1
|
van der Heijden H, Hamoda HM, Ray A, Goldman M, Golden M, Graber K, Duffy FH, D'Angelo E, Gagoski B, Yekedüz MK, Petty CR, Upadhyay J, Gonzalez-Heydrich J. Reduced Cerebellar Volumes Associate with P300 Amplitude Attenuation in Children with Clinical High Risk for Psychosis and Early Onset Psychosis. CEREBELLUM (LONDON, ENGLAND) 2025; 24:69. [PMID: 40117089 DOI: 10.1007/s12311-025-01822-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Patients with psychotic illnesses, including early onset psychosis (EOP), often experience cognitive impairment. The cerebellum is critically involved in neurocognitive processes, yet possible regional alterations in the cerebellum and their associations with behavioral parameters remain largely unexplored in EOP. In this preliminary study, we aimed to investigate structural morphological properties of the cerebellum as well as the supratentorial brain, and how morphological changes in the central nervous system relate to neurocognitive performance in children with EOP and clinical high-risk for psychosis (CHR). We performed whole-brain structural magnetic resonance imaging (MRI) and voxel-based morphological analyses in children with EOP (N = 15), children with CHR (N = 11), and healthy controls (Con, N = 13). An auditory event-related potential (ERP) task to elicit a P300 response was also completed by a subset of children (N = 29) as a measure of neurocognitive functioning. Linear regression analyses were performed to explore relationships between cerebellar volume, cortical thickness, and P300 amplitudes. Volumetric reductions (Con > CHR > EOP) in bilateral Crus I, Crus II, lobule VI and VIIIa, left VIIIb, and right lobules V and IX of the cerebellum were observed (p < 0.05). This downward trend across study cohorts was also evident for rostral middle frontal cortical (RMFC) thickness, and for centroparietal P300 amplitudes. Significant positive correlations among P300 amplitudes and cerebellar volumes were observed (p < 0.05). Significant correlations between P300 amplitudes and RMFC thickness were not present. Robust morphological disruptions in cerebellar subdivisions and frontal subdivisions were quantified in children with EOP. Structural abnormalities in these regions, particularly in the cerebellum, may signify broader brain network disruptions, potentially contributing to neurocognitive dysfunction in EOP.
Collapse
Affiliation(s)
- Hanne van der Heijden
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hesham M Hamoda
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aliza Ray
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Goldman
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maya Golden
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Graber
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank H Duffy
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eugene D'Angelo
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Borjan Gagoski
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - Merve Koç Yekedüz
- Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Carter R Petty
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jaymin Upadhyay
- Biostatistics and Research Design Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Early Psychosis Investigation Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Alasmar Z, Chakravarty MM, Penhune VB, Steele CJ. Patterns of Cerebellar-Cortical Structural Covariance Mirror Anatomical Connectivity of Sensorimotor and Cognitive Networks. Hum Brain Mapp 2025; 46:e70079. [PMID: 39791308 PMCID: PMC11718418 DOI: 10.1002/hbm.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
The cortex and cerebellum are densely connected through reciprocal input/output projections that form segregated circuits. These circuits are shown to differentially connect anterior lobules of the cerebellum to sensorimotor regions, and lobules Crus I and II to prefrontal regions. This differential connectivity pattern leads to the hypothesis that individual differences in structure should be related, especially for connected regions. To test this hypothesis, we examined covariation between the volumes of anterior sensorimotor and lateral cognitive lobules of the cerebellum and measures of cortical thickness (CT) and surface area (SA) across the whole brain in a sample of 270 young adults drawn from the HCP dataset. We observed that patterns of cerebellar-cortical covariance differed between sensorimotor and cognitive networks. Anterior motor lobules of the cerebellum showed greater covariance with sensorimotor regions of the cortex, while lobules Crus I and Crus II showed greater covariance with frontal and temporal regions. Interestingly, cerebellar volume showed predominantly negative relationships with CT and predominantly positive relationships with SA. Individual differences in SA are thought to be largely under genetic control while CT is thought to be more malleable by experience. This suggests that cerebellar-cortical covariation for SA may be a more stable feature, whereas covariation for CT may be more affected by development. Additionally, similarity metrics revealed that the pattern of covariance showed a gradual transition between sensorimotor and cognitive lobules, consistent with evidence of functional gradients within the cerebellum. Taken together, these findings are consistent with known patterns of structural and functional connectivity between the cerebellum and cortex. They also shed new light on possibly differing relationships between cerebellar volume and cortical thickness and surface area. Finally, our findings are consistent with the interactive specialization framework which proposes that structurally and functionally connected brain regions develop in concert.
Collapse
Affiliation(s)
- Zaki Alasmar
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- School of HealthConcordia UniversityMontrealQuebecCanada
| | - M. Mallar Chakravarty
- Cerebral Imaging CenterDouglas Mental Health University InstituteMontrealQuebecCanada
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Biological and Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Virginia B. Penhune
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- International Laboratory for Brain, Music, and Sound Research (BRAMS)MontrealQuebecCanada
- Center for Research in Brain, Language, and Music (CRBLM)MontrealQuebecCanada
| | - Christopher J. Steele
- Department of PsychologyConcordia UniversityMontrealQuebecCanada
- School of HealthConcordia UniversityMontrealQuebecCanada
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
3
|
Rice LC, Rochowiak RN, Plotkin MR, Rosch KS, Mostofsky SH, Crocetti D. Sex Differences and Behavioral Associations with Typically Developing Pediatric Regional Cerebellar Gray Matter Volume. CEREBELLUM (LONDON, ENGLAND) 2024; 23:589-600. [PMID: 37382829 PMCID: PMC10986327 DOI: 10.1007/s12311-023-01569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/30/2023]
Abstract
The cerebellum contributes to motor and higher-order control throughout neurodevelopment, with marked growth during childhood. Few studies have investigated differential associations of cerebellar morphometry with function in males and females. The present study examines sex differences in regional cerebellar gray matter volume (GMV) and the moderating effect of sex on the relationship between GMV and motor, cognitive, and emotional functions in a large cohort of typically developing (TD) children. Participants included 371 TD children (123 females, age 8-12 years). A convolutional neural network-based approach was employed for cerebellar parcellation. Volumes were harmonized using ComBat to adjust for hardware-induced variations. Regression analyses examined the effect of sex on GMV and whether sex moderated the relationship between GMV and motor, cognitive, and emotional functions. Males showed larger GMV in right lobules I-V, bilateral lobules VI, crus II/VIIb, and VIII, left lobule X, and vermis regions I-V and VIII-X. Greater motor function correlated with less vermis VI-VII GMV in females. Greater cognitive function correlated with greater left lobule VI GMV in females and less left lobule VI GMV in males. Finally, greater internalizing symptoms correlated with greater bilateral lobule IX GMV in females but less in males. These findings reveal sexually dimorphic patterns of cerebellar structure and associations with motor, cognitive, and emotional functions. Males generally show larger GMV than females. Larger GMV was associated with better cognitive functioning for females and better motor/emotional functioning for males.
Collapse
Affiliation(s)
- Laura C Rice
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rebecca N Rochowiak
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA
| | - Micah R Plotkin
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA
| | - Keri S Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA
- Neuropsychology Department, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Deana Crocetti
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, 716 N. Broadway, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Wang XH, Zhao B, Li L. Mapping white matter structural covariance connectivity for single subject using wavelet transform with T1-weighted anatomical brain MRI. Front Neurosci 2022; 16:1038514. [PMID: 36507319 PMCID: PMC9727234 DOI: 10.3389/fnins.2022.1038514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Current studies of structural covariance networks were focused on the gray matter in the human brain. The structural covariance connectivity in the white matter remains largely unexplored. This paper aimed to build novel metrics that can infer white matter structural covariance connectivity, and to explore the predictive power of the proposed features. Methods To this end, a cohort of 315 adult subjects with the anatomical brain MRI datasets were obtained from the publicly available Dallas Lifespan Brain Study (DLBS) project. The 3D wavelet transform was applied on the individual voxel-based morphology (VBM) volume to obtain the white matter structural covariance connectivity. The predictive models for cognitive functions were built using support vector regression (SVR). Results The predictive models exhibited comparable performance with previous studies. The novel features successfully predicted the individual ability of digit comparison (DC) (r = 0.41 ± 0.01, p < 0.01) and digit symbol (DSYM) (r = 0.5 ± 0.01, p < 0.01). The sensorimotor-related white matter system exhibited as the most predictive network node. Furthermore, the node strengths of sensorimotor mode were significantly correlated to cognitive scores. Discussion The results suggested that the white matter structural covariance connectivity was informative and had potential for predictive tasks of brain-behavior research.
Collapse
|
5
|
Starowicz-Filip A, Bętkowska-Korpała B, Yablonska T, Kwiatkowski S, Milczarek O, Klasa Ł, Chrobak AA. Involvement of the cerebellum in the regulation of executive functions in children—Preliminary analysis based on a neuropsychological study of children after cerebellar tumour surgery. Front Psychol 2022; 13:961577. [PMID: 36275206 PMCID: PMC9583864 DOI: 10.3389/fpsyg.2022.961577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022] Open
Abstract
Aim Preliminary assessment of executive functions in children with cerebellar lesions, description of their emotional-social functioning and selection of sensitive neuropsychological tools to detect the cerebellar cognitive affective syndrome (CCAS). Materials and methods The study group consisted of 10 children after cerebellar tumour surgery. The control group consisted of 10 healthy children, matched for age and sex: The IDS-2 executive functions battery, the Conners 3 ADHD questionnaire, the Autism Spectrum Rating Scales (ASRS) and the International Cooperative Ataxia Rating Scale (ICARS) were used. Results Statistical analysis showed statistically significant differences between the experimental and control groups in terms of two dimensions of executive functioning. Children from experimental group was characterised by worse planning and divided attention than healthy controls. Moreover children with cerebellar lesions were characterised by significantly higher levels of some behaviours similar to that observed in autism spectrum disorders, namely difficulties in social relationships, self-regulation of emotions, attention, and greater behavioural rigidity. Test power analysis and estimation of the effect size by the Cohen’s d coefficient indicated that with a slight increase in the size of the experimental group, the probability of detecting statistically significant difference in the executive functions total measure score as well as in several ASRS subscales increased, but not in Conners 3 subscales. Conclusions Cerebellar damage may pose a risk for dysexecutive syndrome and social-emotional problems in children. The IDS-2 executive functions battery and the ASRS test are sufficiently sensitive tools to assess elements of the CCAS in children.
Collapse
Affiliation(s)
- Anna Starowicz-Filip
- Department of Medical Psychology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
- *Correspondence: Anna Starowicz-Filip,
| | - Barbara Bętkowska-Korpała
- Department of Medical Psychology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tetiana Yablonska
- Department of Developmental Psychology, Faculty of Psychology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Stanisław Kwiatkowski
- Department of Pediatric Neurosurgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Olga Milczarek
- Department of Pediatric Neurosurgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Łukasz Klasa
- Department of Pediatric Neurosurgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Adrian Andrzej Chrobak
- Department of Adult Psychiatry, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
6
|
Beuriat PA, Cristofori I, Gordon B, Grafman J. The shifting role of the cerebellum in executive, emotional and social processing across the lifespan. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2022; 18:6. [PMID: 35484543 PMCID: PMC9047369 DOI: 10.1186/s12993-022-00193-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
The cerebellum's anatomical and functional organization and network interactions between the cerebellum and the cerebral cortex and subcortical structures are dynamic across the lifespan. Executive, emotional and social (EES) functions have likewise evolved during human development from contributing to primitive behaviors during infancy and childhood to being able to modulate complex actions in adults. In this review, we address how the importance of the cerebellum in the processing of EES functions might change across development. This evolution is driven by the macroscopic and microscopic modifications of the cerebellum that are occurring during development including its increasing connectivity with distant supra-tentorial cortical and sub-cortical regions. As a result of anatomical and functional changes, neuroimaging and clinical data indicate that the importance of the role of the cerebellum in human EES-related networks shifts from being crucial in newborns and young children to being only supportive later in life. In early life, given the immaturity of cortically mediated EES functions, EES functions and motor control and perception are more closely interrelated. At that time, the cerebellum due to its important role in motor control and sequencing makes EES functions more reliant on these computational properties that compute spatial distance, motor intent, and assist in the execution of sequences of behavior related to their developing EES expression. As the cortical brain matures, EES functions and decisions become less dependent upon these aspects of motor behavior and more dependent upon high-order cognitive and social conceptual processes. At that time, the cerebellum assumes a supportive role in these EES-related behaviors by computing their motor and sequential features. We suspect that this evolving role of the cerebellum has complicated the interpretation of its contribution to EES computational demands.
Collapse
Affiliation(s)
- Pierre-Aurélien Beuriat
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA. .,Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. .,Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Lyon, France. .,Rockfeller School of Medicine, Claude Bernard University, Lyon, France.
| | - Irene Cristofori
- Institute of Cognitive, Neuroscience Marc Jeannerod, CNRS/UMR 5229, 69500, Bron, France.,Université Claude Bernard, Lyon 1, 69100, Villeurbanne, France
| | - Barry Gordon
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Cognitive Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, USA.,Departments of Neurology, Psychiatry and Cognitive Neurology & Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Zhu J, Zhang H, Chong YS, Shek LP, Gluckman PD, Meaney MJ, Fortier MV, Qiu A. Integrated structural and functional atlases of Asian children from infancy to childhood. Neuroimage 2021; 245:118716. [PMID: 34767941 DOI: 10.1016/j.neuroimage.2021.118716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/21/2022] Open
Abstract
The developing brain grows exponentially in the first few years of life. There is a need to have age-appropriate brain atlases that coherently characterize the geometry of the cerebral cortex, white matter tracts, and functional organization. This study employed multi-modal brain images of an Asian cohort and constructed brain structural and functional atlases for 6-month-old infants, 4.5-, 6-, and 7.5-year-old children. We exploited large deformation diffeomorphic metric mapping and probabilistic atlas generation approaches to integrate structural MRI and diffusion weighted images (DWIs) and to create the atlas where white matter tracts well fit into the cortical folding pattern. Based on this structural atlas, we then employed spectral clustering to parcellate the brain into functional networks from resting-state fMRI (rs-fMRI). Our results provided the atlas that characterizes the cortical folding geometry, subcortical regions, deep white matter tracts, as well as functional networks in a stereotaxic coordinate space for the four different age groups. The functional networks consisting of the primary cortex were well established in infancy and remained stable to childhood, while specific higher-order functional networks showed specific patterns of hemispherical, subcortical-cerebellar, and cortical-cortical integration and segregation from infancy to childhood. Our multi-modal fusion analysis demonstrated the use of the integrated structural and functional atlas for understanding coherent patterns of brain anatomical and functional development during childhood. Hence, our atlases can be potentially used to study coherent patterns of brain anatomical and functional development.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore
| | - Han Zhang
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore; Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lynette P Shek
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore; Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Block E4 #04-08, 11758, Singapore; The N.1 Institute for Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; Department of Biomedical Engineering, The Johns Hopkins University, USA.
| |
Collapse
|
8
|
Clark SV, Semmel ES, Aleksonis HA, Steinberg SN, King TZ. Cerebellar-Subcortical-Cortical Systems as Modulators of Cognitive Functions. Neuropsychol Rev 2021; 31:422-446. [PMID: 33515170 DOI: 10.1007/s11065-020-09465-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Over the past few decades, research has established that the cerebellum is involved in executive functions; however, its specific role remains unclear. There are numerous theories of cerebellar function and numerous cognitive processes falling under the umbrella of executive function, making investigations of the cerebellum's role in executive functioning challenging. In this review, we explored the role of the cerebellum in executive functioning through clinical and cognitive neuroscience frameworks. We reviewed the neuroanatomical systems and theoretical models of cerebellar functions and the multifaceted nature of executive functions. Using attention deficit hyperactivity disorder and cerebellar tumor as clinical developmental models of cerebellar dysfunction, and the functional magnetic resonance imaging literature, we reviewed evidence for cerebellar involvement in specific components of executive function in childhood, adolescence, and adulthood. There is evidence for posterior cerebellar contributions to working memory, planning, inhibition, and flexibility, but the heterogeneous literature that largely was not designed to study the cerebellum makes it difficult to determine specific functions of the cerebellum or cerebellar regions. In addition, while it is clear that cerebellar insult in childhood affects executive function performance later in life, more work is needed to elucidate the mechanisms by which executive dysfunction occurs and its developmental course. The limitations of the current literature are discussed and potential directions for future research are provided.
Collapse
Affiliation(s)
- Sarah V Clark
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Eric S Semmel
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | - Holly A Aleksonis
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology, Georgia State University, GA, 30303, Atlanta, USA. .,Neuroscience Institute, Georgia State University, GA, 30303, Atlanta, USA.
| |
Collapse
|
9
|
Kipping JA, Xie Y, Qiu A. Cerebellar development and its mediation role in cognitive planning in childhood. Hum Brain Mapp 2018; 39:5074-5084. [PMID: 30133063 DOI: 10.1002/hbm.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that the cerebellum contributes not only to the planning and execution of movement but also to the high-order cognitive planning. Childhood is a critical period for development of the cerebellum and cognitive planning. This study aimed (a) to examine the development of cerebellar morphology and microstructure and (b) to examine the cerebellar mediation roles in the relationship between age and cognitive planning in 6- to 10-year-old children (n = 126). We used an anatomical parcellation to quantify cerebellar regional gray matter (GM) and white matter (WM) volumes, and WM microstructure, including fractional anisotropy (FA) and mean diffusivity (MD). We assessed planning ability using the Stockings of Cambridge (SOC) task in all children. We revealed (a) a measure-specific anterior-to-posterior gradient of the cerebellar development in childhood, that is, smaller GM volumes and greater WM FA of the anterior segment of the cerebellum but larger GM volumes and lower WM FA in the posterior segment of the cerebellum in older children; (b) an age-related improvement of the SOC performance at the most demanding level of five-move problems; and (c) a mediation role of the lateral cerebellar WM volumes in age-related improvement in the SOC performance in childhood. These results highlight the differential development of the cerebellum during childhood and provide evidence that brain adaptation to the acquisition of planning ability during childhood could partially be achieved through the engagement of the lateral cerebellum.
Collapse
Affiliation(s)
- Judy A Kipping
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yingyao Xie
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| |
Collapse
|