1
|
Panikratova YR, Tomyshev AS, Abdullina EG, Rodionov GI, Arkhipov AY, Tikhonov DV, Bozhko OV, Kaleda VG, Strelets VB, Lebedeva IS. Resting-state functional connectivity correlates of brain structural aging in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2025; 275:755-766. [PMID: 38914851 DOI: 10.1007/s00406-024-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/27/2024] [Indexed: 06/26/2024]
Abstract
A large body of research has shown that schizophrenia patients demonstrate increased brain structural aging. Although this process may be coupled with aberrant changes in intrinsic functional architecture of the brain, they remain understudied. We hypothesized that there are brain regions whose whole-brain functional connectivity at rest is differently associated with brain structural aging in schizophrenia patients compared to healthy controls. Eighty-four male schizophrenia patients and eighty-six male healthy controls underwent structural MRI and resting-state fMRI. The brain-predicted age difference (b-PAD) was a measure of brain structural aging. Resting-state fMRI was applied to obtain global correlation (GCOR) maps comprising voxelwise values of the strength and sign of functional connectivity of a given voxel with the rest of the brain. Schizophrenia patients had higher b-PAD compared to controls (mean between-group difference + 2.9 years). Greater b-PAD in schizophrenia patients, compared to controls, was associated with lower whole-brain functional connectivity of a region in frontal orbital cortex, inferior frontal gyrus, Heschl's Gyrus, plana temporale and polare, insula, and opercular cortices of the right hemisphere (rFTI). According to post hoc seed-based correlation analysis, decrease of functional connectivity with the posterior cingulate gyrus, left superior temporal cortices, as well as right angular gyrus/superior lateral occipital cortex has mainly driven the results. Lower functional connectivity of the rFTI was related to worse verbal working memory and language production. Our findings demonstrate that well-established frontotemporal functional abnormalities in schizophrenia are related to increased brain structural aging.
Collapse
Affiliation(s)
| | | | | | - Georgiy I Rodionov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Andrey Yu Arkhipov
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Valeria B Strelets
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
2
|
Dai Y, He Q, Wang S, Cao T, Chai X, Wang N, Dong Y, Wong P, He J, Duan F, Yang Y. Deciphering network dysregulations and temporo-spatial dynamics in disorders of consciousness: insights from minimum spanning tree analysis. Front Psychol 2024; 15:1458339. [PMID: 39749272 PMCID: PMC11693494 DOI: 10.3389/fpsyg.2024.1458339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives The neural mechanism associated with impaired consciousness is not fully clear. We aim to explore the association between static and dynamic minimum spanning tree (MST) characteristics and neural mechanism underlying impaired consciousness. Methods MSTs were constructed based on full-length functional magnetic resonance imaging (fMRI) signals and fMRI signal segments within each time window. Global and local measures of static MSTs, as well as spatio-temporal interaction characteristics of dynamic MSTs were investigated. Results A disruption or an alteration in the functional connectivity, the decreased average coupling strength and the reorganization of hub nodes were observed in patients with minimally conscious state (MCS) and patients with vegetative state (VS). The analysis of global and local measures quantitatively supported altered static functional connectivity patterns and revealed a slower information transmission efficiency in both patient groups. From a dynamic perspective, the spatial distribution of hub nodes exhibited relative stability over time in both normal and patient populations. The increased temporal variability in multiple brain regions within resting-state networks associated with consciousness was detected in MCS patients and VS patients, especially thalamus. As well, the increased spatial variability in multiple brain regions within these resting-state networks was detected in MCS patients and VS patients. In addition, local measure and spatio-temporal variability analysis indicated that the differences in network structure between two groups of patients were mainly in frontoparietal network and auditory network. Conclusion Our findings suggest that altered static and dynamic MST characteristics may shed some light on neural mechanism underlying impaired consciousness.
Collapse
Affiliation(s)
- Yangyang Dai
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Tianqing Cao
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Xiaoke Chai
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Nan Wang
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Yijun Dong
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Taiwan, China
| | - Jianghong He
- Department of Information and Communications Engineering, School of Engineering, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Feng Duan
- Tianjin Key Laboratory of Brain Science and Intelligent Rehabilitation, College of Artificial Intelligence, Nankai University, Tianjin, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
3
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. PLoS Comput Biol 2024; 20:e1012692. [PMID: 39715231 PMCID: PMC11706466 DOI: 10.1371/journal.pcbi.1012692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/07/2025] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
- Brain Key Incorporated, San Francisco, California, United States of America
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, New Jersey, United States of America
- School of Psychological Sciences, Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Alex Fornito
- School of Psychological Sciences, Turner Institute for Brain and Mental Health & Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
4
|
Cai H, Shen B, Long JX, Huang XL, Li JL, Zhong ZC, Wei YH, Su L. Network analysis of psychotic symptoms in schizophrenia. Schizophr Res 2024; 274:501-507. [PMID: 39566116 DOI: 10.1016/j.schres.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/09/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Schizophrenia with a wide range of psychotic symptoms which indicate the severity of disorders, risk of relapse, frequency and duration of hospitalization, and decreases social and occupational function. In clinical practice, Positive and Negative Systems Scale always used for assessment the severity of psychotic symptoms of patients with schizophrenia. This network analysis explores the inter-relationship of psychotic symptoms of patients with based on Positive and Negative Systems Scale (PANSS). METHODS The psychotic symptoms of the patients with schizophrenia were assessed by psychiatrist using PANSS when the first day in hospitalization. The network structure of psychotic symptoms was modelled with a graph and characterized using "Expected Influence" and "Bridge Expected Influence" as influential indices in the symptom network. Network stability was tested using a case-dropping bootstrap procedure. Network Comparison Test (NCT) was conducted to examine whether network characteristics differed on the basis of gender. RESULTS A total of 799 patients with schizophrenia were included. The mean age of the included participants was 39.51(standard deviation (SD)13.93). The main finding of the study was Preoccupation, Emotional instability and Anxiety were the most influential psychotic symptoms, while Active social avoidance, Emotional instability and Preoccupation were the most bridge influential psychotic symptoms within the interpret-able level of influential in the network. Gender did not significantly affect the overall network structure. CONCLUSION This influential (Preoccupation, Emotional instability and Anxiety) and bridge influential symptoms (Active social avoidance, Emotional instability and Preoccupation) dimension could be addressed in treatment target and treatment response for the patients with schizophrenia.
Collapse
Affiliation(s)
- Hong Cai
- Unit of Medical Psychology and Behavior Medicine, School of public health, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Shen
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jian-Xiong Long
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao-Lan Huang
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia-Le Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhi-Cheng Zhong
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu-Hua Wei
- The Guangxi Zhuang Autonomous Region Brain Hospital, No. 1, Jila Road, Yufeng District, Liuzhou, Guangxi, China.
| | - Li Su
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Zamani J, Jafadideh AT. Predicting the Conversion from Mild Cognitive Impairment to Alzheimer's Disease Using Graph Frequency Bands and Functional Connectivity-Based Features. RESEARCH SQUARE 2024:rs.3.rs-4549428. [PMID: 38947050 PMCID: PMC11213162 DOI: 10.21203/rs.3.rs-4549428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Accurate prediction of the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) is crucial for disease management. Machine learning techniques have demonstrated success in classifying AD and MCI cases, particularly with the use of resting-state functional magnetic resonance imaging (rs-fMRI) data.This study utilized three years of rs-fMRI data from the ADNI, involving 142 patients with stable MCI (sMCI) and 136 with progressive MCI (pMCI). Graph signal processing was applied to filter rs-fMRI data into low, middle, and high frequency bands. Connectivity-based features were derived from both filtered and unfiltered data, resulting in a comprehensive set of 100 features, including global graph metrics, minimum spanning tree (MST) metrics, triadic interaction metrics, hub tendency metrics, and the number of links. Feature selection was enhanced using particle swarm optimization (PSO) and simulated annealing (SA). A support vector machine (SVM) with a radial basis function (RBF) kernel and a 10-fold cross-validation setup were employed for classification. The proposed approach demonstrated superior performance, achieving optimal accuracy with minimal feature utilization. When PSO selected five features, SVM exhibited accuracy, specificity, and sensitivity rates of 77%, 70%, and 83%, respectively. The identified features were as follows: (Mean of clustering coefficient, Mean of strength)/Radius/(Mean Eccentricity, and Modularity) from low/middle/high frequency bands of graph. The study highlights the efficacy of the proposed framework in identifying individuals at risk of AD development using a parsimonious feature set. This approach holds promise for advancing the precision of MCI to AD progression prediction, aiding in early diagnosis and intervention strategies.
Collapse
Affiliation(s)
- Jafar Zamani
- Department of Psychiatry and Behavioral Sciences, Stanford University, California, USA
| | | |
Collapse
|
6
|
Bryant AG, Aquino K, Parkes L, Fornito A, Fulcher BD. Extracting interpretable signatures of whole-brain dynamics through systematic comparison. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.573372. [PMID: 38915560 PMCID: PMC11195072 DOI: 10.1101/2024.01.10.573372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.
Collapse
Affiliation(s)
- Annie G. Bryant
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Kevin Aquino
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
- Brain Key Incorporated, San Francisco, CA, USA
| | - Linden Parkes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Alex Fornito
- Turner Institute for Brain & Mental Health, Monash University, VIC, Australia
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
7
|
Becske M, Marosi C, Molnár H, Fodor Z, Farkas K, Rácz FS, Baradits M, Csukly G. Minimum spanning tree analysis of EEG resting-state functional networks in schizophrenia. Sci Rep 2024; 14:10495. [PMID: 38714807 PMCID: PMC11076461 DOI: 10.1038/s41598-024-61316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/03/2024] [Indexed: 05/10/2024] Open
Abstract
Schizophrenia is a serious and complex mental disease, known to be associated with various subtle structural and functional deviations in the brain. Recently, increased attention is given to the analysis of brain-wide, global mechanisms, strongly altering the communication of long-distance brain areas in schizophrenia. Data of 32 patients with schizophrenia and 28 matched healthy control subjects were analyzed. Two minutes long 64-channel EEG recordings were registered during resting, eyes closed condition. Average connectivity strength was estimated with Weighted Phase Lag Index (wPLI) in lower frequencies: delta and theta, and Amplitude Envelope Correlation with leakage correction (AEC-c) in higher frequencies: alpha, beta, lower gamma and higher gamma. To analyze functional network topology Minimum Spanning Tree (MST) algorithms were applied. Results show that patients have weaker functional connectivity in delta and alpha frequency bands. Concerning network differences, the result of lower diameter, higher leaf number, and also higher maximum degree and maximum betweenness centrality in patients suggest a star-like, and more random network topology in patients with schizophrenia. Our findings are in accordance with some previous findings based on resting-state EEG (and fMRI) data, suggesting that MST network structure in schizophrenia is biased towards a less optimal, more centralized organization.
Collapse
Affiliation(s)
- Melinda Becske
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Csilla Marosi
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Hajnalka Molnár
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Zsuzsanna Fodor
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Kinga Farkas
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | | | - Máté Baradits
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary
| | - Gábor Csukly
- Department of Psychiatry and Psychotherapy, Semmelweis University, Balassa u. 6., Budapest, 1083, Hungary.
| |
Collapse
|
8
|
He C, Kong X, Li J, Wang X, Chen X, Wang Y, Zhao Q, Tao Q. Predictors for quality of life in older adults: network analysis on cognitive and neuropsychiatric symptoms. BMC Geriatr 2023; 23:850. [PMID: 38093173 PMCID: PMC10720074 DOI: 10.1186/s12877-023-04462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Quality of life (QoL) of older adults has become a pivotal concern of the public and health system. Previous studies found that both cognitive decline and neuropsychiatric symptoms (NPS) can affect QoL in older adults. However, it remains unclear how these symptoms are related to each other and impact on QoL. Our aim is to investigate the complex network relationship between cognitive and NPS symptoms in older adults, and to further explore their association with QoL. METHODS A cross-sectional study was conducted in a sample of 389 older individuals with complaints of memory decline. The instruments included the Neuropsychiatric Inventory, the Mini Mental State Examination, and the 36-item Short Form Health Survey. Data was analyzed using network analysis and mediation analysis. RESULTS We found that attention and agitation were the variables with the highest centrality in cognitive and NPS symptoms, respectively. In an exploratory mediation analysis, agitation was significantly associated with poor attention (β = -0.214, P < 0.001) and reduced QoL (β = -0.137, P = 0.005). The indirect effect of agitation on the QoL through attention was significant (95% confidence interval (CI) [-0.119, -0.035]). Furthermore, attention served as a mediator between agitation and QoL, accounting for 35.09% of the total effect. CONCLUSIONS By elucidating the NPS-cognition-QoL relationship, the current study provides insights for developing rehabilitation programs among older adults to ensure their QoL.
Collapse
Affiliation(s)
- Chaoqun He
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiangyi Kong
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130031, China
| | - Jinhui Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xingyi Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130031, China
| | - Xinqiao Chen
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Yuanyi Wang
- The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Qing Zhao
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130031, China.
| | - Qian Tao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Division of Medical Psychology and Behaviour Science, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Science, Qingdao, 266071, China.
| |
Collapse
|
9
|
Odkhuu S, Kim WS, Tsogt U, Shen J, Cheraghi S, Li L, Rami FZ, Le TH, Lee KH, Kang NI, Kim SW, Chung YC. Network biomarkers in recovered psychosis patients who discontinued antipsychotics. Mol Psychiatry 2023; 28:3717-3726. [PMID: 37773447 PMCID: PMC10730417 DOI: 10.1038/s41380-023-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
There are no studies investigating topological properties of resting-state fMRI (rs-fMRI) in patients who have recovered from psychosis and discontinued medication (hereafter, recovered patients [RP]). This study aimed to explore topological organization of the functional brain connectome in the RP using graph theory approach. We recruited 30 RP and 50 age and sex-matched healthy controls (HC). The RP were further divided into the subjects who were relapsed after discontinuation of antipsychotics (RP-R) and who maintained recovered state without relapse (RP-M). Using graph-based network analysis of rs-fMRI signals, global and local metrics and hub information were obtained. The robustness of the network was tested with random failure and targeted attack. As an ancillary analysis, Network-Based Statistic (NBS) was performed. Association of significant findings with psychopathology and cognitive functioning was also explored. The RP showed intact network properties in terms of global and local metrics. However, higher global functional connectivity strength and hyperconnectivity in the interconnected component were observed in the RP compared to HC. In the subgroup analysis, the RP-R were found to have lower global efficiency, longer characteristic path length and lower robustness whereas no such abnormalities were identified in the RP-M. Associations of the degree centrality of some hubs with cognitive functioning were identified in the RP-M. Even though network properties of the RP were intact, subgroup analysis revealed more altered topological organizations in the RP-R. The findings in the RP-R and RP-M may serve as network biomarkers for predicting relapse or maintained recovery after the discontinuation of antipsychotics.
Collapse
Affiliation(s)
- Soyolsaikhan Odkhuu
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Woo-Sung Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea
| | - Uyanga Tsogt
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Jie Shen
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Sahar Cheraghi
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Ling Li
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Fatima Zahra Rami
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Thi-Hung Le
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Keon-Hak Lee
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| | - Nam-In Kang
- Department of Psychiatry, Maeumsarang Hospital, Wanju, Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, Korea
| | - Young-Chul Chung
- Department of Psychiatry, Jeonbuk National University, Medical School, Jeonju, Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.
- Department of Psychiatry, Jeonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
10
|
Blain SD, Taylor SF, Rutherford SE, Lasagna CA, Yao B, Angstadt M, Green MF, Johnson TD, Peltier S, Diwadkar VA, Tso IF. Neurobehavioral indices of gaze perception are associated with social cognition across schizophrenia patients and healthy controls. JOURNAL OF PSYCHOPATHOLOGY AND CLINICAL SCIENCE 2023; 132:733-748. [PMID: 37384487 PMCID: PMC10513759 DOI: 10.1037/abn0000846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
BACKGROUND Gaze perception is a basic building block of social cognition, which is impaired in schizophrenia (SZ) and contributes to functional outcomes. Few studies, however, have investigated neural underpinnings of gaze perception and their relation to social cognition. We address this gap. METHOD We recruited 77 SZ patients and 71 healthy controls, who completed various social-cognition tasks. During functional magnetic resonance imaging, participants (62 SZ, 54 controls) completed a gaze-perception task, where they judged whether faces with varying gaze angles were self-directed or averted; as a control condition, participants identified stimulus gender. Activation estimates were extracted based on (a) task versus baseline, (b) gaze-perception versus gender-identification, (c) parametric modulation by perception of stimuli as self-directed versus averted, and (d) parametric modulation by stimulus gaze angle. We used latent variable analysis to test associations among diagnostic group, brain activation, gaze perception, and social cognition. RESULTS Preferential activation to gaze perception was observed throughout dorsomedial prefrontal cortex, superior temporal sulcus, and insula. Activation was modulated by stimulus gaze angle and perception of stimuli as self-directed versus averted. More precise gaze perception and higher task-related activation were associated with better social cognition. Patients with SZ showed hyperactivation within left pre-/postcentral gyrus, which was associated with more precise gaze perception and fewer symptoms and thus may be a compensatory mechanism. CONCLUSIONS Neural and behavioral indices of gaze perception were related to social cognition, across patients and controls. This suggests gaze perception is an important perceptual building block for more complex social cognition. Results are discussed in the context of dimensional psychopathology and clinical heterogeneity. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Scott D. Blain
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Department of Psychology, University of Michigan, Ann Arbor, MI
| | - Saige E. Rutherford
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Donders Center for Medical Neuroscience, Nijmegen, Netherlands
| | | | - Beier Yao
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA; Department of Psychiatry, Harvard Medical School, Boston, MA
| | - Mike Angstadt
- Functional MRI Lab, University of Michigan, Ann Arbor, MI
| | - Michael F. Green
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA
| | | | - Scott Peltier
- Functional MRI Lab, University of Michigan, Ann Arbor, MI
| | - Vaibhav A. Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI
| | - Ivy F. Tso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI
- Department of Psychiatry & Behavioral Health, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Canario E, Chen D, Han Y, Niu H, Biswal B. Global Network Analysis of Alzheimer’s Disease with Minimum Spanning Trees. J Alzheimers Dis 2022; 89:571-581. [DOI: 10.3233/jad-215573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A minimum spanning tree (MST) is a unique efficient network comprising the necessary connections needed to connect all regions in a network while retaining the lowest possible cost of connection weight. Objective: This study aimed to utilize functional near-infrared spectroscopy (fNIRS) to analyze brain activity in different regions and then construct MST-based regions to characterize the brain topologies of participants with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal controls (NC). Methods: A 46 channel fNIRS setup was used on all participants, with correlation being calculated for each channel pair. An MST was constructed from the resulting correlation matrix, from which graph theory measures were calculated. The average number of connections within a lobe in the left versus right hemisphere was calculated to identify which lobes displayed and abnormal amount of connectivity. Results: Compared to those in the MCI group, the AD group showed a less integrated network structure, with a higher characteristic path length, but lower leaf fraction, maximum degree, and degree divergence. The AD group also showed a higher number of connections in the frontal lobe within the left hemisphere and a lower number between hemispheric frontal lobes as compared to MCI. Conclusion: These results indicate a deviation in network structure and connectivity within patient groups that is consistent with the theory of dysconnectivity for AD. Additionally, the AD group showed strong correlations between the Hamilton depression rating scale and different graph metrics, suggesting a link between network organization and the recurrence of depression in AD.
Collapse
Affiliation(s)
- Edgar Canario
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Donna Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ying Han
- Hainan University, Haikou, China
| | | | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
12
|
Yamamoto M, Bagarinao E, Shimamoto M, Iidaka T, Ozaki N. Involvement of cerebellar and subcortical connector hubs in schizophrenia. NEUROIMAGE: CLINICAL 2022; 35:103140. [PMID: 36002971 PMCID: PMC9421528 DOI: 10.1016/j.nicl.2022.103140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/14/2022] Open
Abstract
Hubs with altered connectivity to multiple networks were identified in patients. Identified hubs were located in the cerebellum, midbrain, thalamus, and insula. In controls, these hubs were strongly connected with the basal ganglia network. Hubs’ connections to large-scale networks were associated with clinical data. Their connections were also highly predictive of patients from controls.
Background Schizophrenia is considered a brain connectivity disorder in which functional integration within the brain fails. Central to the brain’s integrative function are connector hubs, brain regions characterized by strong connections with multiple networks. Given their critical role in functional integration, we hypothesized that connector hubs, including those located in the cerebellum and subcortical regions, are severely impaired in patients with schizophrenia. Methods We identified brain voxels with significant connectivity alterations in patients with schizophrenia (n = 76; men = 43) compared to healthy controls (n = 80; men = 43) across multiple large-scale resting state networks (RSNs) using a network metric called functional connectivity overlap ratio (FCOR). From these voxels, candidate connector hubs were identified and verified using seed-based connectivity analysis. Results We found that most networks exhibited connectivity alterations in the patient group. Specifically, connectivity with the basal ganglia and high visual networks was severely affected over widespread brain areas in patients, affecting subcortical and cerebellar regions and the regions involved in visual and sensorimotor processing. Furthermore, we identified critical connector hubs in the cerebellum, midbrain, thalamus, insula, and calcarine with connectivity to multiple RSNs affected in the patients. FCOR values of these regions were also associated with clinical data and could classify patient and control groups with > 80 % accuracy. Conclusions These findings highlight the critical role of connector hubs, particularly those in the cerebellum and subcortical regions, in the pathophysiology of schizophrenia and the potential role of FCOR as a clinical biomarker for the disorder.
Collapse
|
13
|
Liu X, Yang H, Becker B, Huang X, Luo C, Meng C, Biswal B. Disentangling age- and disease-related alterations in schizophrenia brain network using structural equation modeling: A graph theoretical study based on minimum spanning tree. Hum Brain Mapp 2021; 42:3023-3041. [PMID: 33960579 PMCID: PMC8193510 DOI: 10.1002/hbm.25403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/05/2023] Open
Abstract
Functional brain networks have been shown to undergo fundamental changes associated with aging or schizophrenia. However, the mechanism of how these factors exert influences jointly or interactively on brain networks remains elusive. A unified recognition of connectomic alteration patterns was also hampered by heterogeneities in network construction and thresholding methods. Recently, an unbiased network representation method regardless of network thresholding, so called minimal spanning tree algorithm, has been applied to study the critical skeleton of the brain network. In this study, we aimed to use minimum spanning tree (MST) as an unbiased network reconstruction and employed structural equation modeling (SEM) to unravel intertwined relationships among multiple phenotypic and connectomic variables in schizophrenia. First, we examined global and local brain network properties in 40 healthy subjects and 40 schizophrenic patients aged 21–55 using resting‐state functional magnetic resonance imaging (rs‐fMRI). Global network alterations are measured by graph theoretical metrics of MSTs and a connectivity‐transitivity two‐dimensional approach was proposed to characterize nodal roles. We found that networks of schizophrenic patients exhibited a more star‐like global structure compared to controls, indicating excessive integration, and a loss of regional transitivity in the dorsal frontal cortex (corrected p <.05). Regional analysis of MST network topology revealed that schizophrenia patients had more network hubs in frontal regions, which may be linked to the “overloading” hypothesis. Furthermore, using SEM, we found that the level of MST integration mediated the influence of age on negative symptom severity (indirect effect 95% CI [0.026, 0.449]). These findings highlighted an altered network skeleton in schizophrenia and suggested that aging‐related enhancement of network integration may undermine functional specialization of distinct neural systems and result in aggravated schizophrenic symptoms.
Collapse
Affiliation(s)
- Xinyu Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|