including linear and nonlinear ones. One of the nonlinear approaches widely used in electroencephalographic (EEG) analyses is the entropy, the measurement of disorder in a system. The present study investigates brain networks applying approximate entropy (ApEn) measure for assessing the hemispheric EEG differences; reproducibility and stability of ApEn data across separate recording sessions were evaluated. Twenty healthy adult volunteers were submitted to eyes-closed resting EEG recordings, for 80 recordings. Significant differences in the occipital region, with higher values of entropy in the left hemisphere than in the right one, show that the hemispheres become active with different intensities according to the performed function. Besides, the present methodology proved to be reproducible and stable, when carried out on relatively brief EEG epochs but also at a 1-week distance in a group of 36 subjects. Nonlinear approaches represent an interesting probe to study the dynamics of brain networks. ApEn technique might provide more insight into the pathophysiological processes underlying age-related brain disconnection as well as for monitoring the impact of pharmacological and rehabilitation treatments.
Collapse
|
27
|
Gorgoni M, D'Atri A, Scarpelli S, Ferrara M, De Gennaro L. The electroencephalographic features of the sleep onset process and their experimental manipulation with sleep deprivation and transcranial electrical stimulation protocols. Neurosci Biobehav Rev 2020; 114:25-37. [PMID: 32343983 DOI: 10.1016/j.neubiorev.2020.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
The sleep onset (SO) process is characterized by gradual electroencephalographic (EEG) changes. The interest for the possibility to manipulate the electrophysiological pattern of the wake-sleep transition is recently growing. This review aims to describe the EEG modifications of the SO process in healthy humans and the evidence about their experimental manipulation. We provide an overview of the electrophysiological changes during the wake-sleep transition, considering several methods to study the EEG signals. We then describe the impact of sleep deprivation (SD) on the electrophysiology of SO. Finally, we discuss the evidence about the possibility to modulate the local EEG activity through transcranial current stimulation protocols with the aim to promote, hinder, or manipulate the electrophysiological mechanisms of the wake-sleep transition. The reviewed findings highlight the local nature of the EEG processes during the SO and their intensification and speedup after SD. The evidence about the possibility to non-invasively affect the EEG pattern of the wake-sleep transition may have important implications for clinical conditions that would benefit from its prevention or promotion.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy
| | - Aurora D'Atri
- Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy
| | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, Coppito (L'Aquila), Italy
| | - Luigi De Gennaro
- Department of Psychology, "Sapienza" University of Rome, 00185, Rome, Italy; IRCCS Santa Lucia Foundation, 00179, Rome, Italy.
| |
Collapse
|
28
|
Wang H, Sun Y, Lan F, Liu Y. Altered brain network topology related to working memory in internet addiction. J Behav Addict 2020; 9:325-338. [PMID: 32644933 PMCID: PMC8939409 DOI: 10.1556/2006.2020.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS The working memory (WM) ability of internet addicts and the topology underlying the WM processing in internet addiction (IA) are poorly understood. In this study, we employed a graph theoretical framework to characterize the topological properties of the IA brain network in the source cortical space during WM task. METHODS A sample of 24 subjects with IA and 23 matched healthy controls (HCs) performed visual 2-back task. Exact Low Resolution Electromagnetic Tomography was adopted to project the pre-processed EEG signals into source space. Subsequently, Lagged phase synchronization was calculated between all pairs of Brodmann areas, the graph theoretical approaches were then employed to estimate the brain topological properties of all participants during the WM task. RESULTS We found better WM behavioral performance in IA subjects compared with the HCs. Moreover, compared to the HC group, more integrated and hierarchical brain network was revealed in the IA subjects in alpha band. And altered regional centrality was mainly resided in frontal and limbic lobes. In addition, significant relationships between the IA severity and the significant altered graph indices were found. CONCLUSIONS In conclusion, these findings provide evidence to support the notion that altered topological configuration may underline changed WM function observed in IA.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Yan Sun
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Corresponding author’s e-mail:
| | - Fan Lan
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| | - Yan Liu
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| |
Collapse
|
29
|
Hein M, Lanquart JP, Loas G, Hubain P, Linkowski P. Alterations of neural network organization during REM sleep in women: implication for sex differences in vulnerability to mood disorders. Biol Sex Differ 2020; 11:22. [PMID: 32334638 PMCID: PMC7183628 DOI: 10.1186/s13293-020-00297-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/07/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Sleep plays an important role in vulnerability to mood disorders. However, despite the existence of sex differences in vulnerability to mood disorders, no study has yet investigated the sex effect on sleep network organization and its potential involvement in vulnerability to mood disorders. The aim of our study was to empirically investigate the sex effect on network organization during REM and slow-wave sleep using the effective connectivity measured by Granger causality. METHODS Polysomnographic data from 44 healthy individuals (28 men and 16 women) recruited prospectively were analysed. To obtain the 19 × 19 connectivity matrix of all possible pairwise combinations of electrodes by Granger causality method from our EEG data, we used the Toolbox MVGC multivariate Granger causality. The computation of the network measures was realized by importing these connectivity matrices into EEGNET Toolbox. RESULTS In men and women, all small-world coefficients obtained are compatible with a small-world network organization during REM and slow-wave sleep. However, compared to men, women present greater small-world coefficients during REM sleep as well as for all EEG bands during this sleep stage, which indicates the presence of a small-world network organization less marked during REM sleep as well as for all EEG bands during this sleep stage in women. In addition, in women, these small-world coefficients during REM sleep as well as for all EEG bands during this sleep stage are positively correlated with the presence of subclinical symptoms of depression. CONCLUSIONS Thus, the highlighting of these sex differences in network organization during REM sleep indicates the presence of differences in the global and local processing of information during sleep between women and men. In addition, this small-world network organization less marked during REM sleep appears to be a marker of vulnerability to mood disorders specific to women, which opens up new perspectives in understanding sex differences in the occurrence of mood disorders.
Collapse
Affiliation(s)
- Matthieu Hein
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium.
| | - Jean-Pol Lanquart
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Gwénolé Loas
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Philippe Hubain
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| | - Paul Linkowski
- Erasme Hospital, Department of Psychiatry and Sleep Laboratory, Université libre de Bruxelles, ULB, Route de Lennik, 808, 1070 Anderlecht, Brussels, Belgium
| |
Collapse
|
30
|
Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B, Granata G, Judica E, Cotelli M, Rossini PM. Small World Index in Default Mode Network Predicts Progression from Mild Cognitive Impairment to Dementia. Int J Neural Syst 2020; 30:2050004. [DOI: 10.1142/s0129065720500045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aim of this study was to explore the EEG functional connectivity in amnesic mild cognitive impairments (MCI) subjects with multidomain impairment in order to characterize the Default Mode Network (DMN) in converted MCI (cMCI), which converted to Alzheimer’s disease (AD), compared to stable MCI (sMCI) subjects. A total of 59 MCI subjects were recruited and divided -after appropriate follow-up- into cMCI or sMCI. They were further divided in MCI with linguistic domain (LD) impairment and in MCI with executive domain (ED) impairment. Small World (SW) index was measured as index of balance between integration and segregation brain processes. SW, computed restricting to nodes of DMN regions for all frequency bands, evaluated how they differ between MCI subgroups assessed through clinical and neuropsychological four-years follow-up. In addition, SW evaluated how this pattern differs between MCI with LD and MCI with ED. Results showed that SW index significantly decreased in gamma band in cMCI compared to sMCI. In cMCI with LD impairment, the SW index significantly decreased in delta band, while in cMCI with ED impairment the SW index decreased in delta and gamma bands and increased in alpha1 band. We propose that the DMN functional alterations in cognitive impairment could reflect an abnormal flow of brain information processing during resting state possibly associated to a status of pre-dementia.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
- Via Val Cannuta, 247, 00166 Rome, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Camillo Marra
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Davide Quaranta
- Memory Clinic, Fondazione Policlinico Universitario, A. Gemelli IRCCS, Rome, Italy
| | - Francesca Alù
- Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Benedetta Peroni
- Institute of Neurology, Area of Neuroscience, Catholic University of The Sacred Heart, Rome, Italy
| | - Giuseppe Granata
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elda Judica
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milano, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | |
Collapse
|
31
|
Jouzizadeh M, Khanbabaie R, Ghaderi AH. A spatial profile difference in electrical distribution of resting-state EEG in ADHD children using sLORETA. Int J Neurosci 2020; 130:917-925. [DOI: 10.1080/00207454.2019.1709843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mojtaba Jouzizadeh
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
| | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Amir Hossein Ghaderi
- Center for Vision Research, Lassonde Building, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
32
|
D’Atri A, Scarpelli S, Gorgoni M, Alfonsi V, Annarumma L, Giannini AM, Ferrara M, Ferlazzo F, Rossini PM, De Gennaro L. Bilateral Theta Transcranial Alternating Current Stimulation (tACS) Modulates EEG Activity: When tACS Works Awake It Also Works Asleep. Nat Sci Sleep 2019; 11:343-356. [PMID: 31819688 PMCID: PMC6875492 DOI: 10.2147/nss.s229925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/21/2019] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Recent studies demonstrate that 5-Hz bilateral transcranial alternating current stimulation (θ-tACS) on fronto-temporal areas affects resting EEG enhancing cortical synchronization, but it does not affect subjective sleepiness. This dissociation raises questions on the resemblance of this effect to the physiological falling asleep process. The current study aimed to evaluate the ability of fronto-temporal θ-tACS to promote sleep. SUBJECTS AND METHODS Twenty subjects (10 F/10 M; mean age: 24.60 ± 2.9 y) participated in a single-blind study consisting of two within-subject sessions (active/sham), one week apart in counterbalanced order. Stimulation effects on EEG were assessed during wake and post-stimulation nap. The final sample included participants who fell asleep in both sessions (n=17). RESULTS Group analyses on the whole sample reported no θ-tACS effects on subjective sleepiness and sleep measures, while a different scenario came to light by analysing data of responders to the stimulation (ie, subjects actually showing the expected increase of theta activity in the wake EEG after the θ-tACS, n=7). Responders reported a significant increase in subjective sleepiness during wakefulness after the active stimulation as compared to the sham. Moreover, the sleep after the θ-tACS compared to sham in this sub-group showed: (1) greater slow-wave activity (SWA); (2) SWA time-course revealing increases much larger as closer to the sleep onset; (3) stimulation-induced changes in SWA during sleep topographically associated to those in theta activity during wake. CONCLUSION Subjects who show the expected changes during wake after the stimulation also had a consistent pattern of changes during sleep. The enhancement of cortical synchronization by θ-tACS during wakefulness actually corresponds to increased sleep pressure, but it occurs only in some individuals. Thus, θ-tACS can enhance sleep, although individual factors to be further investigated affect the actual responsiveness to this treatment.
Collapse
Affiliation(s)
- Aurora D’Atri
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
- Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
| | - Maurizio Gorgoni
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
| | - Valentina Alfonsi
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
| | | | | | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Fabio Ferlazzo
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
| | - Paolo Maria Rossini
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
- Department Geriatrics, Neuroscience & Orthopaedics, Policlinic A. Gemelli Foundation-IRCCS, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome “Sapienza”, Rome, Italy
- Area of Neuroscience, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
33
|
Achermann P, Rusterholz T, Stucky B, Olbrich E. Oscillatory patterns in the electroencephalogram at sleep onset. Sleep 2019; 42:5512509. [PMID: 31173152 DOI: 10.1093/sleep/zsz096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Indexed: 11/13/2022] Open
Abstract
Falling asleep is a gradually unfolding process. We investigated the role of various oscillatory activities including sleep spindles and alpha and delta oscillations at sleep onset (SO) by automatically detecting oscillatory events. We used two datasets of healthy young males, eight with four baseline recordings, and eight with a baseline and recovery sleep after 40 h of sustained wakefulness. We analyzed the 2-min interval before SO (stage 2) and the five consecutive 2-min intervals after SO. The incidence of delta/theta events reached its maximum in the first 2-min episode after SO, while the frequency of them was continuously decreasing from stage 1 onwards, continuing over SO and further into deeper sleep. Interestingly, this decrease of the frequencies of the oscillations were not affected by increased sleep pressure, in contrast to the incidence which increased. We observed an increasing number of alpha events after SO, predominantly frontally, with their prevalence varying strongly across individuals. Sleep spindles started to occur after SO, with first an increasing then a decreasing incidence and a continuous decrease in their frequency. Again, the frequency of the spindles was not altered after sleep deprivation. Oscillatory events revealed derivation dependent aspects. However, these regional aspects were not specific of the process of SO but rather reflect a general sleep related phenomenon. No individual traits of SO features (incidence and frequency of oscillations) and their dynamics were observed. Delta/theta events are important features for the analysis of SO in addition to slow waves.
Collapse
Affiliation(s)
- Peter Achermann
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Rusterholz
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Benjamin Stucky
- Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
34
|
Fernandez Guerrero A, Achermann P. Brain dynamics during the sleep onset transition: An EEG source localization study. Neurobiol Sleep Circadian Rhythms 2019; 6:24-34. [PMID: 31236519 PMCID: PMC6586601 DOI: 10.1016/j.nbscr.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/25/2018] [Accepted: 11/26/2018] [Indexed: 01/27/2023] Open
Abstract
EEG source localization is an essential tool to reveal the cortical sources underlying brain oscillatory activity. We applied LORETA, a technique of EEG source localization, to identify the principal brain areas involved in the process of falling asleep (sleep onset, SO). We localized the contributing brain areas of activity in the classical frequency bands and tracked their temporal evolution (in 2-min intervals from 2 min prior to SO up to 10 min after SO) during a baseline night and subsequent recovery sleep after total sleep deprivation of 40 h. Delta activity (0.5–5 Hz) gradually increased both in baseline and recovery sleep, starting in frontal areas and finally involving the entire cortex. This increase was steeper in the recovery condition. The evolution of sigma activity (12–16 Hz) resembled an inverted U-shape in both conditions and the activity was most salient in the parietal cortex. In recovery, sigma activity reached its maximum faster than in baseline, but attained lower levels. Theta activity (5–8 Hz) increased with time in large parts of the occipital lobe (baseline and recovery) and in recovery involved additionally frontal areas. Changes in alpha activity (8–12 Hz) at sleep onset involved large areas of the cortex, whereas activity in the beta range (16–24 Hz) was restricted to small cortical areas. The dynamics in recovery could be considered as a “fast-forward version” of the one in baseline. Our results confirm that the process of falling asleep is neither spatially nor temporally a uniform process and that different brain areas might be falling asleep at a different speed potentially reflecting use dependent aspects of sleep regulation. LORETA is a valuable tool to reveal cortical sources of brain activity at sleep onset. Spectral bands had location dependent dynamics; brain areas fell asleep asynchronously BA 11 was the most relevant brain region associated with delta activity. Spindle dynamics resembled an inverted U-shape. During recovery from sleep deprivation capacity for spindle generation was reduced.
Collapse
Affiliation(s)
- Antonio Fernandez Guerrero
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.,The KEY Institute for Brain‑Mind Research, Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Imperatori LS, Betta M, Cecchetti L, Canales-Johnson A, Ricciardi E, Siclari F, Pietrini P, Chennu S, Bernardi G. EEG functional connectivity metrics wPLI and wSMI account for distinct types of brain functional interactions. Sci Rep 2019; 9:8894. [PMID: 31222021 PMCID: PMC6586889 DOI: 10.1038/s41598-019-45289-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/03/2019] [Indexed: 12/03/2022] Open
Abstract
The weighted Phase Lag Index (wPLI) and the weighted Symbolic Mutual Information (wSMI) represent two robust and widely used methods for MEG/EEG functional connectivity estimation. Interestingly, both methods have been shown to detect relative alterations of brain functional connectivity in conditions associated with changes in the level of consciousness, such as following severe brain injury or under anaesthesia. Despite these promising findings, it was unclear whether wPLI and wSMI may account for distinct or similar types of functional interactions. Using simulated high-density (hd-)EEG data, we demonstrate that, while wPLI has high sensitivity for couplings presenting a mixture of linear and nonlinear interdependencies, only wSMI can detect purely nonlinear interaction dynamics. Moreover, we evaluated the potential impact of these differences on real experimental data by computing wPLI and wSMI connectivity in hd-EEG recordings of 12 healthy adults during wakefulness and deep (N3-)sleep, characterised by different levels of consciousness. In line with the simulation-based findings, this analysis revealed that both methods have different sensitivity for changes in brain connectivity across the two vigilance states. Our results indicate that the conjoint use of wPLI and wSMI may represent a powerful tool to study the functional bases of consciousness in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Luca Cecchetti
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Andrés Canales-Johnson
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
- The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca, Chile
| | - Emiliano Ricciardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Francesca Siclari
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland
| | - Pietro Pietrini
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Srivas Chennu
- School of Computing, University of Kent, Chatham Maritime, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Giulio Bernardi
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, Lucca, Italy.
- Center for Investigation and Research on Sleep, Lausanne University Hospital, Lausanne, Switzerland.
- University Hospital of Pisa, Pisa, Italy.
| |
Collapse
|
36
|
Cordone S, Annarumma L, Rossini PM, De Gennaro L. Sleep and β-Amyloid Deposition in Alzheimer Disease: Insights on Mechanisms and Possible Innovative Treatments. Front Pharmacol 2019; 10:695. [PMID: 31281257 PMCID: PMC6595048 DOI: 10.3389/fphar.2019.00695] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/28/2019] [Indexed: 02/05/2023] Open
Abstract
The growing interest in the preclinical stage of Alzheimer's disease (AD) led investigators to identify modifiable risk and predictive factors useful to design early intervention strategies. The preclinical stage of AD is characterized by β-amyloid (Aβ) aggregation into amyloid plaques and tau phosphorylation and aggregation into neurofibrillary tangles. There is a consensus on the importance of sleep within this context: the bidirectional relationship between sleep and AD pathology is supported by growing evidence that proved that the occurrence of sleep changes starting from the preclinical stage of AD, many years before the onset of cognitive decline. Hence, we review the most recent studies on sleep disturbances related to Aβ and the effects of sleep deprivation on Aβ accumulation in animal and human models. We also discuss evidence on the role of sleep in clearing the brain of toxic metabolic by-products, with original findings of the clearance activity of the glymphatic system stimulated by sleep. Furthermore, starting from new recent advances about the relationship between slow-wave sleep (SWS) and Aβ burden, we review the results of recent electroencephalographic (EEG) studies in order to clarify the possible role of SWS component disruption as a novel mechanistic pathway through which Aβ pathology may contribute to cognitive decline and, conversely, the eventual useful role of SWS in facilitating Aβ clearance. Finally, we discuss some promising innovative, effective, low-risk, non-invasive interventions, although empirical evidence on the efficacy of sleep interventions in improving the course of AD is at the very beginning.
Collapse
Affiliation(s)
- Susanna Cordone
- Department of Psychology, University of Rome “Sapienza,”Rome, Italy
| | | | - Paolo Maria Rossini
- Department of Neurological, Motor and Sensory Sciences, IRCCS San Raffaele Pisana, Rome, Italy
- Institute of Neurology, Catholic University of The Sacred Heart, Rome, Italy
| | - Luigi De Gennaro
- Department of Psychology, University of Rome “Sapienza,”Rome, Italy
| |
Collapse
|
37
|
Tokariev A, Roberts JA, Zalesky A, Zhao X, Vanhatalo S, Breakspear M, Cocchi L. Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms. Nat Commun 2019; 10:2619. [PMID: 31197175 PMCID: PMC6565810 DOI: 10.1038/s41467-019-10467-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/06/2019] [Indexed: 12/18/2022] Open
Abstract
Sleep architecture carries vital information about brain health across the lifespan. In particular, the ability to express distinct vigilance states is a key physiological marker of neurological wellbeing in the newborn infant although systems-level mechanisms remain elusive. Here, we demonstrate that the transition from quiet to active sleep in newborn infants is marked by a substantial reorganization of large-scale cortical activity and functional brain networks. This reorganization is attenuated in preterm infants and predicts visual performance at two years. We find a striking match between these empirical effects and a computational model of large-scale brain states which uncovers fundamental biophysical mechanisms not evident from inspection of the data. Active sleep is defined by reduced energy in a uniform mode of neural activity and increased energy in two more complex anteroposterior modes. Preterm-born infants show a deficit in this sleep-related reorganization of modal energy that carries novel prognostic information.
Collapse
Affiliation(s)
- Anton Tokariev
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia. .,Department of Clinical Neurophysiology, Clinicum, University of Helsinki, 00014, Helsinki, Finland. .,BABA center, Pediatric Research Center, Clinical Neurophysiology, Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland.
| | - James A Roberts
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC, 3053, Australia.,Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Xuelong Zhao
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, Clinicum, University of Helsinki, 00014, Helsinki, Finland.,BABA center, Pediatric Research Center, Clinical Neurophysiology, Children's Hospital, Helsinki University Central Hospital, 00029, Helsinki, Finland
| | - Michael Breakspear
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.,Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, 2305, Australia
| | - Luca Cocchi
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia. .,School of Medicine, University of Queensland, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
38
|
Gorgoni M, Bartolacci C, D’Atri A, Scarpelli S, Marzano C, Moroni F, Ferrara M, De Gennaro L. The Spatiotemporal Pattern of the Human Electroencephalogram at Sleep Onset After a Period of Prolonged Wakefulness. Front Neurosci 2019; 13:312. [PMID: 31001079 PMCID: PMC6456684 DOI: 10.3389/fnins.2019.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023] Open
Abstract
During the sleep onset (SO) process, the human electroencephalogram (EEG) is characterized by an orchestrated pattern of spatiotemporal changes. Sleep deprivation (SD) strongly affects both wake and sleep EEG, but a description of the topographical EEG power spectra and oscillatory activity during the wake-sleep transition after a period of prolonged wakefulness is still missing. The increased homeostatic sleep pressure should induce an earlier onset of sleep-related EEG oscillations. The aim of the present study was to assess the spatiotemporal EEG pattern at SO following SD. A dataset of a previous study was analyzed. We assessed the spatiotemporal EEG changes (19 cortical derivations) during the SO (5 min before vs. 5 min after the first epoch of Stage 2) of a recovery night after 40 h of SD in 39 healthy subjects, analyzing the EEG power spectra (fast Fourier transform) and the oscillatory activity [better oscillation (BOSC) detection method]. The spatiotemporal pattern of the EEG power spectra mostly confirmed the changes previously observed during the wake-sleep transition at baseline. The comparison between baseline and recovery showed a wide increase of the post- vs. pre-SO ratio during the recovery night in the frequency bins ≤10 Hz. We found a predominant alpha oscillatory rhythm in the pre-SO period, while after SO the theta oscillatory activity was prevalent. The oscillatory peaks showed a generalized increase in all frequency bands from delta to sigma with different predominance, while beta activity increased only in the fronto-central midline derivations. Overall, the analysis of the EEG power replicated the topographical pattern observed during a baseline night of sleep but with a stronger intensity of the SO-induced changes in the frequencies ≤10 Hz, and the detection of the rhythmic activity showed the rise of several oscillations at SO after SD that was not observed during the wake-sleep transition at baseline (e.g., alpha and frontal theta in correspondence of their frequency peaks). Beyond confirming the local nature of the EEG pattern at SO, our results show that SD has an impact on the spatiotemporal modulation of cortical activity during the falling-asleep process, inducing the earlier emergence of sleep-related EEG oscillations.
Collapse
Affiliation(s)
- Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Aurora D’Atri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Serena Scarpelli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Cristina Marzano
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Fabio Moroni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Michele Ferrara
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Luigi De Gennaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
39
|
Wang H, Sun Y, Lv J, Bo S. Random topology organization and decreased visual processing of internet addiction: Evidence from a minimum spanning tree analysis. Brain Behav 2019; 9:e01218. [PMID: 30706671 PMCID: PMC6422800 DOI: 10.1002/brb3.1218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/31/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Internet addiction (IA) has been associated with widespread brain alterations. Functional connectivity (FC) and network analysis results related to IA are inconsistent between studies, and how network hubs change is not known. The aim of this study was to evaluate functional and topological networks using an unbiased minimum spanning tree (MST) analysis on electroencephalography (EEG) data in IA and healthy control (HC) college students. METHODS In this study, Young's internet addiction test was used as an IA severity measure. EEG recordings were obtained in IA (n = 30) and HC participants (n = 30), matched for age and sex, during rest. The phase lag index (PLI) and MST were applied to analyze FC and network topology. We expected to obtain evidence of underlying alterations in functional and topological networks related to IA. RESULTS IA participants showed higher delta FC between left-side frontal and parieto-occipital areas compared to the HC group (p < 0.001), global MST measures revealed a more star-like network in IA participants in the upper alpha and beta bands, and the occipital brain region was relatively less important in the IA relative to the HC group in the lower band. The correlation results were consistent with the MST results: higher IA severity correlated with higher Max degree and kappa, and lower eccentricity and diameter. CONCLUSIONS Functional networks of the IA group were characterized by increased FC, a more random organization, and a decrease of relative functional importance of the visual processing area. Taken together, these alterations can help us understand the influence of IA to brain mechanism.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Psychology, Liaoning Normal University, Da Lian, China
| | - Yan Sun
- School of Psychology, Liaoning Normal University, Da Lian, China
| | - Jiaojiao Lv
- School of Psychology, Liaoning Normal University, Da Lian, China
| | - Siyu Bo
- School of Psychology, Liaoning Normal University, Da Lian, China
| |
Collapse
|
40
|
Fernandez Guerrero A, Achermann P. Intracortical Causal Information Flow of Oscillatory Activity (Effective Connectivity) at the Sleep Onset Transition. Front Neurosci 2018; 12:912. [PMID: 30564093 PMCID: PMC6288604 DOI: 10.3389/fnins.2018.00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/20/2018] [Indexed: 12/03/2022] Open
Abstract
We investigated the sleep onset transition in humans from an effective connectivity perspective in a baseline condition (approx. 16 h of wakefulness) and after sleep deprivation (40 h of sustained wakefulness). Using EEG recordings (27 derivations), source localization (LORETA) allowed us to reconstruct the underlying patterns of neuronal activity in various brain regions, e.g., the default mode network (DMN), dorsolateral prefrontal cortex and hippocampus, which were defined as regions of interest (ROI). We applied isolated effective coherence (iCOH) to assess effective connectivity patterns at the sleep onset transition [2 min prior to and 10 min after sleep onset (first occurrence of stage 2)]. ICOH reveals directionality aspects and resolves the spectral characteristics of information flow in a given network of ROIs. We observed an anterior-posterior decoupling of the DMN, and moreover, a prominent role of the posterior cingulate cortex guiding the process of the sleep onset transition, particularly, by transmitting information in the low frequency range (delta and theta bands) to other nodes of DMN (including the hippocampus). In addition, the midcingulate cortex appeared as a major cortical relay station for spindle synchronization (originating from the thalamus; sigma activity). The inclusion of hippocampus indicated that this region might be functionally involved in sigma synchronization observed in the cortex after sleep onset. Furthermore, under conditions of increased homeostatic pressure, we hypothesize that an anterior-posterior decoupling of the DMN occurred at a faster rate compared to baseline overall indicating weakened connectivity strength within the DMN. Finally, we also demonstrated that cortico-cortical spindle synchronization was less effective after sleep deprivation than in baseline, thus, reflecting the reduction of spindles under increased sleep pressure.
Collapse
Affiliation(s)
- Antonio Fernandez Guerrero
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- The KEY Institute for Brain-Mind Research, Department of Psychiatry, Psychotherapy and Sychosomatics, University Hospital of Psychiatry, Zurich, Switzerland
- Zurich Center for Interdisciplinary Sleep Research, University of Zurich, Zurich, Switzerland
| |
Collapse
|
41
|
Sitaram R, Yu T, Halsband U, Vogel D, Müller F, Lang S, Birbaumer N, Kotchoubey B. Spatial characteristics of spontaneous and stimulus-induced individual functional connectivity networks in severe disorders of consciousness. Brain Cogn 2018; 131:10-21. [PMID: 30502227 DOI: 10.1016/j.bandc.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Functional connectivity (fcMRI) analyses of resting state functional magnetic resonance imaging (fMRI) data revealed substantial differences between states of consciousness. The underlying cause-effect linkage, however, remains unknown to the present day. The aim of this study was to examine the relationship between fcMRI measures and Disorders of Consciousness (DOC) in resting state and under adequate stimulation. METHODS AND FINDINGS fMRI data from thirteen patients with unresponsive wakefulness syndrome, eight patients in minimally conscious state, and eleven healthy controls were acquired in rest and during the application of nociceptive and emotional acoustic stimuli. We compared spatial characteristics and anatomical topography of seed-based fcMRI networks on group and individual levels. The anatomical topography of fcMRI networks of patients was altered in all three conditions as compared with healthy controls. Spread and distribution of individual fcMRI networks, however, differed significantly between patients and healthy controls in stimulation conditions only. The exploration of individual metric values identified two patients whose spatial metrics did not deviate from metric distributions of healthy controls in a statistically meaningful manner. CONCLUSIONS These findings suggest that the disturbance of consciousness in DOC is related to deficits in global topographical network organization rather than a principal inability to establish long-distance connections. In addition, the results question the claim that task-free measurements are particularly valuable as a tool for individual diagnostics in severe neurological disorders. Further studies comparing connectivity indices with outcome of DOC patients are needed to determine the clinical relevance of spatial metrics and stimulation paradigms for individual diagnosis, prognosis and treatment in DOC.
Collapse
Affiliation(s)
- Ranganatha Sitaram
- Institute of Biological and Medical Engineering, Department of Psychiatry and Section of Neuroscience, and Laboratory for Brain-Machine Interfaces and Neuromodulation, Schools of Engineering, Biology & Medicine, Pontificia Universidad Católica, Chile; Wyss Center for Bio and Neuro Engineering, Biotechnology Campus, Genèva, Switzerland.
| | - Tao Yu
- Clinics for Neurological Rehabilitation "Quellenhof", Bad Wildbad, Germany
| | | | - Dominik Vogel
- Schön Clinics for Neurological Rehabilitation Bad Aibling, Germany
| | | | - Simone Lang
- Department of Clinical Psychology & Psychotherapy, University of Heidelberg, Germany
| | - Niels Birbaumer
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany; Wyss Center for Bio and Neuro Engineering, Biotechnology Campus, Genèva, Switzerland
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
| |
Collapse
|
42
|
Miraglia F, Vecchio F, Rossini PM. Brain electroencephalographic segregation as a biomarker of learning. Neural Netw 2018; 106:168-174. [DOI: 10.1016/j.neunet.2018.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
|
43
|
Chriskos P, Frantzidis CA, Gkivogkli PT, Bamidis PD, Kourtidou-Papadeli C. Achieving Accurate Automatic Sleep Staging on Manually Pre-processed EEG Data Through Synchronization Feature Extraction and Graph Metrics. Front Hum Neurosci 2018; 12:110. [PMID: 29628883 PMCID: PMC5877486 DOI: 10.3389/fnhum.2018.00110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/07/2018] [Indexed: 11/13/2022] Open
Abstract
Sleep staging, the process of assigning labels to epochs of sleep, depending on the stage of sleep they belong, is an arduous, time consuming and error prone process as the initial recordings are quite often polluted by noise from different sources. To properly analyze such data and extract clinical knowledge, noise components must be removed or alleviated. In this paper a pre-processing and subsequent sleep staging pipeline for the sleep analysis of electroencephalographic signals is described. Two novel methods of functional connectivity estimation (Synchronization Likelihood/SL and Relative Wavelet Entropy/RWE) are comparatively investigated for automatic sleep staging through manually pre-processed electroencephalographic recordings. A multi-step process that renders signals suitable for further analysis is initially described. Then, two methods that rely on extracting synchronization features from electroencephalographic recordings to achieve computerized sleep staging are proposed, based on bivariate features which provide a functional overview of the brain network, contrary to most proposed methods that rely on extracting univariate time and frequency features. Annotation of sleep epochs is achieved through the presented feature extraction methods by training classifiers, which are in turn able to accurately classify new epochs. Analysis of data from sleep experiments on a randomized, controlled bed-rest study, which was organized by the European Space Agency and was conducted in the "ENVIHAB" facility of the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne, Germany attains high accuracy rates, over 90% based on ground truth that resulted from manual sleep staging by two experienced sleep experts. Therefore, it can be concluded that the above feature extraction methods are suitable for semi-automatic sleep staging.
Collapse
Affiliation(s)
- Panteleimon Chriskos
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Frantzidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Polyxeni T. Gkivogkli
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Panagiotis D. Bamidis
- Laboratory of Medical Physics, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Chrysoula Kourtidou-Papadeli
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
- Director Aeromedical Center of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|