1
|
Simani L, Tozlu C, Lee S, Dworkin J, Ratzan AS, Buyukturkoglu K, Onomichi K, Mata J, Riley CS, Leavitt VM. Longitudinal investigation of neuroimaging changes related to memory decline in multiple sclerosis: Testing a mechanistic model. Mult Scler 2025; 31:207-217. [PMID: 39749572 DOI: 10.1177/13524585241303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
BACKGROUND Memory decline is common in multiple sclerosis (MS), although pathophysiological mechanisms are not fully understood. OBJECTIVE The objective was to investigate the relationship of changes in structural and functional neuroimaging markers to memory decline over 3-year follow-up. METHODS Participants with MS underwent cognitive evaluation and structural, diffusion, and functional 3T magnetic resonance imaging (MRI) scans at baseline and 3-year follow-up. Changes in neuroimaging metrics from baseline to follow-up were compared between memory stable and memory decline groups. Our hypothesis that structural and functional connectivity changes mediate the association of atrophy to memory decline was tested. RESULTS A total of 249 MS patients completed baseline visit; 169 (67.8%) returned at 3-year follow-up. Based on ⩾10% decline, memory decline was observed in 44.4% (n = 75). Those with memory decline showed marginally greater whole-brain volume loss over time compared with those with stable memory performance (p = 0.08). In those with memory decline, changes in white matter tract integrity were related to regional cortical thinning (p < 0.01). Exploratory mediation analysis revealed structural and functional connectivity to mediate the relationship of atrophy to verbal and visual memory decline. CONCLUSION Further work is needed to characterize complex interrelationships of atrophy and structural/functional connectivity changes to memory decline in MS.
Collapse
Affiliation(s)
- Leila Simani
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ceren Tozlu
- Department of Radiology, Weill Cornell Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Jordan Dworkin
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Alexander S Ratzan
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Korhan Buyukturkoglu
- The Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kaho Onomichi
- The Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jennie Mata
- The Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Claire S Riley
- The Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Victoria M Leavitt
- Cognitive Neuroscience Division, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
2
|
Rossi C, Vidaurre D, Costers L, D'hooghe MB, Akbarian F, D'haeseleer M, Woolrich M, Nagels G, Van Schependom J. Disrupted working memory event-related network dynamics in multiple sclerosis. Commun Biol 2024; 7:1592. [PMID: 39614100 DOI: 10.1038/s42003-024-07283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 11/15/2024] [Indexed: 12/01/2024] Open
Abstract
In multiple sclerosis (MS), working memory (WM) impairment can occur soon after disease onset and significantly affects the patient's quality of life. Functional imaging research in MS aims to investigate the neurophysiological underpinnings of WM impairment. In this context, we utilize a data-driven technique, the time delay embedded-hidden Markov model, to extract spectrally defined functional networks in magnetoencephalographic (MEG) data acquired during a WM visual-verbal n-back task. Here, we show that the activation of two networks is altered in relapsing remitting-MS patients. First, the activation of an early theta prefrontal network linked to stimulus encoding and attentional control significantly decreases in MS compared to HC. This diminished activation correlates with reduced accuracy and higher reaction time, suggesting that impaired attention control impacts task performance in MS patients. Secondly, a frontoparietal network characterized by beta coupling is activated between 300 and 600 ms post-stimulus, resembling the event-related P300, a cognitive marker extensively explored in EEG studies. The activation of this network is amplified in patients treated with benzodiazepine, in line with the well-known benzodiazepine-induced beta enhancement. Altogether, the TDE-HMM technique extracts task-relevant functional networks showing disease-specific and treatment-related alterations, revealing potential new markers to assess and track WM impairment in MS.
Collapse
Affiliation(s)
- Chiara Rossi
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| | - Diego Vidaurre
- Center of Functionally Integrative Neuroscience (FNIRS), Aarhus university, Aarhus, Denmark
- OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lars Costers
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- icometrix, Leuven, Belgium
| | | | - Fahimeh Akbarian
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Miguel D'haeseleer
- National MS Center, Melsbroek, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
| | - Mark Woolrich
- OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Guy Nagels
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- UZ Brussel, Department of Neurology, Brussels, Belgium
- St Edmund Hall, University of Oxford, Oxford, United Kingdom
| | - Jeroen Van Schependom
- AIMS lab, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.
- Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
3
|
Jellinger KA. Cognitive impairment in multiple sclerosis: from phenomenology to neurobiological mechanisms. J Neural Transm (Vienna) 2024; 131:871-899. [PMID: 38761183 DOI: 10.1007/s00702-024-02786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated disease of the central nervous system characterized by inflammation, demyelination and chronic progressive neurodegeneration. Among its broad and unpredictable range of clinical symptoms, cognitive impairment (CI) is a common and disabling feature greatly affecting the patients' quality of life. Its prevalence is 20% up to 88% with a wide variety depending on the phenotype of MS, with highest frequency and severity in primary progressive MS. Involving different cognitive domains, CI is often associated with depression and other neuropsychiatric symptoms, but usually not correlated with motor and other deficits, suggesting different pathophysiological mechanisms. While no specific neuropathological data for CI in MS are available, modern research has provided evidence that it arises from the disease-specific brain alterations. Multimodal neuroimaging, besides structural changes of cortical and deep subcortical gray and white matter, exhibited dysfunction of fronto-parietal, thalamo-hippocampal, default mode and cognition-related networks, disruption of inter-network connections and involvement of the γ-aminobutyric acid (GABA) system. This provided a conceptual framework to explain how aberrant pathophysiological processes, including oxidative stress, mitochondrial dysfunction, autoimmune reactions and disruption of essential signaling pathways predict/cause specific disorders of cognition. CI in MS is related to multi-regional patterns of cerebral disturbances, although its complex pathogenic mechanisms await further elucidation. This article, based on systematic analysis of PubMed, Google Scholar and Cochrane Library, reviews current epidemiological, clinical, neuroimaging and pathogenetic evidence that could aid early identification of CI in MS and inform about new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
4
|
Vlieger R, Austin D, Apthorp D, Daskalaki E, Lensky A, Walton-Sonda D, Suominen H, Lueck CJ. The use of event-related potentials in the investigation of cognitive performance in people with Multiple Sclerosis: Systematic review. Brain Res 2024; 1832:148827. [PMID: 38403040 DOI: 10.1016/j.brainres.2024.148827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
A biomarker of cognition in Multiple Sclerosis (MS) that is independent from the response of people with MS (PwMS) to test questions would provide a more holistic assessment of cognitive decline. One suggested method involves event-related potentials (ERPs). This systematic review tried to answer five questions about the use of ERPs in distinguishing PwMS from controls: which stimulus modality, which experimental paradigm, which electrodes, and which ERP components are most discriminatory, and whether amplitude or latency is a better measure. Our results show larger pooled effect sizes for visual stimuli than auditory stimuli, and larger pooled effect sizes for latency measurements than amplitude measurements. We observed great heterogeneity in methods and suggest that future research would benefit from more uniformity in methods and that results should be reported for the individual subtypes of PwMS. With more standardised methods, ERPs have the potential to be developed into a clinical tool in MS.
Collapse
Affiliation(s)
- Robin Vlieger
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia.
| | - Duncan Austin
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Deborah Apthorp
- School of Psychology, Faculty of Medicine and Health, University of New England, Armidale, NSW, Australia; School of Computing, College of Engineering, Computing & Cybernetics, Australian National University, Canberra, ACT, Australia
| | - Elena Daskalaki
- School of Computing, College of Engineering, Computing & Cybernetics, Australian National University, Canberra, ACT, Australia
| | - Artem Lensky
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, Australia; School of Biomedical Engineering, Faculty of Engineering, University of Sydney, Sydney, NSW, Australia
| | - Dianne Walton-Sonda
- The ACT Health Library and Multimedia Service, The Canberra Hospital, Canberra, ACT, Australia
| | - Hanna Suominen
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; School of Computing, College of Engineering, Computing & Cybernetics, Australian National University, Canberra, ACT, Australia; Department of Computing, University of Turku, Turku, Finland
| | - Christian J Lueck
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Zivadinov R, Bergsland N, Jakimovski D, Weinstock-Guttman B, Lorefice L, Schoonheim MM, Morrow SA, Ann Picone M, Pardo G, Zarif M, Gudesblatt M, Nicholas JA, Smith A, Hunter S, Newman S, AbdelRazek MA, Hoti I, Riolo J, Silva D, Fuchs TA, Dwyer MG, Hb Benedict R. Thalamic atrophy and dysconnectivity are associated with cognitive impairment in a multi-center, clinical routine, real-word study of people with relapsing-remitting multiple sclerosis. Neuroimage Clin 2024; 42:103609. [PMID: 38718640 PMCID: PMC11098945 DOI: 10.1016/j.nicl.2024.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Prior research has established a link between thalamic pathology and cognitive impairment (CI) in people with multiple sclerosis (pwMS). However, the translation of these findings to pwMS in everyday clinical settings has been insufficient. OBJECTIVE To assess which global and/or thalamic imaging biomarkers can be used to identify pwMS at risk for CI and cognitive worsening (CW) in a real-world setting. METHODS This was an international, multi-center (11 centers), longitudinal, retrospective, real-word study of people with relapsing-remitting MS (pwRRMS). Brain MRI exams acquired at baseline and follow-up were collected. Cognitive status was evaluated using the Symbol Digit Modalities Test (SDMT). Thalamic volume (TV) measurement was performed on T2-FLAIR, as well as on T1-WI, when available. Thalamic dysconnectivity, T2-lesion volume (T2-LV), and volumes of gray matter (GM), whole brain (WB) and lateral ventricles (LVV) were also assessed. RESULTS 332 pwMS were followed for an average of 2.8 years. At baseline, T2-LV, LVV, TV and thalamic dysconnectivity on T2-FLAIR (p < 0.016), and WB, GM and TV volumes on T1-WI (p < 0.039) were significantly worse in 90 (27.1 %) CI vs. 242 (62.9 %) non-CI pwRRMS. Greater SDMT decline over the follow-up was associated with lower baseline TV on T2-FLAIR (standardized β = 0.203, p = 0.002) and greater thalamic dysconnectivity (standardized β = -0.14, p = 0.028) in a linear regression model. CONCLUSIONS PwRRMS with thalamic atrophy and worse thalamic dysconnectivity present more frequently with CI and experience greater CW over mid-term follow-up in a real-world setting.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, United States.
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States
| | - Bianca Weinstock-Guttman
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York and Kaleida Health, BGH, Buffalo, NY, United States
| | - Lorena Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, University of Cagliari, Cagliari, Italy
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy & Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Sarah A Morrow
- Schulich School of Medicine and Dentistry, London Health Sciences Centre, University Hospital, London, Ontario, CA, Canada; Department of Clinical Neurological Sciences, Hotchkiss Brain Institute, University of Calgary, Canada
| | | | - Gabriel Pardo
- Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Myassar Zarif
- South Shore Neurologic Associates NYU Langone, Patchogue, NY, United States
| | - Mark Gudesblatt
- South Shore Neurologic Associates NYU Langone, Patchogue, NY, United States
| | | | - Andrew Smith
- OhioHealth MS Center, Riverside Methodist Hospital, Columbus, OH, United States
| | - Samuel Hunter
- Advanced Neurosciences Institute, Franklin, TN, United States
| | - Stephen Newman
- Island Neurological Association, Plainview, NY, United States
| | - Mahmoud A AbdelRazek
- Mount Auburn Hospital, Harvard Medical School, United States; Atrium Health Neurosciences Institute, Wake Forest University School of Medicine, United States
| | - Ina Hoti
- Mount Auburn Hospital, Harvard Medical School, United States
| | - Jon Riolo
- Bristol Myers Squibb, Summit, NJ, United States
| | - Diego Silva
- Bristol Myers Squibb, Summit, NJ, United States
| | - Tom A Fuchs
- MS Center Amsterdam, Anatomy & Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, NY, United States; Center for Biomedical Imaging at Clinical and Translational Science Institute, University of Buffalo, State University of New York, NY, United States
| | - Ralph Hb Benedict
- Jacobs Multiple Sclerosis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York and Kaleida Health, BGH, Buffalo, NY, United States
| |
Collapse
|
6
|
Nauta IM, Kessels RPC, Bertens D, Stam CJ, Strijbis EEM, Hillebrand A, Fasotti L, Uitdehaag BMJ, Hulst HE, Speckens AEM, Schoonheim MM, de Jong BA. Neurophysiological brain function predicts response to cognitive rehabilitation and mindfulness in multiple sclerosis: a randomized trial. J Neurol 2024; 271:1649-1662. [PMID: 38278979 PMCID: PMC10972975 DOI: 10.1007/s00415-024-12183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Cognitive treatment response varies highly in people with multiple sclerosis (PwMS). Identification of mechanisms is essential for predicting response. OBJECTIVES This study aimed to investigate whether brain network function predicts response to cognitive rehabilitation therapy (CRT) and mindfulness-based cognitive therapy (MBCT). METHODS PwMS with cognitive complaints completed CRT, MBCT, or enhanced treatment as usual (ETAU) and performed three measurements (baseline, post-treatment, 6-month follow-up). Baseline magnetoencephalography (MEG) measures were used to predict treatment effects on cognitive complaints, personalized cognitive goals, and information processing speed (IPS) using mixed models (secondary analysis REMIND-MS study). RESULTS We included 105 PwMS (96 included in prediction analyses; 32 CRT, 31 MBCT, 33 ETAU), and 56 healthy controls with baseline MEG. MEG did not predict reductions in complaints. Higher connectivity predicted better goal achievement after MBCT (p = 0.010) and CRT (p = 0.018). Lower gamma power (p = 0.006) and higher connectivity (p = 0.020) predicted larger IPS benefits after MBCT. These MEG predictors indicated worse brain function compared to healthy controls (p < 0.05). CONCLUSIONS Brain network function predicted better cognitive goal achievement after MBCT and CRT, and IPS improvements after MBCT. PwMS with neuronal slowing and hyperconnectivity were most prone to show treatment response, making network function a promising tool for personalized treatment recommendations. TRIAL REGISTRATION The REMIND-MS study was prospectively registered in the Dutch Trial registry (NL6285; https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6459 ).
Collapse
Affiliation(s)
- Ilse M Nauta
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands.
| | - Roy P C Kessels
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
- Vincent Van Gogh Institute for Psychiatry, Venray, The Netherlands
- Department of Medical Psychology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Dirk Bertens
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
| | - Cornelis J Stam
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- MEG Center, Clinical Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Eva E M Strijbis
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- MEG Center, Clinical Neurophysiology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Luciano Fasotti
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Klimmendaal Rehabilitation Center, Arnhem, The Netherlands
| | - Bernard M J Uitdehaag
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hanneke E Hulst
- Health, Medical and Neuropsychology Unit, Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Anne E M Speckens
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Menno M Schoonheim
- MS Center Amsterdam, Anatomy and Neurosciences, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Brigit A de Jong
- MS Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Stam CJ. Hub overload and failure as a final common pathway in neurological brain network disorders. Netw Neurosci 2024; 8:1-23. [PMID: 38562292 PMCID: PMC10861166 DOI: 10.1162/netn_a_00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/26/2023] [Indexed: 04/04/2024] Open
Abstract
Understanding the concept of network hubs and their role in brain disease is now rapidly becoming important for clinical neurology. Hub nodes in brain networks are areas highly connected to the rest of the brain, which handle a large part of all the network traffic. They also show high levels of neural activity and metabolism, which makes them vulnerable to many different types of pathology. The present review examines recent evidence for the prevalence and nature of hub involvement in a variety of neurological disorders, emphasizing common themes across different types of pathology. In focal epilepsy, pathological hubs may play a role in spreading of seizure activity, and removal of such hub nodes is associated with improved outcome. In stroke, damage to hubs is associated with impaired cognitive recovery. Breakdown of optimal brain network organization in multiple sclerosis is accompanied by cognitive dysfunction. In Alzheimer's disease, hyperactive hub nodes are directly associated with amyloid-beta and tau pathology. Early and reliable detection of hub pathology and disturbed connectivity in Alzheimer's disease with imaging and neurophysiological techniques opens up opportunities to detect patients with a network hyperexcitability profile, who could benefit from treatment with anti-epileptic drugs.
Collapse
Affiliation(s)
- Cornelis Jan Stam
- Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Menkyova I, Stastna D, Novotna K, Saling M, Lisa I, Vesely T, Slezakova D, Valkovic P. Effect of Tai-chi on balance, mood, cognition, and quality of life in women with multiple sclerosis: A one-year prospective study. Explore (NY) 2024; 20:188-195. [PMID: 37596158 DOI: 10.1016/j.explore.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
INTRODUCTION One of the most debilitating problems encountered by people with multiple sclerosis (MS) is the loss of balance and coordination. Our study aimed to comprehensively evaluate the effectiveness of one year of Tai-chi exercise in patients with MS using both subjective and objective methods, including posturography. METHODS This was a single-group longitudinal one-year study performed from the 1st of January 2019 to the 1st of January 2020. The primary outcomes of interest were the Mini-Balance Evaluation Systems Test (Mini-BESTest) and static posturography measures as objective methods to detect subtle changes associated with postural control/balance impairment. Secondary outcomes were measures of depression, anxiety, cognitive performance, and quality of life. All objective and subjective parameters were assessed four times: at baseline, and after three, six and 12 months of regular Tai-chi training. The difference was calculated as a subtraction of baseline values from every timepoint value for each measurement. If the normality test was passed, parametric one-sample t-test was used, if failed, Wilcoxon signed ranks test was used to test the difference between the baseline and each timepoint. Alpha was set to 0.017 using Bonferroni correction for multiple comparisons. RESULTS Out of 25 patients with MS enrolled, 15 women with MS (mean age 44.27 years) were included for statistical analyses after completing the 12-month program. After 12 months, significant improvements were found in all objective balance and gait tests: Mini-BESTest (p<0.001), static posturography measures (total area of the centre of foot pressure - TA; p = 0.015), 25 Feet Walk Test (25FWT; p = 0.001), anxiety (Beck Anxiety Inventory - BAI; p = 0.005) and cognition tests (Paced Auditory Serial Addition Test - PASAT; p = 0.003). Measures of depression (Beck Depression Inventory - BDI; p = 0.071), cognition (Symbol Digit Modalities Test - SDMT; p = 0.079), and health-related quality of life (European Quality of Life 5-Dimensions Questionnaire - EQ-5D-5L; p = 0.095) showed a trend of improvement but were not significant, which could be the result of a small sample and increased bias due the type II error. CONCLUSION According to these preliminary results, this study indicates the possible beneficial effects of long-term Tai-chi training on patients with MS. Although these findings need to be confirmed by further studies with a larger sample of participants of both genders and require more rigorous randomized controlled trials (RCT) design, our findings support the recommendation of regular and long-term Tai-chi exercise in patients with MS. CLINICALTRIALS GOV IDENTIFIER (RETROSPECTIVELY REGISTERED) NCT05474209.
Collapse
Affiliation(s)
- Ingrid Menkyova
- Second Department of Neurology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovakia; Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czechia
| | - Dominika Stastna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czechia
| | - Klara Novotna
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czechia
| | - Marian Saling
- Second Department of Neurology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovakia
| | - Iveta Lisa
- Second Department of Neurology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovakia
| | - Tomas Vesely
- Department of Information and Communication Technologies in Medicine, Faculty of Biomedical Engineering, Czech Technical University in Prague, Czechia
| | - Darina Slezakova
- Second Department of Neurology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovakia
| | - Peter Valkovic
- Second Department of Neurology, Faculty of Medicine, Comenius University Bratislava, University Hospital Bratislava, Slovakia; Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
9
|
Tankisi H, Versace V, Kuppuswamy A, Cole J. The role of clinical neurophysiology in the definition and assessment of fatigue and fatigability. Clin Neurophysiol Pract 2023; 9:39-50. [PMID: 38274859 PMCID: PMC10808861 DOI: 10.1016/j.cnp.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024] Open
Abstract
Though a common symptom, fatigue is difficult to define and investigate, occurs in a wide variety of neurological and systemic disorders, with differing pathological causes. It is also often accompanied by a psychological component. As a symptom of long-term COVID-19 it has gained more attention. In this review, we begin by differentiating fatigue, a perception, from fatigability, quantifiable through biomarkers. Central and peripheral nervous system and muscle disorders associated with these are summarised. We provide a comprehensive and objective framework to help identify potential causes of fatigue and fatigability in a given disease condition. It also considers the effectiveness of neurophysiological tests as objective biomarkers for its assessment. Among these, twitch interpolation, motor cortex stimulation, electroencephalography and magnetencephalography, and readiness potentials will be described for the assessment of central fatigability, and surface and needle electromyography (EMG), single fibre EMG and nerve conduction studies for the assessment of peripheral fatigability. The purpose of this review is to guide clinicians in how to approach fatigue, and fatigability, and to suggest that neurophysiological tests may allow an understanding of their origin and interactions. In this way, their differing types and origins, and hence their possible differing treatments, may also be defined more clearly.
Collapse
Affiliation(s)
- Hatice Tankisi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Denmark
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University (PMU), Vipiteno-Sterzing, Italy
| | - Annapoorna Kuppuswamy
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK
- Department of Biomedical Sciences, University of Leeds, UK
| | - Jonathan Cole
- Clinical Neurophysiology, University Hospitals Dorset (Poole), UK
- University of Bournemouth, Poole, UK
| |
Collapse
|
10
|
Jakimovski D, Zivadinov R, Weinstock Z, Fuchs TA, Bartnik A, Dwyer MG, Bergsland N, Weinstock-Guttman B, Benedict RHB. Cortical thickness and cognition in older people with multiple sclerosis. J Neurol 2023; 270:5223-5234. [PMID: 37634161 DOI: 10.1007/s00415-023-11945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The structural changes associated with cognitive performance in older people with multiple sclerosis (PwMS; age ≥ 50 years old) remain unknown. OBJECTIVE To determine the relationship between whole-brain (WBV), thalamus as the largest deep gray matter nuclei, and cortex-specific volume measurements with both cognitive impairment and numerical performance in older PwMS. The main hypothesis is that cognitive impairment (CI) in older PwMS is explained by cortical thinning in addition to global and thalamic neurodegenerative changes. METHODS A total of 101 older PwMS underwent cognitive and neuroimaging assessment. Cognitive assessment included tests established as sensitive in MS samples (Minimal Assessment of Cognitive Function in MS; MACFIMS), as well as those tests often utilized in Alzheimer's dementia studies (Wechsler's Memory Scale, Boston Naming Test, Visual Motor Integration and language). Cognitive impairment (CI) was based on -1.5 standard deviations in at least 2 cognitive domains (executive function, learning and memory, spatial processing, processing speed and working memory and language) when compared to healthy controls. WBV and thalamic volume were calculated using SIENAX/FIRST and cortical thickness using FreeSurfer. Differences in cortical thickness between CI and cognitively preserved (CP) were determined using age, sex, education, depression and WBV-adjusted analysis of covariance (ANCOVA). The relationship between domain-specific cognitive performance and cortical thickness was analyzed by linear regression models adjusted for age, sex, education, depression, WBV and thalamic volume. Benjamini-Hochberg-adjusted p-values lower than 0.05 were considered significant. RESULTS The average age of the study population was 62.6 (5.9) years old. After adjustment, CI PwMS had significantly thinner left fusiform (p = 0.0003), left inferior (p = 0.0032), left transverse (p = 0.0013), and bilateral superior temporal gyri (p = 0.002 and p = 0.0011) when compared to CP PwMS. After adjusting for age, sex, education, depression WBV, and thalamic volume, CI status was additionally predicted by the thickness of the left fusiform (p = 0.001) and left cuneus gyri (p = 0.004). After the adjustment, SDMT scores were additionally associated with left fusiform gyrus (p < 0.001) whereas letter-based verbal fluency performance with left pars opercularis gyrus (p < 0.001). CONCLUSION In addition to global and thalamic neurodegenerative changes, the presence of CI in older PwMS is additionally explained by the thickness of multiple cortical regions.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Zachary Weinstock
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Alexander Bartnik
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Heitmann H, Zebhauser PT, Hohn VD, Henningsen P, Ploner M. Resting-state EEG and MEG biomarkers of pathological fatigue - A transdiagnostic systematic review. Neuroimage Clin 2023; 39:103500. [PMID: 37632989 PMCID: PMC10474495 DOI: 10.1016/j.nicl.2023.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Fatigue is a highly prevalent and disabling symptom of many disorders and syndromes, resulting from different pathomechanisms. However, whether and how different mechanisms converge and result in similar symptomatology is only partially understood, and transdiagnostic biomarkers that could further the diagnosis and treatment of fatigue are lacking. We, therefore, performed a transdiagnostic systematic review (PROSPERO: CRD42022330113) of quantitative resting-state electroencephalography (EEG) and magnetoencephalography (MEG) studies in adult patients suffering from pathological fatigue in different disorders. Studies investigating fatigue in healthy participants were excluded. The risk of bias was assessed using a modified Newcastle-Ottawa Scale. Semi-quantitative data synthesis was conducted using modified albatross plots. After searching MEDLINE, Web of Science Core Collection, and EMBASE, 26 studies were included. Cross-sectional studies revealed increased brain activity at theta frequencies and decreased activity at alpha frequencies as potential diagnostic biomarkers. However, the risk of bias was high in many studies and domains. Together, this transdiagnostic systematic review synthesizes evidence on how resting-state M/EEG might serve as a diagnostic biomarker of pathological fatigue. Beyond, this review might help to guide future M/EEG studies on the development of fatigue biomarkers.
Collapse
Affiliation(s)
- Henrik Heitmann
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany; Department of Psychosomatic Medicine and Psychotherapy, School of Medicine, Technical University of Munich (TUM), Germany
| | - Paul Theo Zebhauser
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany
| | - Vanessa D Hohn
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany
| | - Peter Henningsen
- Department of Psychosomatic Medicine and Psychotherapy, School of Medicine, Technical University of Munich (TUM), Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Germany; TUM-Neuroimaging Center, School of Medicine, Technical University of Munich (TUM), Germany.
| |
Collapse
|
12
|
Abdolmaleki A, Kondori BJ, Raei M, Ghaleh HEG. Cell therapy procedure using anti-inflammatory macrophage M2 can potentially reduce Clinical Score in animals with Experimental Autoimmune Encephalomyelitis: A preclinical systematic review and meta-analysis study. Fundam Clin Pharmacol 2023; 37:215-225. [PMID: 36300567 DOI: 10.1111/fcp.12844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
Abstract
Macrophage M2 (MP2)-based cell therapy is a novel medicinal treatment for animals with Experimental Autoimmune Encephalomyelitis (EAE) as an experimental model of multiple sclerosis (MS). This systematic review and meta-analysis study was designed to assess the overall therapeutic effects of MP2 cell therapy on Clinical Score and motor impairment in EAE-induced animals. All experiments on MP2 cell therapy in animals with EAE were gathered (by October 2, 2022) from English (PubMed, Scopus, WoS, Science Direct, and ISC) and Persian (MagIran and SID) databases. The searching strategy was designed using "Experimental Autoimmune Encephalomyelitis," "Multiple Sclerosis," and "Macrophage M2" keywords. Following primary and secondary screenings, eligible papers were selected based on the PRISMA 2020 guideline, and the study quality was assessed using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) checklist. The difference in means of Clinical Score (score 0-5) as the effect size (ES) was analyzed based on the random effect model (CMA software, v.2). Subgrouping (EAE phases of Onset, Peak, and Recovery) was applied, and I2 index was used to assess the heterogeneity index. Publication bias and sensitivity indices were also evaluated. P < 0.05 was considered significant, and the confidence interval (CI) was determined 95%. Among 22 gathered papers, medium to high quality studies were selected for meta-analysis. Difference in means, P value, and I2 for Onset, Peak, and Recovery phases were 0.082 (CI95%: -0.323-0.159, P value: 0.504, I2 : 67.961%), -0.606 (CI95%: -1.518 to -0.305, P value: 0.192, I2 : 96.070%), and -1.103 (CI95%: -1.390 to -0.816, P value: 0.000, I2 : 30.880%), respectively and Overall Effect was found -0.509 (CI95%: -0.689 to -0.328, P value < 0.001). Also, P value (two-tailed) indices for publication bias were 0.366 and 0.583 for Egger's regression intercept and Begg rank correlation, respectively. The P value for sensitivity was detected 0.003. Cell therapy procedure using MP2 can potentially alleviate the Clinical Scores Index and correct the motor defects in Recovery phase of EAE animals. In healthy mice, the brain and myelin surrounding neurons are in a healthy and physiological state (1). To evaluate MS in humans, it is necessary to model this type of disease in animals using EAE procedure through subcutaneous injection of CFA, MOG35-55 , MT, and Pert. Thus, inflammation and autoimmunity occur, which finally lead to myelin destruction and motor symptoms (2). By aspiration of progenitor cells available in bone marrow, the MP2 can be isolated and cultured. By activation of these types of cells, a rich collection of MP2 can be prepared for the cell-therapy process (3). After injection through the tail vein or intra-peritoneal procedure, these cells can be located in CNS through crossing from the BBB. They begin their anti-inflammatory activities and help repair the damaged myelin (4). Eventually, the clinical symptoms can be modified considerably, and the animal motor function improves (5). CFA, complete Freund's adjuvant; MOG35-55 , myelin oligodendrocyte glycoprotein; MT, Mycobacterium tuberculosis; Pert, pertussis; EAE, Experimental Autoimmune Encephalomyelitis; BM, bone marrow; MP2, macrophage M2; and BBB, blood brain barrier.
Collapse
Affiliation(s)
- Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
13
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
14
|
Has Silemek AC, Nolte G, Pöttgen J, Engel AK, Heesen C, Gold SM, Stellmann JP. Topological reorganization of brain network might contribute to the resilience of cognitive functioning in mildly disabled relapsing remitting multiple sclerosis. J Neurosci Res 2023; 101:143-161. [PMID: 36263462 DOI: 10.1002/jnr.25135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease which leads to impairment in several functional systems including cognition. Alteration of brain networks is linked to disability and its progression. However, results are mostly cross-sectional and yet contradictory as putative adaptive and maladaptive mechanisms were found. Here, we aimed to explore longitudinal reorganization of brain networks over 2-years by combining diffusion tensor imaging (DTI), resting-state functional MRI (fMRI), magnetoencephalography (MEG), and a comprehensive neuropsychological-battery. In 37 relapsing-remitting MS (RRMS) and 39 healthy-controls, cognition remained stable over-time. We reconstructed network models based on the three modalities and analyzed connectivity in relation to the hierarchical topology and functional subnetworks. Network models were compared across modalities and in their association with cognition using linear-mixed-effect-regression models. Loss of hub connectivity and global reduction was observed on a structural level over-years (p < .010), which was similar for functional MEG-networks but not for fMRI-networks. Structural hub connectivity increased in controls (p = .044), suggesting a physiological mechanism of healthy aging. Despite a general loss in structural connectivity in RRMS, hub connectivity was preserved (p = .002) over-time in default-mode-network (DMN). MEG-networks were similar to DTI and weakly correlated with fMRI in MS (p < .050). Lower structural (β between .23-.33) and both lower (β between .40-.59) and higher functional connectivity (β = -.54) in DMN was associated with poorer performance in attention and memory in RRMS (p < .001). MEG-networks involved no association with cognition. Here, cognitive stability despite ongoing neurodegeneration might indicate a resilience mechanism of DMN hubs mimicking a physiological reorganization observed in healthy aging.
Collapse
Affiliation(s)
- Arzu Ceylan Has Silemek
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Nolte
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Pöttgen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Heesen
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Klinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan M Gold
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health (BIH), Klinik für Psychiatrie & Psychotherapie und Medizinische Klinik m.S. Psychosomatik, Campus Benjamin Franklin (CBF), Berlin, Germany
| | - Jan-Patrick Stellmann
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,APHM, Hopital de la Timone, CEMEREM, Marseille, France.,Aix-Marseille Université, CNRS, CRMBM, UMR 7339, Marseille, France
| |
Collapse
|
15
|
Radial diffusivity reflects general decline rather than specific cognitive deterioration in multiple sclerosis. Sci Rep 2022; 12:21771. [PMID: 36526708 PMCID: PMC9758146 DOI: 10.1038/s41598-022-26204-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Advanced structural brain imaging techniques, such as diffusion tensor imaging (DTI), have been used to study the relationship between DTI-parameters and cognitive scores in multiple sclerosis (MS). In this study, we assessed cognitive function in 61 individuals with MS and a control group of 35 healthy individuals with the Symbol Digit Modalities Test, the California Verbal Learning Test-II, the Brief Visuospatial Memory Test-Revised, the Controlled Oral Word Association Test, and Stroop-test. We also acquired diffusion-weighted images (b = 1000; 32 directions), which were processed to obtain the following DTI scalars: fractional anisotropy, mean, axial, and radial diffusivity. The relation between DTI scalars and cognitive parameters was assessed through permutations. Although fractional anisotropy and axial diffusivity did not correlate with any of the cognitive tests, mean and radial diffusivity were negatively correlated with all of these tests. However, this effect was not specific to any specific white matter tract or cognitive test and demonstrated a general effect with only low to moderate individual voxel-based correlations of <0.6. Similarly, lesion and white matter volume show a general effect with medium to high voxel-based correlations of 0.5-0.8. In conclusion, radial diffusivity is strongly related to cognitive impairment in MS. However, the strong associations of radial diffusivity with both cognition and whole brain lesion volume suggest that it is a surrogate marker for general decline in MS, rather than a marker for specific cognitive functions.
Collapse
|
16
|
Siems M, Tünnerhoff J, Ziemann U, Siegel M. Multistage classification identifies altered cortical phase- and amplitude-coupling in Multiple Sclerosis. Neuroimage 2022; 264:119752. [PMID: 36400377 PMCID: PMC9771829 DOI: 10.1016/j.neuroimage.2022.119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022] Open
Abstract
Distinguishing groups of subjects or experimental conditions in a high-dimensional feature space is a common goal in modern neuroimaging studies. Successful classification depends on the selection of relevant features as not every neuronal signal component or parameter is informative about the research question at hand. Here, we developed a novel unsupervised multistage analysis approach that combines dimensionality reduction, bootstrap aggregating and multivariate classification to select relevant neuronal features. We tested the approach by identifying changes of brain-wide electrophysiological coupling in Multiple Sclerosis. Multiple Sclerosis is a demyelinating disease of the central nervous system that can result in cognitive decline and physical disability. However, related changes in large-scale brain interactions remain poorly understood and corresponding non-invasive biomarkers are sparse. We thus compared brain-wide phase- and amplitude-coupling of frequency specific neuronal activity in relapsing-remitting Multiple Sclerosis patients (n = 17) and healthy controls (n = 17) using magnetoencephalography. Changes in this dataset included both, increased and decreased phase- and amplitude-coupling in wide-spread, bilateral neuronal networks across a broad range of frequencies. These changes allowed to successfully classify patients and controls with an accuracy of 84%. Furthermore, classification confidence predicted behavioral scores of disease severity. In sum, our results unravel systematic changes of large-scale phase- and amplitude coupling in Multiple Sclerosis. Furthermore, our results establish a new analysis approach to efficiently contrast high-dimensional neuroimaging data between experimental groups or conditions.
Collapse
Affiliation(s)
- Marcus Siems
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany,Centre for Integrative Neuroscience, University of Tübingen, Germany,MEG Center, University of Tübingen, Germany,Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Correspondence author at: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| | - Johannes Tünnerhoff
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany,Centre for Integrative Neuroscience, University of Tübingen, Germany,MEG Center, University of Tübingen, Germany,Correspondence author at: Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
17
|
Leavitt VM, Dworkin JD, Buyukturkoglu K, Riley CS, Ritchey M. Summary metrics of memory subnetwork functional connectivity alterations in multiple sclerosis. Mult Scler 2022; 28:1963-1972. [PMID: 35658737 DOI: 10.1177/13524585221099169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Memory dysfunction is common in multiple sclerosis (MS); mechanistic understanding of its causes is lacking. Large-scale network resting-state functional connectivity (RSFC) is sensitive to memory dysfunction. OBJECTIVE We derived and tested summary metrics of memory network RSFC. METHODS Cognitive data and 3T magnetic resonance imaging (MRI) scans were collected from 235 MS patients and 35 healthy controls (HCs). Index scores were calculated as RSFC within (anteriority index, AntI) and between (integration index, IntI) dorsomedial anterior temporal and medial temporal memory subnetworks. Group differences in index expression were evaluated. Associations between index scores and memory/non-memory cognition were evaluated; relationships between T2 lesion volume (T2LV) and index scores were assessed. RESULTS Index scores were related to memory and T2LV in MS patients, who showed marginally elevated AntI relative to HC (p = 0.06); no group differences were found for IntI. Better memory was associated with higher AntI (β = 0.15, p = 0.018) and IntI (β = 0.16, p = 0.014). No associations were found for non-memory cognition. Higher T2LV was associated with higher AntI and IntI; exploratory mediation analysis revealed significant inconsistent mediation, that is, higher index scores partially suppressed the negative association between T2LV and memory. CONCLUSION Summary, within-subject metrics permit replication and circumvent challenges of traditional (incommensurate) RSFC variables to advance development of mechanistic models of memory dysfunction in MS.
Collapse
Affiliation(s)
- Victoria M Leavitt
- Translational Cognitive Neuroscience Laboratory, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA/Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jordan D Dworkin
- Department of Psychiatry, Columbia University and the New York State Psychiatric Institute, New York, NY, USA
| | - Korhan Buyukturkoglu
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Claire S Riley
- Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA/Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maureen Ritchey
- Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
18
|
Van Dyck D, Deconinck N, Aeby A, Baijot S, Coquelet N, Trotta N, Rovai A, Goldman S, Urbain C, Wens V, De Tiège X. Atypical resting-state functional brain connectivity in children with developmental coordination disorder. Neuroimage Clin 2021; 33:102928. [PMID: 34959048 PMCID: PMC8856907 DOI: 10.1016/j.nicl.2021.102928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Children with developmental coordination disorder (DCD) present lower abilities to acquire and execute coordinated motor skills. DCD is frequently associated with visual perceptual (with or without motor component) impairments. This magnetoencephalography (MEG) study compares the brain resting-state functional connectivity (rsFC) and spectral power of children with and without DCD. 29 children with DCD and 28 typically developing (TD) peers underwent 2 × 5 min of resting-state MEG. Band-limited power envelope correlation and spectral power were compared between groups using a functional connectome of 59 nodes from eight resting-state networks. Correlation coefficients were calculated between fine and gross motor activity, visual perceptual and visuomotor abilities measures on the one hand, and brain rsFC and spectral power on the other hand. Nonparametric statistics were used. Significantly higher rsFC between nodes of the visual, attentional, frontoparietal, default-mode and cerebellar networks was observed in the alpha (maximum statistics, p = .0012) and the low beta (p = .0002) bands in children with DCD compared to TD peers. Lower visuomotor performance (copying figures) was associated with stronger interhemispheric rsFC within sensorimotor areas and power in the cerebellum (right lobule VIII). Children with DCD showed increased rsFC mainly in the dorsal extrastriate visual brain system and the cerebellum. However, this increase was not associated with their coordinated motor/visual perceptual abilities. This enhanced functional brain connectivity could thus reflect a characteristic brain trait of children with DCD compared to their TD peers. Moreover, an interhemispheric compensatory process might be at play to perform visuomotor task within the normative range.
Collapse
Affiliation(s)
- Dorine Van Dyck
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Nicolas Deconinck
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Simon Baijot
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola (HUDERF), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Charline Urbain
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Neuropsychology and Functional Neuroimaging Research Group (UR2NF) at Center for Research in Cognition and Neurosciences (CRCN) and ULB Neurosciences Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Xavier De Tiège
- Laboratoire de Cartographie Fonctionnelle du Cerveau (LCFC), ULB Neuroscience Institute (UNI), Université libre de Bruxelles (ULB), Brussels, Belgium; Clinics of Functional Neuroimaging, Service of Nuclear Medicine, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Mardaniyan Ghahfarrokhi M, Banitalebi E, Faramarzi M, Motl R. Feasibility and efficacy of home-based neurofunctional exercise vs. resistance exercise programs for ambulatory disability of multiple sclerosis patients with cognitive impairment. Mult Scler Relat Disord 2021; 58:103400. [DOI: 10.1016/j.msard.2021.103400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/26/2023]
|
20
|
Nij Bijvank JA, Strijbis EMM, Nauta IM, Kulik SD, Balk LJ, Stam CJ, Hillebrand A, Geurts JJG, Uitdehaag BMJ, van Rijn LJ, Petzold A, Schoonheim MM. Impaired saccadic eye movements in multiple sclerosis are related to altered functional connectivity of the oculomotor brain network. Neuroimage Clin 2021; 32:102848. [PMID: 34624635 PMCID: PMC8503580 DOI: 10.1016/j.nicl.2021.102848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
Impaired eye movements in multiple sclerosis (MS) and functional connectivity (FC) Eye movements related to altered FC of the oculomotor brain network. Lower (beta band) and higher (theta/delta band) FC related to abnormal eye movements. Regional changes were more informative than whole-network measures. Eye movement parameters also related to disability and cognitive dysfunction.
Background Impaired eye movements in multiple sclerosis (MS) are common and could represent a non-invasive and accurate measure of (dys)functioning of interconnected areas within the complex brain network. The aim of this study was to test whether altered saccadic eye movements are related to changes in functional connectivity (FC) in patients with MS. Methods Cross-sectional eye movement (pro-saccades and anti-saccades) and magnetoencephalography (MEG) data from the Amsterdam MS cohort were included from 176 MS patients and 33 healthy controls. FC was calculated between all regions of the Brainnetome atlas in six conventional frequency bands. Cognitive function and disability were evaluated by previously validated measures. The relationships between saccadic parameters and both FC and clinical scores in MS patients were analysed using multivariate linear regression models. Results In MS pro- and anti-saccades were abnormal compared to healthy controls A relationship of saccadic eye movements was found with FC of the oculomotor network, which was stronger for regional than global FC. In general, abnormal eye movements were related to higher delta and theta FC but lower beta FC. Strongest associations were found for pro-saccadic latency and FC of the precuneus (beta band β = -0.23, p = .006), peak velocity and FC of the parietal eye field (theta band β = -0.25, p = .005) and gain and FC of the inferior frontal eye field (theta band β = -0.25, p = .003). Pro-saccadic latency was also strongly associated with disability scores and cognitive dysfunction. Conclusions Impaired saccadic eye movements were related to functional connectivity of the oculomotor network and clinical performance in MS. This study also showed that, in addition to global network connectivity, studying regional changes in MEG studies could yield stronger correlations.
Collapse
Affiliation(s)
- J A Nij Bijvank
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands.
| | - E M M Strijbis
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - I M Nauta
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - S D Kulik
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - L J Balk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - C J Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - A Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and Magnetoencephalography Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - J J G Geurts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| | - B M J Uitdehaag
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - L J van Rijn
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Onze Lieve Vrouwe Gasthuis, Department of Ophthalmology, Amsterdam, the Netherlands
| | - A Petzold
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology, MS Center and Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Ophthalmology, Neuro-ophthalmology Expertise Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Moorfields Eye Hospital, The National Hospital for Neurology and Neurosurgery and the UCL Queen Square Institute of Neurology, London, United Kingdom
| | - M M Schoonheim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Naeije G, Coquelet N, Wens V, Goldman S, Pandolfo M, De Tiège X. Age of onset modulates resting-state brain network dynamics in Friedreich Ataxia. Hum Brain Mapp 2021; 42:5334-5344. [PMID: 34523778 PMCID: PMC8519851 DOI: 10.1002/hbm.25621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 02/06/2023] Open
Abstract
This magnetoencephalography (MEG) study addresses (i) how Friedreich ataxia (FRDA) affects the sub‐second dynamics of resting‐state brain networks, (ii) the main determinants of their dynamic alterations, and (iii) how these alterations are linked with FRDA‐related changes in resting‐state functional brain connectivity (rsFC) over long timescales. For that purpose, 5 min of resting‐state MEG activity were recorded in 16 FRDA patients (mean age: 27 years, range: 12–51 years; 10 females) and matched healthy subjects. Transient brain network dynamics was assessed using hidden Markov modeling (HMM). Post hoc median‐split, nonparametric permutations and Spearman rank correlations were used for statistics. In FRDA patients, a positive correlation was found between the age of symptoms onset (ASO) and the temporal dynamics of two HMM states involving the posterior default mode network (DMN) and the temporo‐parietal junctions (TPJ). FRDA patients with an ASO <11 years presented altered temporal dynamics of those two HMM states compared with FRDA patients with an ASO > 11 years or healthy subjects. The temporal dynamics of the DMN state also correlated with minute‐long DMN rsFC. This study demonstrates that ASO is the main determinant of alterations in the sub‐second dynamics of posterior associative neocortices in FRDA patients and substantiates a direct link between sub‐second network activity and functional brain integration over long timescales.
Collapse
Affiliation(s)
- Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicolas Coquelet
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Massimo Pandolfo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau (LCFC), UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
22
|
Khan H, Sami MB, Litvak V. The utility of Magnetoencephalography in multiple sclerosis - A systematic review. NEUROIMAGE-CLINICAL 2021; 32:102814. [PMID: 34537682 PMCID: PMC8455859 DOI: 10.1016/j.nicl.2021.102814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/29/2023]
Abstract
We conducted a Systematic Review of studies, looking at 30 studies from 13 centres. MS patients had reduced power in some induced responses (motor beta, visual gamma). Increased latency and reduced connectivity were seen for somatosensory evoked fields. There was an association between upper alpha connectivity and cognitive function. MEG shows promise, although work is too preliminary to recommend current clinical use.
Introduction Magnetoencephalography (MEG), allows for a high degree temporal and spatial accuracy in recording cortical oscillatory activity and evoked fields. To date, no review has been undertaken to synthesise all MEG studies in Multiple Sclerosis (MS). We undertook a Systematic Review of the utility of MEG in MS. Methods We identified MEG studies carried out in MS using EMBASE, Medline, Cochrane, TRIP and Psychinfo databases. We included original research articles with a cohort of minimum of five multiple sclerosis patients and quantifying of at least one MEG parameter. We used a modified version of the JBI (mJBI) for case-control studies to assess for risk of bias. Results We identified 30 studies from 13 centres involving at least 433 MS patients and 347 controls. We found evidence that MEG shows perturbed activity (most commonly reduced power modulations), reduced connectivity and association with altered clinical function in Multiple Sclerosis. Specific replicated findings were decreased motor induced responses in the beta band, diminished increase of gamma power after visual stimulation, increased latency and reduced connectivity for somatosensory evoked fields. There was an association between upper alpha connectivity and cognitive measures in people with MS. Overall studies were of moderate quality (mean mJBI score 6.7). Discussion We find evidence for the utility of MEG in Multiple Sclerosis. Event-related designs are of particular value and show replicability between centres. At this stage, it is not clear whether these changes are specific to Multiple Sclerosis or are also observable in other diseases. Further studies should look to explore cognitive control in more depth using in-task designs and undertake longitudinal studies to determine whether these changes have prognostic value.
Collapse
Affiliation(s)
- H Khan
- UCL Queen's Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; Queen's Medical Centre Nottingham, Clifton Boulevard, Derby Rd, Nottingham NG7 2UH, United Kingdom.
| | - M B Sami
- Institute of Mental Health, Jubilee Campus, University of Nottingham Innovation Park, Triumph Road, Nottingham NG7 2TU, United Kingdom
| | - V Litvak
- UCL Queen's Square Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
23
|
Monaghan AS, Huisinga JM, Peterson DS. The application of principal component analysis to characterize gait and its association with falls in multiple sclerosis. Sci Rep 2021; 11:12811. [PMID: 34140612 PMCID: PMC8211858 DOI: 10.1038/s41598-021-92353-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
People with multiple sclerosis (PwMS) demonstrate gait impairments that are related to falls. However, redundancy exists when reporting gait outcomes. This study aimed to develop an MS-specific model of gait and examine differences between fallers and non-fallers. 122 people with relapsing-remitting MS and 45 controls performed 3 timed up-and-go trials wearing inertial sensors. 21 gait parameters were entered into a principal component analysis (PCA). The PCA-derived gait domains were compared between MS fallers (MS-F) and MS non-fallers (MS-NF) and correlated to cognitive, clinical, and quality-of-life outcomes. Six distinct gait domains were identified: pace, rhythm, variability, asymmetry, anterior-posterior dynamic stability, and medial-lateral dynamic stability, explaining 79.15% of gait variance. PwMS exhibited a slower pace, larger variability, and increased medial-lateral trunk motion compared to controls (p < 0.05). The pace and asymmetry domains were significantly worse (i.e., slower and asymmetrical) in MS-F than MS-NF (p < 0.001 and p = 0.03, respectively). Fear of falling, cognitive performance, and functional mobility were associated with a slower gait (p < 0.05). This study identified a six-component, MS-specific gait model, demonstrating that PwMS, particularly fallers, exhibit deficits in pace and asymmetry. Findings may help reduce redundancy when reporting gait outcomes and inform interventions targeting specific gait domains.
Collapse
Affiliation(s)
- Andrew S. Monaghan
- grid.215654.10000 0001 2151 2636College of Health Solutions, Arizona State University, 425 N 5th St., Phoenix, AZ 85282 USA
| | - Jessie M. Huisinga
- grid.412016.00000 0001 2177 6375Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, USA
| | - Daniel S. Peterson
- grid.215654.10000 0001 2151 2636College of Health Solutions, Arizona State University, 425 N 5th St., Phoenix, AZ 85282 USA ,grid.416818.20000 0004 0419 1967Phoenix VA Health Care Center, Phoenix, AZ USA
| |
Collapse
|
24
|
Sjøgård M, Wens V, Van Schependom J, Costers L, D'hooghe M, D'haeseleer M, Woolrich M, Goldman S, Nagels G, De Tiège X. Brain dysconnectivity relates to disability and cognitive impairment in multiple sclerosis. Hum Brain Mapp 2020; 42:626-643. [PMID: 33242237 PMCID: PMC7814767 DOI: 10.1002/hbm.25247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
The pathophysiology of cognitive dysfunction in multiple sclerosis (MS) is still unclear. This magnetoencephalography (MEG) study investigates the impact of MS on brain resting-state functional connectivity (rsFC) and its relationship to disability and cognitive impairment. We investigated rsFC based on power envelope correlation within and between different frequency bands, in a large cohort of participants consisting of 99 MS patients and 47 healthy subjects. Correlations were investigated between rsFC and outcomes on disability, disease duration and 7 neuropsychological scores within each group, while stringently correcting for multiple comparisons and possible confounding factors. Specific dysconnections correlating with MS-induced physical disability and disease duration were found within the sensorimotor and language networks, respectively. Global network-level reductions in within- and cross-network rsFC were observed in the default-mode network. Healthy subjects and patients significantly differed in their scores on cognitive fatigue and verbal fluency. Healthy subjects and patients showed different correlation patterns between rsFC and cognitive fatigue or verbal fluency, both of which involved a shift in patients from the posterior default-mode network to the language network. Introducing electrophysiological rsFC in a regression model of verbal fluency and cognitive fatigue in MS patients significantly increased the explained variance compared to a regression limited to structural MRI markers (relative thalamic volume and lesion load). This MEG study demonstrates that MS induces distinct changes in the resting-state functional brain architecture that relate to disability, disease duration and specific cognitive functioning alterations. It highlights the potential value of electrophysiological intrinsic rsFC for monitoring the cognitive impairment in patients with MS.
Collapse
Affiliation(s)
- Martin Sjøgård
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Vincent Wens
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Jeroen Van Schependom
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Lars Costers
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marie D'hooghe
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Miguel D'haeseleer
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Serge Goldman
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Guy Nagels
- Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium.,National MS Center, Belgium.,St Edmund Hall, University of Oxford, Oxford, UK
| | - Xavier De Tiège
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI-ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.,Department of Functional Neuroimaging, Service of Nuclear Medicine, CUB-Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|