1
|
Liu X, Zheng G, Beheshti I, Ji S, Gou Z, Cui W. Low-Rank Tensor Fusion for Enhanced Deep Learning-Based Multimodal Brain Age Estimation. Brain Sci 2024; 14:1252. [PMID: 39766451 PMCID: PMC11674316 DOI: 10.3390/brainsci14121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: A multimodal brain age estimation model could provide enhanced insights into brain aging. However, effectively integrating multimodal neuroimaging data to enhance the accuracy of brain age estimation remains a challenging task. Methods: In this study, we developed an innovative data fusion technique employing a low-rank tensor fusion algorithm, tailored specifically for deep learning-based frameworks aimed at brain age estimation. Specifically, we utilized structural magnetic resonance imaging (sMRI), diffusion tensor imaging (DTI), and magnetoencephalography (MEG) to extract spatial-temporal brain features with different properties. These features were fused using the low-rank tensor algorithm and employed as predictors for estimating brain age. Results: Our prediction model achieved a desirable prediction accuracy on the independent test samples, demonstrating its robust performance. Conclusions: The results of our study suggest that the low-rank tensor fusion algorithm has the potential to effectively integrate multimodal data into deep learning frameworks for estimating brain age.
Collapse
Affiliation(s)
- Xia Liu
- School of Management Science and Information Engineering, Hebei University of Economics and Businesses, Shijiazhuang 050061, China; (X.L.); (Z.G.); (W.C.)
| | - Guowei Zheng
- School of Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China;
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shanling Ji
- Institute of Mental Health, Jining Medical University, Jining 272111, China;
| | - Zhinan Gou
- School of Management Science and Information Engineering, Hebei University of Economics and Businesses, Shijiazhuang 050061, China; (X.L.); (Z.G.); (W.C.)
| | - Wenkuo Cui
- School of Management Science and Information Engineering, Hebei University of Economics and Businesses, Shijiazhuang 050061, China; (X.L.); (Z.G.); (W.C.)
| |
Collapse
|
2
|
Aghaei A, Ebrahimi Moghaddam M. Brain age gap estimation using attention-based ResNet method for Alzheimer's disease detection. Brain Inform 2024; 11:16. [PMID: 38833039 DOI: 10.1186/s40708-024-00230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates the correlation between brain age and chronological age in healthy individuals using brain MRI images, aiming to identify potential biomarkers for neurodegenerative diseases like Alzheimer's. To achieve this, a novel attention-based ResNet method, 3D-Attention-Resent-SVR, is proposed to accurately estimate brain age and distinguish between Cognitively Normal (CN) and Alzheimer's disease (AD) individuals by computing the brain age gap (BAG). Unlike conventional methods, which often rely on single datasets, our approach addresses potential biases by employing four datasets for training and testing. The results, based on a combined dataset from four public sources comprising 3844 data points, demonstrate the model's efficacy with a mean absolute error (MAE) of 2.05 for brain age gap estimation. Moreover, the model's generalizability is showcased by training on three datasets and testing on a separate one, yielding a remarkable MAE of 2.4. Furthermore, leveraging BAG as the sole biomarker, our method achieves an accuracy of 92% and an AUC of 0.87 in Alzheimer's disease detection on the ADNI dataset. These findings underscore the potential of our approach in assisting with early detection and disease monitoring, emphasizing the strong correlation between BAG and AD.
Collapse
Affiliation(s)
- Atefe Aghaei
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
| | | |
Collapse
|
3
|
Dular L, Špiclin Ž. BASE: Brain Age Standardized Evaluation. Neuroimage 2024; 285:120469. [PMID: 38065279 DOI: 10.1016/j.neuroimage.2023.120469] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Brain age, most commonly inferred from T1-weighted magnetic resonance images (T1w MRI), is a robust biomarker of brain health and related diseases. Superior accuracy in brain age prediction, often falling within a 2-3 year range, is achieved predominantly through deep neural networks. However, comparing study results is difficult due to differences in datasets, evaluation methodologies and metrics. Addressing this, we introduce Brain Age Standardized Evaluation (BASE), which includes (i) a standardized T1w MRI dataset including multi-site, new unseen site, test-retest and longitudinal data, and an associated (ii) evaluation protocol, including repeated model training and upon based comprehensive set of performance metrics measuring accuracy, robustness, reproducibility and consistency aspects of brain age predictions, and (iii) statistical evaluation framework based on linear mixed-effects models for rigorous performance assessment and cross-comparison. To showcase BASE, we comprehensively evaluate four deep learning based brain age models, appraising their performance in scenarios that utilize multi-site, test-retest, unseen site, and longitudinal T1w brain MRI datasets. Ensuring full reproducibility and application in future studies, we have made all associated data information and code publicly accessible at https://github.com/AralRalud/BASE.git.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana, 1000, Slovenia.
| |
Collapse
|
4
|
Lamontagne-Caron R, Desrosiers P, Potvin O, Doyon N, Duchesne S. Predicting cognitive decline in a low-dimensional representation of brain morphology. Sci Rep 2023; 13:16793. [PMID: 37798311 PMCID: PMC10556003 DOI: 10.1038/s41598-023-43063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/19/2023] [Indexed: 10/07/2023] Open
Abstract
Identifying early signs of neurodegeneration due to Alzheimer's disease (AD) is a necessary first step towards preventing cognitive decline. Individual cortical thickness measures, available after processing anatomical magnetic resonance imaging (MRI), are sensitive markers of neurodegeneration. However, normal aging cortical decline and high inter-individual variability complicate the comparison and statistical determination of the impact of AD-related neurodegeneration on trajectories. In this paper, we computed trajectories in a 2D representation of a 62-dimensional manifold of individual cortical thickness measures. To compute this representation, we used a novel, nonlinear dimension reduction algorithm called Uniform Manifold Approximation and Projection (UMAP). We trained two embeddings, one on cortical thickness measurements of 6237 cognitively healthy participants aged 18-100 years old and the other on 233 mild cognitively impaired (MCI) and AD participants from the longitudinal database, the Alzheimer's Disease Neuroimaging Initiative database (ADNI). Each participant had multiple visits ([Formula: see text]), one year apart. The first embedding's principal axis was shown to be positively associated ([Formula: see text]) with participants' age. Data from ADNI is projected into these 2D spaces. After clustering the data, average trajectories between clusters were shown to be significantly different between MCI and AD subjects. Moreover, some clusters and trajectories between clusters were more prone to host AD subjects. This study was able to differentiate AD and MCI subjects based on their trajectory in a 2D space with an AUC of 0.80 with 10-fold cross-validation.
Collapse
Affiliation(s)
- Rémi Lamontagne-Caron
- Département de médecine, Université Laval, Quebec, QC, G1V 0A6, Canada.
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada.
| | - Patrick Desrosiers
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de physique, de génie physique et d'optique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | | | - Nicolas Doyon
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Quebec, QC, G1V 0A6, Canada
- Département de mathématiques et de statistique, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Simon Duchesne
- Centre de recherche CERVO, Quebec, QC, G1J 2G3, Canada
- Département de radiologie et médecine nucléaire, Université Laval, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
5
|
Chu C, Holst SC, Elmenhorst EM, Foerges AL, Li C, Lange D, Hennecke E, Baur DM, Beer S, Hoffstaedter F, Knudsen GM, Aeschbach D, Bauer A, Landolt HP, Elmenhorst D. Total Sleep Deprivation Increases Brain Age Prediction Reversibly in Multisite Samples of Young Healthy Adults. J Neurosci 2023; 43:2168-2177. [PMID: 36804738 PMCID: PMC10039745 DOI: 10.1523/jneurosci.0790-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep loss pervasively affects the human brain at multiple levels. Age-related changes in several sleep characteristics indicate that reduced sleep quality is a frequent characteristic of aging. Conversely, sleep disruption may accelerate the aging process, yet it is not known what will happen to the age status of the brain if we can manipulate sleep conditions. To tackle this question, we used an approach of brain age to investigate whether sleep loss would cause age-related changes in the brain. We included MRI data of 134 healthy volunteers (mean chronological age of 25.3 between the age of 19 and 39 years, 42 females/92 males) from five datasets with different sleep conditions. Across three datasets with the condition of total sleep deprivation (>24 h of prolonged wakefulness), we consistently observed that total sleep deprivation increased brain age by 1-2 years regarding the group mean difference with the baseline. Interestingly, after one night of recovery sleep, brain age was not different from baseline. We also demonstrated the associations between the change in brain age after total sleep deprivation and the sleep variables measured during the recovery night. By contrast, brain age was not significantly changed by either acute (3 h time-in-bed for one night) or chronic partial sleep restriction (5 h time-in-bed for five continuous nights). Together, the convergent findings indicate that acute total sleep loss changes brain morphology in an aging-like direction in young participants and that these changes are reversible by recovery sleep.SIGNIFICANCE STATEMENT Sleep is fundamental for humans to maintain normal physical and psychological functions. Experimental sleep deprivation is a variable-controlling approach to engaging the brain among different sleep conditions for investigating the responses of the brain to sleep loss. Here, we quantified the response of the brain to sleep deprivation by using the change of brain age predictable with brain morphologic features. In three independent datasets, we consistently found increased brain age after total sleep deprivation, which was associated with the change in sleep variables. Moreover, no significant change in brain age was found after partial sleep deprivation in another two datasets. Our study provides new evidence to explain the brainwide effect of sleep loss in an aging-like direction.
Collapse
Affiliation(s)
- Congying Chu
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Sebastian C Holst
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Eva-Maria Elmenhorst
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna L Foerges
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Neurophysiology, Institute of Zoology (Bio-II), RWTH Aachen University, 52074 Aachen, Germany
| | - Changhong Li
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Denise Lange
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Eva Hennecke
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
| | - Diego M Baur
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
| | - Simone Beer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Daniel Aeschbach
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, 51147 Cologne, Germany
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts 02115
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02115
- Institute of Experimental Epileptology and Cognition Research, Faculty of Medicine, University of Bonn, 53127, Bonn, Germany
| | - Andreas Bauer
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Neurological Department, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8006 Zurich, Switzerland
- Sleep & Health Zurich, University Center of Competence, University of Zurich, Zurich, Switzerland
| | - David Elmenhorst
- Institute of Neuroscience and Medicine (INM-2), Forschungszentrum Jülich, 52428 Jülich, Germany
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Division of Medical Psychology, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, 53127 Germany
| |
Collapse
|
6
|
Matziorinis AM, Gaser C, Koelsch S. Is musical engagement enough to keep the brain young? Brain Struct Funct 2023; 228:577-588. [PMID: 36574049 PMCID: PMC9945036 DOI: 10.1007/s00429-022-02602-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/08/2022] [Indexed: 12/28/2022]
Abstract
Music-making and engagement in music-related activities have shown procognitive benefits for healthy and pathological populations, suggesting reductions in brain aging. A previous brain aging study, using Brain Age Gap Estimation (BrainAGE), showed that professional and amateur-musicians had younger appearing brains than non-musicians. Our study sought to replicate those findings and analyze if musical training or active musical engagement was necessary to produce an age-decelerating effect in a cohort of healthy individuals. We scanned 125 healthy controls and investigated if musician status, and if musical behaviors, namely active engagement (AE) and musical training (MT) [as measured using the Goldsmiths Musical Sophistication Index (Gold-MSI)], had effects on brain aging. Our findings suggest that musician status is not related to BrainAGE score, although involvement in current physical activity is. Although neither MT nor AE subscales of the Gold-MSI are predictive for BrainAGE scores, dispositional resilience, namely the ability to deal with challenge, is related to both musical behaviors and sensitivity to musical pleasure. While the study failed to replicate the findings in a previous brain aging study, musical training and active musical engagement are related to the resilience factor of challenge. This finding may reveal how such musical behaviors can potentially strengthen the brain's resilience to age, which may tap into a type of neurocognitive reserve.
Collapse
Affiliation(s)
- Anna Maria Matziorinis
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway.
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany
| | - Stefan Koelsch
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5009, Bergen, Norway
| |
Collapse
|
7
|
Liu X, Beheshti I, Zheng W, Li Y, Li S, Zhao Z, Yao Z, Hu B. Brain age estimation using multi-feature-based networks. Comput Biol Med 2022; 143:105285. [PMID: 35158116 DOI: 10.1016/j.compbiomed.2022.105285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022]
Abstract
Studying brain aging improves our understanding in differentiating typical and atypical aging. Directly utilizing traditional morphological features for brain age estimation did not show significant performance in healthy controls (HCs), which may be due to the negligence of the information of structural similarities among cortical regions. For this issue, the multi-feature-based network (MFN) built upon morphological features can be employed to describe these similarities. Based on this, we hypothesized that the MFN is more efficient and robust than traditional morphological features in brain age estimating. In this work, we used six different types of morphological features (i.e., cortical volume, cortical thickness, curvature index, folding index, local gyrification index, and surface area) to build individual MFN for brain age estimation. The efficacy of MFN was estimated on 2501 HCs with T1-weighted structural magnetic resonance imaging (sMRI) data and compared with traditional morphological features. We attained a mean absolute error (MAE) of 3.73 years using the proposed method on an independent test set, whereas a mean absolute error of 5.30 years was derived from morphological features. Our experimental results demonstrated that the MFN is an efficient and robust metric for estimating brain age.
Collapse
Affiliation(s)
- Xia Liu
- School of Computer Science, Qinghai Normal University, Xining, Qinghai Province, China
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Canada
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Yongchao Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| | - Bin Hu
- School of Computer Science, Qinghai Normal University, Xining, Qinghai Province, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China; Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, China; Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China.
| |
Collapse
|
8
|
Beheshti I, Potvin O, Duchesne S. Patch-wise brain age longitudinal reliability. Hum Brain Mapp 2020; 42:690-698. [PMID: 33205863 PMCID: PMC7814761 DOI: 10.1002/hbm.25253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 01/09/2023] Open
Abstract
We recently introduced a patch‐wise technique to estimate brain age from anatomical T1‐weighted magnetic resonance imaging (T1w MRI) data. Here, we sought to assess its longitudinal reliability by leveraging a unique dataset of 99 longitudinal MRI scans from a single, cognitively healthy volunteer acquired over a period of 17 years (aged 29–46 years) at multiple sites. We built a robust patch‐wise brain age estimation framework on the basis of 100 cognitively healthy individuals from the MindBoggle dataset (aged 19–61 years) using the Desikan‐Killiany‐Tourville atlas, then applied the model to the volunteer dataset. The results show a high prediction accuracy on the independent test set (R2 = .94, mean absolute error of 0.63 years) and no statistically significant difference between manufacturers, suggesting that the patch‐wise technique has high reliability and can be used for longitudinal multi‐centric studies.
Collapse
Affiliation(s)
| | | | - Simon Duchesne
- Centre de recherche CERVO, Québec, Canada.,Département de radiologie et de médecine nucléaire, Faculté de médecine, Université Laval, Québec, Canada
| |
Collapse
|