1
|
Romero-Martínez Á, Sarrate-Costa C, Moya-Albiol L. The application of non-invasive brain stimulation techniques to reduce anger and violence proneness: Results of a systematic review and meta-analysis. J Psychiatr Res 2025; 186:211-225. [PMID: 40250328 DOI: 10.1016/j.jpsychires.2025.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/21/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025]
Abstract
Since the 1990s, there has been a rise in the number of publications assessing the effects of applying non-invasive brain stimulation (NIBS) to treat patients with drug-resistant depression. This involves applying magnetic fields or electrical currents to the surface of the skull to influence the superficial neurons in the cerebral cortex. Due to the evidence regarding symptom reduction in these types of patients, such as irritability or hostility, there was a rise in the use of this technique to reduce negative mood, including anger state. This decrease in anger state could also help reduce other problems such as violence proneness. In this sense, the anger state of individuals who are prone to violence might be affected by interfering with the excitability of the prefrontal cortex (PFC), a key brain region responsible for behavioral regulation. Thus, we conducted a systematic review and meta-analysis following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. After initially identifying 2426 sources, we eventually included a total of 69 publications for the systematic review, from which 45 were employed for the meta-analysis. Only a few of them highlighted a significant contribution of using NIBS techniques on different regions of the PFC to reduce anger state or violence when compared to participants receiving sham stimulation in normative and clinical samples. Furthermore, the comparison of effect sizes between groups that received real stimulation on several regions of the PFC and those that received sham stimulation did not reveal a significant difference in reducing anger state or violence. In addition, despite most of the conclusions being consistent, considerable heterogeneity existed across studies regarding certain PFC regions, which could be explained by the type of NIBS employed. Therefore, using superficial stimulation over the PFC as a general tool for reducing violence proneness should be approached with caution, except in specific cases.
Collapse
Affiliation(s)
| | | | - Luis Moya-Albiol
- Department of Psychobiology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Yang J, Fu R, Hao Z, Lin N, Cheng X, Ma J, Zhang Y, Li Y, Lo WLA, Yu Q, Wang C. The immediate effects of iTBS on the muscle activation pattern under challenging balance conditions in the patients with chronic low back pain: A preliminary study. Front Neurosci 2023; 17:1135689. [PMID: 36998734 PMCID: PMC10045989 DOI: 10.3389/fnins.2023.1135689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
BackgroundThe patients with chronic low back pain (CLBP) showed impaired postural control, especially in challenging postural task. The dorsolateral prefrontal cortex (DLPFC) is reported to involve in the complex balance task, which required considerable attentional control. The effect of intermittent theta burst stimulation (iTBS) over the DLPFC to the capacity of postural control of CLBP patients is still unknown.MethodsParticipants diagnosed with CLBP received a single-session iTBS over the left DLPFC. All the participants completed the postural control tasks of single-leg (left/right) standing before and after iTBS. The activation changes of the DLPFC and M1 before and after iTBS were recorded by functional near-infrared spectroscopy (fNIRS). The activation pattern of the trunk [transversus abdominis (TrA), superficial lumbar multifidus (SLM)] and leg [tibialis anterior (TA), gastrocnemius medialis (GM)] muscles including root mean square (RMS) and co-contraction index (CCI) during single-leg standing were measured by surface electromyography (sEMG) before and after the intervention. The paired t-test was used to test the difference before and after iTBS. Pearson correlation analyses were performed to test the relationship between the oxyhemoglobin concentration and sEMG outcome variables (RMS and CCI).ResultsOverall, 20 participants were recruited. In the right-leg standing condition, compared with before iTBS, the CCI of the right TrA/SLM was significantly decreased (t = −2.172, p = 0.043), and the RMS of the right GM was significantly increased (t = 4.024, p = 0.001) after iTBS. The activation of the left DLPFC (t = 2.783, p = 0.012) and left M1 (t = 2.752, p = 0.013) were significantly decreased and the relationship between the left DLPFC and M1 was significant after iTBS (r = 0.575, p = 0.014). Correlation analysis showed the hemoglobin concentration of M1 was negatively correlated with the RMS of the right GM (r = −0.659, p = 0.03) and positively correlated between CCI of the right TrA/SLM (r = 0.503, p = 0.047) after iTBS. There was no significant difference in the brain or muscle activation change in the left leg-standing condition between before and after iTBS.ConclusionIntermittent theta burst stimulation over the left DLPFC seems to be able to improve the muscle activation pattern during postural control ability in challenging postural task, which would provide a new approach to the treatment of CLBP.
Collapse
Affiliation(s)
- Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruochen Fu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengming Hao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nanhe Lin
- Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xue Cheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinjin Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yushu Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Rehabilitation Medicine and Translation, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Qiuhua Yu,
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Chuhuai Wang,
| |
Collapse
|
3
|
Moses TE, Gray E, Mischel N, Greenwald MK. Effects of neuromodulation on cognitive and emotional responses to psychosocial stressors in healthy humans. Neurobiol Stress 2023; 22:100515. [PMID: 36691646 PMCID: PMC9860364 DOI: 10.1016/j.ynstr.2023.100515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Physiological and psychological stressors can exert wide-ranging effects on the human brain and behavior. Research has improved understanding of how the sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenocortical (HPA) axes respond to stressors and the differential responses that occur depending on stressor type. Although the physiological function of SAM and HPA responses is to promote survival and safety, exaggerated psychobiological reactivity can occur in psychiatric disorders. Exaggerated reactivity may occur more for certain types of stressors, specifically, psychosocial stressors. Understanding stressor effects and how the body regulates these responses can provide insight into ways that psychobiological reactivity can be modulated. Non-invasive neuromodulation is one way that responding to stressors may be altered; research into these interventions may provide further insights into the brain circuits that modulate stress reactivity. This review focuses on the effects of acute psychosocial stressors and how neuromodulation might be effective in altering stress reactivity. Although considerable research into stress interventions focuses on treating pathology, it is imperative to first understand these mechanisms in non-clinical populations; therefore, this review will emphasize populations with no known pathology and consider how these results may translate to those with psychiatric pathologies.
Collapse
Affiliation(s)
| | | | | | - Mark K. Greenwald
- Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
Liu Y, Ren X, Zeng M, Li J, Zhao X, Zhang X, Yang J. Resting-state dynamic functional connectivity predicts the psychosocial stress response. Behav Brain Res 2022; 417:113618. [PMID: 34610370 DOI: 10.1016/j.bbr.2021.113618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022]
Abstract
Acute stress triggers a complex cascade of psychological, physiological, and neural responses, which show large and enduring individual differences. Although previous studies have examined the relationship between the stress response and dynamic features of the brain's resting state, no study has used the brain's dynamic activity in the resting state to predict individual differences in the psychosocial stress response. In the current study, resting-state scans of forty-eight healthy participants were collected, and then their individual acute stress responses during the Montreal Imaging Stress Test (MIST) paradigm were recorded. Results defined a connectivity state (CS) characterized by positive correlations across the whole brain during resting-state that could negatively predict participants' feelings of social evaluative threat during stress tasks. Another CS characterized by negative correlations between the frontal-parietal network (FPN) and almost all other networks, except the dorsal attentional network (DAN), could predict participants' subjective stress, feelings of uncontrollability, and feelings of social evaluative threat. However, no CS could predict participants' salivary cortisol stress response. Overall, these results suggested that the brain state characterized as attentional regulation, linking self-control, and top-down regulation ability, could predict the psychosocial stress response. This study also developed an objective indicator for predicting human stress responses.
Collapse
Affiliation(s)
- Yadong Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xi Ren
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Mei Zeng
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Jiwen Li
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xiaolin Zhao
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Xuehan Zhang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Juan Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Grol M, De Raedt R. The relationship between affective flexibility, spontaneous emotion regulation and the response to induced stress. Behav Res Ther 2021; 143:103891. [PMID: 34091277 DOI: 10.1016/j.brat.2021.103891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 04/06/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Effective emotion regulation contributes to adapting well to challenging situations. One of the proposed cognitive mechanisms underlying emotion regulation is cognitive flexibility in processing of affective material (i.e. affective flexibility). We investigated (n = 118) effects of affective flexibility on the response to a stressor and on spontaneous use of 'adaptive' and 'maladaptive' emotion regulation strategies. Additionally, we examined how emotion regulation influences stress reactivity and recovery. Affective flexibility was measured with a task-switching paradigm in which participants shift attention between affective and non-affective aspects of emotional material. We investigated changes in emotion and heart rate variability to a stress induction. Affective flexibility did not influence the response to stress, but less efficient shifting of attention towards affective aspects of negative information, and more efficient shifting of attention towards non-affective aspects of positive information were related to more use of maladaptive strategies. Emotion regulation strategy use had limited influence on the perceived and actual physiological response to a stress induction, but especially more use of adaptive regulation strategies reduced negative emotional reactivity. Our findings suggest that individual differences in affective flexibility have limited influence on the (acute) response to a stressful event and recovery afterwards, but do influence spontaneous use of emotion regulation strategies.
Collapse
|
6
|
Moulier V, Gaudeau-Bosma C, Thomas F, Isaac C, Thomas M, Durand F, Schenin-King Andrianisaina P, Valabregue R, Laidi C, Benadhira R, Bouaziz N, Januel D. Effect of Intermittent Theta Burst Stimulation on the Neural Processing of Emotional Stimuli in Healthy Volunteers. J Clin Med 2021; 10:jcm10112449. [PMID: 34205840 PMCID: PMC8198492 DOI: 10.3390/jcm10112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intermittent theta burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that has shown to be effective in treatment-resistant depression. Through studying the effect of iTBS on healthy subjects, we wished to attain a greater understanding of its impact on the brain. Our objective was to assess whether 10 iTBS sessions altered the neural processing of emotional stimuli, mood and brain anatomy in healthy subjects. METHODS In this double-blind randomized sham-controlled study, 30 subjects received either active iTBS treatment (10 sessions, two sessions a day) or sham treatment over the left dorsolateral prefrontal cortex. Assessments of mood, structural magnetic resonance imaging (MRI) and functional MRI (fMRI) were performed before and after iTBS sessions. During the fMRI, three different categories of stimuli were presented: positive, negative and neutral photographs. RESULTS This study showed that, during the presentation of negative stimuli (compared with neutral stimuli), 10 sessions of iTBS increased activity in the left anterior insula. However, iTBS did not induce any change in mood, regional gray matter volume or cortical thickness. CONCLUSIONS iTBS modifies healthy subjects' brain activity in a key region that processes emotional stimuli. (AFSSAPS: ID-RCB 2010A01032-37).
Collapse
Affiliation(s)
- Virginie Moulier
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
- Centre Hospitalier du Rouvray, University Department of Psychiatry, 76301 Sotteville-lès-Rouen, France
- Correspondence: ; Tel.: +33-014-309-3232
| | - Christian Gaudeau-Bosma
- Espace Territoriale d’Accompagnement Psychosociale, CH Les Murets, GHT94, 94120 Fontenay sous Bois, France;
| | - Fanny Thomas
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Clémence Isaac
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Maxence Thomas
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Florence Durand
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Palmyre Schenin-King Andrianisaina
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle Épinière—ICM, Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, 75013 Paris, France;
| | - Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, 94028 Créteil, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, 94028 Créteil, France
- UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, 91191 Gif-sur-Yvette, France
- Fondation Fondamental, 94028 Créteil, France
| | - René Benadhira
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Noomane Bouaziz
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| | - Dominique Januel
- Unité de Recherche Clinique, EPS Ville-Evrard, 93332 Neuilly-sur-Marne, France; (F.T.); (C.I.); (M.T.); (F.D.); (P.S.-K.A.); (R.B.); (N.B.); (D.J.)
| |
Collapse
|
7
|
Baeken C, van Beek V, Vanderhasselt MA, Duprat R, Klooster D. Cortical Thickness in the Right Anterior Cingulate Cortex Relates to Clinical Response to Left Prefrontal Accelerated Intermittent Theta Burst Stimulation: An Exploratory Study. Neuromodulation 2021; 24:938-949. [PMID: 33788975 PMCID: PMC8360012 DOI: 10.1111/ner.13380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 12/29/2022]
Abstract
Objectives Accelerated intermittent theta burst stimulation (aiTBS) is a promising treatment option for depressed patients. However, there is a large interindividual variability in clinical effectiveness and individual biomarkers to guide treatment outcome are needed. Materials and Methods Here, the relation between cortical thickness and clinical response (17‐item Hamilton Depression Rating Scale) was studied using anatomical MRI data of 50 depressed patients who were included in a randomized, sham‐controlled, double‐blinded, cross‐over aiTBS design (NCT01832805). Results Baseline cortical thickness in the right caudal part of the anterior cingulate cortex (cACC) was significantly correlated with direct clinical responses in the subgroup who received active aiTBS during the first stimulation week. No correlations were found between baseline cortical thickness and delayed clinical effectiveness. In this particular region, longitudinal changes in cortical thickness were significantly correlated with clinical effectiveness. Furthermore, direct changes in cortical thickness in the right cACC showed predictive potential of delayed clinical responses. Conclusion Cortical thickness within the right cACC might be an important biomarker to predict clinical responses to aiTBS. Additional studies are warranted to substantiate the specific biomarker potential of these parts of the ACC.
Collapse
Affiliation(s)
- Chris Baeken
- Ghent Experimental Psychiatry Laboratory, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Department of Psychiatry, University hospital Brussels, Brussels, Belgium
| | - Vince van Beek
- Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands
| | | | - Romain Duprat
- Department of Psychiatry, Center for the Neuromodulation of Depression and Stress, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Debby Klooster
- Ghent Experimental Psychiatry Laboratory, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
8
|
de Wandel L, Pulopulos MM, Labanauskas V, de Witte S, Vanderhasselt MA, Baeken C. Individual resting-state frontocingular functional connectivity predicts the intermittent theta burst stimulation response to stress in healthy female volunteers. Hum Brain Mapp 2020; 41:5301-5312. [PMID: 33010200 PMCID: PMC7670632 DOI: 10.1002/hbm.25193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Intermittent theta burst stimulation (iTBS) delivered to the dorsolateral prefrontal cortex (DLPFC) has been investigated as a promising treatment for stress and stress‐related mental disorders such as major depression, yet large individual differences in responsiveness demand further exploration and optimization of its effectiveness. Clinical research suggests that resting‐state functional connectivity (rsFC) between the DLPFC and the anterior cingulate cortex (ACC) can predict iTBS treatment response in depression. The present study aimed to investigate whether rsFC between the left DLPFC and ACC subregions could predict the degree to which the stress system is affected by iTBS. After assessment of baseline resting‐state fMRI data, 34 healthy female participants performed the Trier Social Stress Test on two separate days, each followed by active or sham iTBS over the left DLPFC. To evaluate iTBS effects on the stress‐system, salivary cortisol was measured throughout the procedure. Our results showed that a stronger negative correlation between the left DLPFC and the caudal ACC was linked to a larger attenuation of stress‐system sensitivity during active, but not during sham iTBS. In conclusion, based on individual rsFC between left DLPFC and caudal ACC, iTBS could be optimized to more effectively attenuate deregulation of the stress system.
Collapse
Affiliation(s)
- Linde de Wandel
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Matias M Pulopulos
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Department of Psychobiology, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Vytautas Labanauskas
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Sara de Witte
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Chris Baeken
- Department of Head and Skin, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent, Belgium.,Department of Psychiatry, University Hospital UZ Brussel, Brussels, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|