1
|
Yu Y, Hu B, Yu XW, Cui YY, Cao XY, Ni MH, Li SN, Dai P, Sun Q, Bai XY, Tong Y, Jing XR, Yang AL, Liang SR, Du LJ, Guo S, Yan LF, Gao B, Cui GB. Dysregulated brain dynamics in the visualmotor network in type 2 diabetes patients and their relationship with cognitive impairment. Brain Res Bull 2025; 224:111313. [PMID: 40112956 DOI: 10.1016/j.brainresbull.2025.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) is a significant risk factor for mild cognitive impairment (MCI). Here, we identified a T2DM-specific effective connectivity (EC) network, the dynamic features of which could be used to distinguish T2DM patients with MCI from healthy controls (HC) and correlation with cognitive performance. METHODS Local and multicentered T2DM patients and matched HC who underwent functional magnetic resonance imaging were recruited. Their static and dynamic effective connectivity were compared. The relationships between connectome characteristics and cognitive performance were also evaluated. RESULTS The nodes of the T2DM-related static causality network included the anterior central gyrus, tail of the parahippocampal gyrus, posterior superior temporal sulcus, posterior central parietal lobe, posterior central gyrus and V5 region of the occipital lobe. The V5 region of the visual cortex was the core node. In the multicentered dataset, compared with the HC group, the T2DM with MCI group had significantly greater fractional window and mean dwell time. Fractional windows of the state, which was dominated by the interaction of the nodes from SomMot_Network, Limbic_Network, Default_Network, in the T2DM-specific network increased with poorer cognitive performance in T2DM with MCI patients. CONCLUSION Our findings provide insights into the neurobiological mechanisms of the cognitive impairment of T2DM patients from a dynamic network perspective, which may ultimately inform more targeted and effective strategies to prevent MCI.
Collapse
Affiliation(s)
- Ying Yu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Bo Hu
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Xin-Wen Yu
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Yan-Yan Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China
| | - Xin-Yu Cao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Min-Hua Ni
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Si-Ning Li
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Pan Dai
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Qian Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Xiao-Yan Bai
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China
| | - Yao Tong
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Xiao-Rui Jing
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Ai-Li Yang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Sheng-Ru Liang
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Li-Juan Du
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Shuo Guo
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China.
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), 569 Xinsi Road, Xi'an, Shaanxi 710038, China; Shaanxi University of Chinese Medicine, Middle Section of Century Avenue, Xian yang, Shaanxi, China.
| |
Collapse
|
2
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of Bidirectional Network Cores in the Brain with Perceptual Awareness and Cognition. J Neurosci 2025; 45:e0802242025. [PMID: 40015987 PMCID: PMC12019110 DOI: 10.1523/jneurosci.0802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa 236-0027, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
3
|
Zheng Y, Yang Y, Zhen Y, Wang X, Liu L, Zheng H, Tang S. Altered integrated and segregated states in cocaine use disorder. Front Neurosci 2025; 19:1572463. [PMID: 40270764 PMCID: PMC12014740 DOI: 10.3389/fnins.2025.1572463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Cocaine use disorder (CUD) is a chronic brain condition that severely impairs cognitive function and behavioral control. The neural mechanisms underlying CUD, particularly its impact on brain integration-segregation dynamics, remain unclear. Methods In this study, we integrate dynamic functional connectivity and graph theory to compare the brain state properties of healthy controls and CUD patients. Results We find that CUD influences both integrated and segregated states, leading to distinct alterations in connectivity patterns and network properties. CUD disrupts connectivity involving the default mode network, frontoparietal network, and subcortical structures. In addition, integrated states show distinct sensorimotor connectivity alterations, while segregated states exhibit significant alterations in frontoparietal-subcortical connectivity. Regional connectivity alterations among both states are significantly associated with MOR and H3 receptor distributions, with integrated states showing more receptor-connectivity couplings. Furthermore, CUD alters the positive-negative correlation balance, increases functional complexity at threshold 0, and reduces mean betweenness centrality and modularity in the critical subnetworks. Segregated states in CUD exhibit lower normalized clustering coefficients and functional complexity at a threshold of 0.3. We also identify network properties in integrated states that are reliably correlated with cocaine consumption patterns. Discussion Our findings reveal temporal effects of CUD on brain integration and segregation, providing novel insights into the dynamic neural mechanisms underlying cocaine addiction.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing, China
- Institute of Artificial Intelligence, Beihang University, Beijing, China
- Zhongguancun Laboratory, Beijing, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Luppi AI, Uhrig L, Tasserie J, Shafiei G, Muta K, Hata J, Okano H, Golkowski D, Ranft A, Ilg R, Jordan D, Gini S, Liu ZQ, Yee Y, Signorelli CM, Cofre R, Destexhe A, Menon DK, Stamatakis EA, Connor CW, Gozzi A, Fulcher BD, Jarraya B, Misic B. Comprehensive profiling of anaesthetised brain dynamics across phylogeny. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644729. [PMID: 40196621 PMCID: PMC11974681 DOI: 10.1101/2025.03.22.644729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The intrinsic dynamics of neuronal circuits shape information processing and cognitive function. Combining non-invasive neuroimaging with anaesthetic-induced suppression of information processing provides a unique opportunity to understand how local dynamics mediate the link between neurobiology and the organism's functional repertoire. To address this question, we compile a unique dataset of multi-scale neural activity during wakefulness and anesthesia encompassing human, macaque, marmoset, mouse and nematode. We then apply massive feature extraction to comprehensively characterize local neural dynamics across > 6 000 time-series features. Using dynamics as a common space for comparison across species, we identify a phylogenetically conserved dynamical profile of anaesthesia that encompasses multiple features, including reductions in intrinsic timescales. This dynamical signature has an evolutionarily conserved spatial layout, covarying with transcriptional profiles of excitatory and inhibitory neurotransmission across human, macaque and mouse cortex. At the network level, anesthetic-induced changes in local dynamics manifest as reductions in inter-regional synchrony. This relationship between local dynamics and global connectivity can be recapitulated in silico using a connectome-based computational model. Finally, this dynamical regime of anaesthesia is experimentally reversed in vivo by deep-brain stimulation of the centromedian thalamus in the macaque, resulting in restored arousal and behavioural responsiveness. Altogether, comprehensive dynamical phenotyping reveals that spatiotemporal isolation of local neural activity during anesthesia is conserved across species and anesthetics.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
- St John’s College, University of Cambridge, Cambridge, UK
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Golia Shafiei
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanako Muta
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Arakawa, Tokyo, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Silvia Gini
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Centre for Mind/Brain Sciences, University of Trento, Italy
| | - Zhen-Qi Liu
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Yohan Yee
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Camilo M. Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Center for Philosophy of Artificial Intelligence, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Cofre
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - Alain Destexhe
- Paris-Saclay University, CNRS, Paris-Saclay Institute for Neuroscience (NeuroPSI), Saclay, France
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Christopher W. Connor
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Biomedical Engineering, Physiology and Biophysics, Boston University, Boston, Massachusetts
| | - Alessandro Gozzi
- Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ben D. Fulcher
- School of Physics, The University of Sydney, Sydney, Australia
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
- Department of Neurology, Foch Hospital, Suresnes, France
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
5
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia decreases the uniqueness of brain functional connectivity across individuals and species. Nat Hum Behav 2025:10.1038/s41562-025-02121-9. [PMID: 40128306 DOI: 10.1038/s41562-025-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/16/2025] [Indexed: 03/26/2025]
Abstract
The human brain is characterized by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI scans acquired under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain, both with respect to the brains of other individuals and the brains of another species. Using functional connectivity, we report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organized: it co-localizes with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol and reversed upon recovery. Providing convergent evidence, we show that anaesthesia shifts the functional connectivity of the human brain closer to the functional connectivity of the macaque brain in a low-dimensional space. Finally, anaesthesia diminishes the match between spontaneous brain activity and cognitive brain patterns aggregated from the Neurosynth meta-analytic engine. Collectively, the present results reveal that anaesthetized human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
- Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- School of Mathematics, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
Xiong Y, Yu RQ, Wang XY, Liang SS, Ran J, Li X, Xu YZ. Hemispheric asymmetries and network dysfunctions in adolescent depression: A neuroimaging study using resting-state functional magnetic resonance imaging. World J Psychiatry 2025; 15:102412. [PMID: 39974491 PMCID: PMC11758046 DOI: 10.5498/wjp.v15.i2.102412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/25/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Currently, adolescent depression is one of the most significant public health concerns, markedly influencing emotional, cognitive, and social maturation. Despite advancements in distinguish the neurobiological substrates underlying depression, the intricate patterns of disrupted brain network connectivity in adolescents warrant further exploration. AIM To elucidate the neural correlates of adolescent depression by examining brain network connectivity using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS The study cohort comprised 74 depressed adolescents and 59 healthy controls aged 12 to 17 years. Participants underwent rs-fMRI to evaluate functional connectivity within and across critical brain networks, including the visual, default mode network (DMN), dorsal attention, salience, somatomotor, and frontoparietal control networks. RESULTS Analyses revealed pronounced functional disparities within key neural circuits among adolescents with depression. The results demonstrated existence of hemispheric asymmetries characterized by enhanced activity in the left visual network, which contrasted the diminished activity in the right hemisphere. The DMN facilitated increased activity within the left prefrontal cortex and reduced engagement in the right hemisphere, implicating disrupted self-referential and emotional processing mechanisms. Additionally, an overactive right dorsal attention network and a hypoactive salience network were identified, underscoring significant abnormalities in attentional and emotional regulation in adolescent depression. CONCLUSION The findings from this study underscore distinct neural connectivity disruptions in adolescent depression, underscoring the critical role of specific neurobiological markers for precise early diagnosis of adolescent depression. The observed functional asymmetries and network-specific deviations elucidate the complex neurobiological architecture of adolescent depression, supporting the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Hematology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Ren-Qiang Yu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xing-Yu Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shun-Si Liang
- Department of Hematology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Jie Ran
- Department of Hematology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| | - Xiao Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi-Zhi Xu
- Department of Hematology, Chongqing General Hospital, Chongqing University, Chongqing 401147, China
| |
Collapse
|
7
|
Hu H, Coppola P, Stamatakis EA, Naci L. Typical and disrupted small-world architecture and regional communication in full-term and preterm infants. PNAS NEXUS 2025; 4:pgaf015. [PMID: 39931103 PMCID: PMC11809590 DOI: 10.1093/pnasnexus/pgaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
Understanding the emergence of complex cognition in the neonate is one of the great frontiers of cognitive neuroscience. In the adult brain, small-world organization enables efficient information segregation and integration and dynamic adaptability to cognitive demands. It remains unknown, however, when functional small-world architecture emerges in development, whether it is present by birth and how prematurity affects it. We leveraged the world's largest fMRI neonatal dataset-Developing Human Connectome Project-to include full-term neonates (n = 278), and preterm neonates scanned at term-equivalent age (TEA; n = 72), or before TEA (n = 70), and the Human Connectome Project for a reference adult group (n = 176). Although different from adults', the small-world architecture was developed in full-term neonates at birth. The key novel finding was that premature neonates before TEA showed dramatic underdevelopment of small-world organization and regional communication in 9/11 networks, with disruption in 32% of brain nodes. The somatomotor and dorsal attention networks carry the largest spatial effect, and visual network the smallest. Significant prematurity-related disruption of small-world architecture and reduced efficiency of regional communication in networks related to high-order cognition, including language, persisted at TEA. Critically, at full-term birth or by TEA, infants exhibited functional small-world architecture, which facilitates differentiated and integrated neural processes that support complex cognition. Conversely, this brain infrastructure is significantly underdeveloped before infants reach TEA. These findings improve understanding of the ontogeny of functional small-world architecture and efficiency of neural communication, and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Key Laboratory of Adolescent Cyberpsychology and Behavior, Ministry of Education, Central China Normal University, No. 152 Luoyu Road, Hongshan District, Wuhan 430079, Hubei, China
- Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, No. 152 Luoyu Road, Hongshan District, Wuhan 430079, Hubei, China
| | - Peter Coppola
- Division of Anaesthesia, Addenbrookes Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, Addenbrookes Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, 42a Pearse St, Dublin D02 X9W9, Ireland
- Global Brain Health Institute, Trinity College Dublin, 42a Pearse St, Dublin D02 X9W9, Ireland
| |
Collapse
|
8
|
Frohlich J, Bayne T. Markers of consciousness in infants: Towards a 'cluster-based' approach. Acta Paediatr 2025; 114:285-291. [PMID: 39400909 PMCID: PMC11706756 DOI: 10.1111/apa.17449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
As recently as the 1980s, it was not uncommon for paediatric surgeons to operate on infants without anaesthesia. Today, the same omission would be considered criminal malpractice, and there is an increased concern with the possibility of consciousness in the earliest stage of human infancy. This concern reflects a more general trend that has characterised science since the early 1990s of taking consciousness seriously. While this attitude shift has opened minds towards the possibility that our earliest experiences predate our first memories, convincing demonstrations of infant consciousness remain challenging given that infants cannot report on their experiences. Furthermore, while many behavioural and neural markers of consciousness that do not rely on language have been validated in adults, no one specific marker can be confidently translated to infancy. For this reason, we have proposed the 'cluster-based' approach, in which a consensus of evidence across many markers, all pointing towards the same developmental period, could be used to argue convincingly for the presence of consciousness. CONCLUSION: We review the most promising markers for early consciousness, arguing that consciousness is likely to be in place by 5 months of age if not earlier.
Collapse
Affiliation(s)
- Joel Frohlich
- IDM/fMEG Center of the Helmholtz Center Munich at the University of TübingenUniversity of TübingenTübingenGermany
- Institute for Advanced Consciousness StudiesSanta MonicaCaliforniaUSA
| | - Tim Bayne
- School of Philosophy, History, and Indigenous Studies (SOPHIS)Monash UniversityMelbourneVictoriaAustralia
- Brain, Mind and Consciousness ProgramCanadian Institute for Advanced ResearchTorontoCanada
- Monash Centre for Consciousness and Contemplative Studies (M3CS)Monash UniversityMelbourneAustralia
| |
Collapse
|
9
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Wang Y, Ji Y, Liu J, Lv L, Xu Z, Yan M, Chen J, Luo Z, Zeng X. Abnormal intrinsic brain functional network dynamics in patients with retinal detachment based on graph theory and machine learning. Heliyon 2024; 10:e37890. [PMID: 39660184 PMCID: PMC11629196 DOI: 10.1016/j.heliyon.2024.e37890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 12/12/2024] Open
Abstract
Background and purpose: The investigation of functional plasticity and remodeling of the brain in patients with retinal detachment (RD) has gained increasing attention and validation. However, the precise alterations in the topological configuration of dynamic functional networks are still not fully understood. This study aimed to investigate the topological structure of dynamic brain functional networks in RD patients. Methods We recruited 32 patients with RD and 33 healthy controls (HCs) to participate in resting-state fMRI. Employing the sliding time window analysis and K-means clustering method, we sought to identify dynamic functional connectivity (dFC) variability patterns in both groups. The investigation into the topological structure of whole-brain functional networks utilized a graph theoretical approach. Furthermore, we employed machine learning analysis, selecting altered topological properties as classification features to distinguish RD patients from HCs. Results All participants exhibited four distinct states of dynamic functional connectivity. Compared to the healthy control (HC) group, patients with RD experienced a significant reduction in the number of transitions among these four states. Additionally, the dynamic topological properties of RD patients demonstrated notable changes in both global and node-specific characteristics, with these changes correlating with clinical parameters. The support vector machine (SVM) model used for classification achieved an accuracy of 0.938, an area under the curve (AUC) of 0.988, and both sensitivity and specificity of 0.937. Conclusion The alterations in the topological properties of the brain in RD patients may indicate the integration function and information exchange efficiency of the whole brain network were reduced. In addition, the topological properties hold considerable promise for distinguishing between RD and HCs.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Ji
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jie Liu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lianjiang Lv
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zihe Xu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Meimei Yan
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jialu Chen
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xianjun Zeng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
11
|
Castro P, Luppi A, Tagliazucchi E, Perl YS, Naci L, Owen AM, Sitt JD, Destexhe A, Cofré R. Dynamical structure-function correlations provide robust and generalizable signatures of consciousness in humans. Commun Biol 2024; 7:1224. [PMID: 39349600 PMCID: PMC11443142 DOI: 10.1038/s42003-024-06858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/06/2024] [Indexed: 10/04/2024] Open
Abstract
Resting-state functional magnetic resonance imaging evolves through a repertoire of functional connectivity patterns which might reflect ongoing cognition, as well as the contents of conscious awareness. We investigated whether the dynamic exploration of these states can provide robust and generalizable markers for the state of consciousness in human participants, across loss of consciousness induced by general anaesthesia or slow wave sleep. By clustering transient states of functional connectivity, we demonstrated that brain activity during unconsciousness is dominated by a recurrent pattern primarily mediated by structural connectivity and with a reduced capacity to transition to other patterns. Our results provide evidence supporting the pronounced differences between conscious and unconscious brain states in terms of whole-brain dynamics; in particular, the maintenance of rich brain dynamics measured by entropy is a critical aspect of conscious awareness. Collectively, our results may have significant implications for our understanding of consciousness and the neural basis of human awareness, as well as for the discovery of robust signatures of consciousness that are generalizable among different brain conditions.
Collapse
Affiliation(s)
- Pablo Castro
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Andrea Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Enzo Tagliazucchi
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Yonatan S Perl
- Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), CABA, Buenos Aires, Argentina
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorina Naci
- Trinity College Institute of Neuroscience Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Adrian M Owen
- Departments of Physiology and Pharmacology and Psychology, Western University, London, Canada
| | - Jacobo D Sitt
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| | - Rodrigo Cofré
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
12
|
Feng S, Huang Y, Li H, Zhou S, Ning Y, Han W, Zhang Z, Liu C, Li J, Zhong L, Wu K, Wu F. Dynamic effective connectivity in the cerebellar dorsal dentate nucleus and the cerebrum, cognitive impairment, and clinical correlates in patients with schizophrenia. Schizophr Res 2024; 271:394-401. [PMID: 38729789 DOI: 10.1016/j.schres.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/16/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Schizophrenia (SZ) is characterized by disconnected cerebral networks. Recent studies have shown that functional connectivity between the cerebellar dorsal dentate nucleus (dDN) and cerebrum is correlated with psychotic symptoms, and processing speed in SZ patients. Dynamic effective connectivity (dEC) is a reliable indicator of brain functional status. However, the dEC between the dDN and cerebrum in patients with SZ remains largely unknown. METHODS Resting-state functional MRI data, symptom severity, and cognitive performance were collected from 74 SZ patients and 53 healthy controls (HC). Granger causality analysis and sliding time window methods were used to calculate dDN-based dEC maps for all subjects, and k-means clustering was performed to obtain several dEC states. Finally, between-group differences in dynamic effective connectivity variability (dECV) and clinical correlations were obtained using two-sample t-tests and correlation analysis. RESULTS We detected four dEC states from the cerebrum to the right dDN (IN states) and three dEC states from the right dDN to the cerebrum (OUT states), with SZ group having fewer transitions in the OUT states. SZ group had increased dECV from the right dDN to the right middle frontal gyrus (MFG) and left lingual gyrus (LG). Correlations were found between the dECV from the right dDN to the right MFG and symptom severity and between the dECV from the right dDN to the left LG and working memory performance. CONCLUSIONS This study reveals a dynamic causal relationship between cerebellar dDN and the cerebrum in SZ and provides new evidence for the involvement of cerebellar neural circuits in neurocognitive functions in SZ.
Collapse
Affiliation(s)
- Shixuan Feng
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanyuan Huang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Hehua Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sumiao Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China
| | - Wei Han
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziyun Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chenyu Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhao Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liangda Zhong
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, China; Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China.
| |
Collapse
|
13
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard J, Carhart-Harris RL, Williams GB, Craig MM, Finoia P, Owen AM, Naci L, Menon DK, Bor D, Stamatakis EA. A synergistic workspace for human consciousness revealed by Integrated Information Decomposition. eLife 2024; 12:RP88173. [PMID: 39022924 PMCID: PMC11257694 DOI: 10.7554/elife.88173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a 'synergistic global workspace', comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain's default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Pedro AM Mediano
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Center for Complexity Science, Imperial College LondonLondonUnited Kingdom
- Data Science Institute, Imperial College LondonLondonUnited Kingdom
| | - Judith Allanson
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - John Pickard
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Addenbrooke's HospitalCambridgeUnited Kingdom
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College LondonLondonUnited Kingdom
- Psychedelics Division - Neuroscape, Department of Neurology, University of CaliforniaSan FranciscoUnited States
| | - Guy B Williams
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Michael M Craig
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| | - Paola Finoia
- Department of Clinical Neurosciences, University of CambridgeCambridgeUnited Kingdom
| | - Adrian M Owen
- Department of Psychology and Department of Physiology and Pharmacology, The Brain and Mind Institute, University of Western OntarioLondonCanada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Lloyd Building, Trinity CollegeDublinIreland
| | - David K Menon
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
- Wolfson Brain Imaging Centre, University of CambridgeCambridgeUnited Kingdom
| | - Daniel Bor
- Department of Psychology, University of CambridgeCambridgeUnited Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, School of Clinical Medicine, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
14
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Liang Z, Lan Z, Wang Y, Bai Y, He J, Wang J, Li X. The EEG complexity, information integration and brain network changes in minimally conscious state patients during general anesthesia. J Neural Eng 2023; 20:066030. [PMID: 38055962 DOI: 10.1088/1741-2552/ad12dc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.General anesthesia (GA) can induce reversible loss of consciousness. Nonetheless, the electroencephalography (EEG) characteristics of patients with minimally consciousness state (MCS) during GA are seldom observed.Approach.We recorded EEG data from nine MCS patients during GA. We used the permutation Lempel-Ziv complexity (PLZC), permutation fluctuation complexity (PFC) to quantify the type I and II complexities. Additionally, we used permutation cross mutual information (PCMI) and PCMI-based brain network to investigate functional connectivity and brain networks in sensor and source spaces.Main results.Compared to the preoperative resting state, during the maintenance of surgical anesthesia state, PLZC decreased (p< 0.001), PFC increased (p< 0.001) and PCMI decreased (p< 0.001) in sensor space. The results for these metrics in source space are consistent with sensor space. Additionally, node network indicators nodal clustering coefficient (NCC) (p< 0.001) and nodal efficiency (NE) (p< 0.001) decreased in these two spaces. Global network indicators normalized average path length (Lave/Lr) (p< 0.01) and modularity (Q) (p< 0.05) only decreased in sensor space, while the normalized average clustering coefficient (Cave/Cr) and small-world index (σ) did not change significantly. Moreover, the dominance of hub nodes is reduced in frontal regions in these two spaces. After recovery of consciousness, PFC decreased in the two spaces, while PLZC, PCMI increased. NCC, NE, and frontal region hub node dominance increased only in the sensor space. These indicators did not return to preoperative levels. In contrast, global network indicatorsLave/LrandQwere not significantly different from the preoperative resting state in sensor space.Significance.GA alters the complexity of the EEG, decreases information integration, and is accompanied by a reconfiguration of brain networks in MCS patients. The PLZC, PFC, PCMI and PCMI-based brain network metrics can effectively differentiate the state of consciousness of MCS patients during GA.
Collapse
Affiliation(s)
- Zhenhu Liang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Zhilei Lan
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Yong Wang
- Zhuhai UM Science & Technology Research Institute, Zhuhai 519031, People's Republic of China
| | - Yang Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, People's Republic of China
- Rehabilitation Medicine Clinical Research Center of Jiangxi Province, Nanchang 330006, Jiangxi, People's Republic of China
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Juan Wang
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, People's Republic of China
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Qinhuangdao 066004, People's Republic of China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, People's Republic of China
- Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
17
|
Lord LD, Carletti T, Fernandes H, Turkheimer FE, Expert P. Altered dynamical integration/segregation balance during anesthesia-induced loss of consciousness. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1279646. [PMID: 38116461 PMCID: PMC10728865 DOI: 10.3389/fnetp.2023.1279646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13-30 Hz) and low-gamma bands (30-80 Hz), and with strongly preserved local synchrony in all bands.
Collapse
Affiliation(s)
- Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
| | - Timoteo Carletti
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Department of Mathematics and Namur Institute for Complex Systems (naXys), University of Namur, Namur, Belgium
| | - Henrique Fernandes
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Centre for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Paul Expert
- Institut Méditerranéen de Recherches Avancées (IMéRA), Aix-Marseille Université, Marseille, France
- Global Business School for Health, University College London, London, United Kingdom
| |
Collapse
|
18
|
Miao J, Tantawi M, Alizadeh M, Thalheimer S, Vedaei F, Romo V, Mohamed FB, Wu C. Characteristic dynamic functional connectivity during sevoflurane-induced general anesthesia. Sci Rep 2023; 13:21014. [PMID: 38030651 PMCID: PMC10687074 DOI: 10.1038/s41598-023-43832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
General anesthesia (GA) during surgery is commonly maintained by inhalational sevoflurane. Previous resting state functional MRI (rs-fMRI) studies have demonstrated suppressed functional connectivity (FC) of the entire brain networks, especially the default mode networks, transitioning from the awake to GA condition. However, accuracy and reliability were limited by previous administration methods (e.g. face mask) and short rs-fMRI scans. Therefore, in this study, a clinical scenario of epilepsy patients undergoing laser interstitial thermal therapy was leveraged to acquire 15 min of rs-fMRI while under general endotracheal anesthesia to maximize the accuracy of sevoflurane level. Nine recruited patients had fMRI acquired during awake and under GA, of which seven were included in both static and dynamic FC analyses. Group independent component analysis and a sliding-window method followed by k-means clustering were applied to identify four dynamic brain states, which characterized subtypes of FC patterns. Our results showed that a low-FC brain state was characteristic of the GA condition as a single featuring state during the entire rs-fMRI session; In contrast, the awake condition exhibited frequent fluctuations between three distinct brain states, one of which was a highly synchronized brain state not seen in GA. In conclusion, our study revealed remarkable dynamic connectivity changes from awake to GA condition and demonstrated the advantages of dynamic FC analysis for future studies in the assessments of the effects of GA on brain functional activities.
Collapse
Affiliation(s)
- Jingya Miao
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Mohamed Tantawi
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mahdi Alizadeh
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sara Thalheimer
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Faezeh Vedaei
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Victor Romo
- Department of Anesthesia, Thomas Jefferson University, Philadelphia, PA, USA
| | - Feroze B Mohamed
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Chengyuan Wu
- Department of Neurosurgery and Radiology, Thomas Jefferson University, Philadelphia, PA, USA
- Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
19
|
Zhao G, Zhan Y, Zha J, Cao Y, Zhou F, He L. Abnormal intrinsic brain functional network dynamics in patients with cervical spondylotic myelopathy. Cogn Neurodyn 2023; 17:1201-1211. [PMID: 37786665 PMCID: PMC10542087 DOI: 10.1007/s11571-022-09807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/03/2022] Open
Abstract
The specific topological changes in dynamic functional networks and their role in cervical spondylotic myelopathy (CSM) brain function reorganization remain unclear. This study aimed to investigate the dynamic functional connection (dFC) of patients with CSM, focusing on the temporal characteristics of the functional connection state patterns and the variability of network topological organization. Eighty-eight patients with CSM and 77 healthy controls (HCs) were recruited for resting-state functional magnetic resonance imaging. We applied the sliding time window analysis method and K-means clustering analysis to capture the dFC variability patterns of the two groups. The graph-theoretical approach was used to investigate the variance in the topological organization of whole-brain functional networks. All participants showed four types of dynamic functional connection states. The mean dwell time in state 2 was significantly different between the two groups. Particularly, the mean dwell time in state 2 was significantly longer in the CSM group than in the healthy control group. Among the four states, switching of relative brain networks mainly included the executive control network (ECN), salience network (SN), default mode network (DMN), language network (LN), visual network (VN), auditory network (AN), precuneus network (PN), and sensorimotor network (SMN). Additionally, the topological properties of the dynamic network were variable in patients with CSM. Dynamic functional connection states may offer new insights into intrinsic functional activities in CSM brain networks. The variance of topological organization may suggest instability of the brain networks in patients with CSM.
Collapse
Affiliation(s)
- Guoshu Zhao
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006 People’s Republic of China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006 People’s Republic of China
| | - Yaru Zhan
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006 People’s Republic of China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006 People’s Republic of China
| | - Jing Zha
- The 908th Hospital of Chinese People’s Liberation Army Joint Logistic Support Force, Fuzhou, 330006 People’s Republic of China
| | - Yuan Cao
- Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, 610041 People’s Republic of China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041 People’s Republic of China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006 People’s Republic of China
| | - Fuqing Zhou
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006 People’s Republic of China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006 People’s Republic of China
| | - Laichang He
- Department of Radiology, the First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006 People’s Republic of China
- Neuroimaging Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006 People’s Republic of China
| |
Collapse
|
20
|
Krause BM, Campbell DI, Kovach CK, Mueller RN, Kawasaki H, Nourski KV, Banks MI. Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep. Cereb Cortex 2023; 33:9850-9866. [PMID: 37434363 PMCID: PMC10472497 DOI: 10.1093/cercor/bhad249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Christopher K Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
21
|
Luppi AI, Mediano PAM, Rosas FE, Allanson J, Pickard JD, Williams GB, Craig MM, Finoia P, Peattie ARD, Coppola P, Menon DK, Bor D, Stamatakis EA. Reduced emergent character of neural dynamics in patients with a disrupted connectome. Neuroimage 2023; 269:119926. [PMID: 36740030 PMCID: PMC9989666 DOI: 10.1016/j.neuroimage.2023.119926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
High-level brain functions are widely believed to emerge from the orchestrated activity of multiple neural systems. However, lacking a formal definition and practical quantification of emergence for experimental data, neuroscientists have been unable to empirically test this long-standing conjecture. Here we investigate this fundamental question by leveraging a recently proposed framework known as "Integrated Information Decomposition," which establishes a principled information-theoretic approach to operationalise and quantify emergence in dynamical systems - including the human brain. By analysing functional MRI data, our results show that the emergent and hierarchical character of neural dynamics is significantly diminished in chronically unresponsive patients suffering from severe brain injury. At a functional level, we demonstrate that emergence capacity is positively correlated with the extent of hierarchical organisation in brain activity. Furthermore, by combining computational approaches from network control theory and whole-brain biophysical modelling, we show that the reduced capacity for emergent and hierarchical dynamics in severely brain-injured patients can be mechanistically explained by disruptions in the patients' structural connectome. Overall, our results suggest that chronic unresponsiveness resulting from severe brain injury may be related to structural impairment of the fundamental neural infrastructures required for brain dynamics to support emergence.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Leverhulme Centre for the Future of Intelligence, Cambridge, UK; The Alan Turing Institute, London, UK.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | - Fernando E Rosas
- Department of Brain Science, Center for Psychedelic Research, Imperial College London, London, UK; Data Science Institute, Imperial College London, London, UK; Centre for Complexity Science, Imperial College London, London, UK; Center for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Neurosciences, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation, Cambridge, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Paola Finoia
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Coppola
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, UK; Department of Psychology, Queen Mary University of London, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
23
|
Li H, Zhang X, Sun X, Dong L, Lu H, Yue S, Zhang H. Functional networks in prolonged disorders of consciousness. Front Neurosci 2023; 17:1113695. [PMID: 36875660 PMCID: PMC9981972 DOI: 10.3389/fnins.2023.1113695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Prolonged disorders of consciousness (DoC) are characterized by extended disruptions of brain activities that sustain wakefulness and awareness and are caused by various etiologies. During the past decades, neuroimaging has been a practical method of investigation in basic and clinical research to identify how brain properties interact in different levels of consciousness. Resting-state functional connectivity within and between canonical cortical networks correlates with consciousness by a calculation of the associated temporal blood oxygen level-dependent (BOLD) signal process during functional MRI (fMRI) and reveals the brain function of patients with prolonged DoC. There are certain brain networks including the default mode, dorsal attention, executive control, salience, auditory, visual, and sensorimotor networks that have been reported to be altered in low-level states of consciousness under either pathological or physiological states. Analysis of brain network connections based on functional imaging contributes to more accurate judgments of consciousness level and prognosis at the brain level. In this review, neurobehavioral evaluation of prolonged DoC and the functional connectivity within brain networks based on resting-state fMRI were reviewed to provide reference values for clinical diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Hui Li
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Xiaonian Zhang
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Xinting Sun
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Linghui Dong
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Haitao Lu
- Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Hao Zhang
- Rehabilitation Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Neurorehabilitation, China Rehabilitation Research Center, Beijing, China.,University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| |
Collapse
|
24
|
Zheng RZ, Qi ZX, Wang Z, Xu ZY, Wu XH, Mao Y. Clinical Decision on Disorders of Consciousness After Acquired Brain Injury: Stepping Forward. Neurosci Bull 2023; 39:138-162. [PMID: 35804219 PMCID: PMC9849546 DOI: 10.1007/s12264-022-00909-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/10/2022] [Indexed: 01/22/2023] Open
Abstract
Major advances have been made over the past few decades in identifying and managing disorders of consciousness (DOC) in patients with acquired brain injury (ABI), bringing the transformation from a conceptualized definition to a complex clinical scenario worthy of scientific exploration. Given the continuously-evolving framework of precision medicine that integrates valuable behavioral assessment tools, sophisticated neuroimaging, and electrophysiological techniques, a considerably higher diagnostic accuracy rate of DOC may now be reached. During the treatment of patients with DOC, a variety of intervention methods are available, including amantadine and transcranial direct current stimulation, which have both provided class II evidence, zolpidem, which is also of high quality, and non-invasive stimulation, which appears to be more encouraging than pharmacological therapy. However, heterogeneity is profoundly ingrained in study designs, and only rare schemes have been recommended by authoritative institutions. There is still a lack of an effective clinical protocol for managing patients with DOC following ABI. To advance future clinical studies on DOC, we present a comprehensive review of the progress in clinical identification and management as well as some challenges in the pathophysiology of DOC. We propose a preliminary clinical decision protocol, which could serve as an ideal reference tool for many medical institutions.
Collapse
Affiliation(s)
- Rui-Zhe Zheng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zeng-Xin Qi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhe Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ze-Yu Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xue-Hai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Singleton SP, Luppi AI, Carhart-Harris RL, Cruzat J, Roseman L, Nutt DJ, Deco G, Kringelbach ML, Stamatakis EA, Kuceyeski A. Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain's control energy landscape. Nat Commun 2022; 13:5812. [PMID: 36192411 PMCID: PMC9530221 DOI: 10.1038/s41467-022-33578-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Psychedelics including lysergic acid diethylamide (LSD) and psilocybin temporarily alter subjective experience through their neurochemical effects. Serotonin 2a (5-HT2a) receptor agonism by these compounds is associated with more diverse (entropic) brain activity. We postulate that this increase in entropy may arise in part from a flattening of the brain's control energy landscape, which can be observed using network control theory to quantify the energy required to transition between recurrent brain states. Using brain states derived from existing functional magnetic resonance imaging (fMRI) datasets, we show that LSD and psilocybin reduce control energy required for brain state transitions compared to placebo. Furthermore, across individuals, reduction in control energy correlates with more frequent state transitions and increased entropy of brain state dynamics. Through network control analysis that incorporates the spatial distribution of 5-HT2a receptors (obtained from publicly available positron emission tomography (PET) data under non-drug conditions), we demonstrate an association between the 5-HT2a receptor and reduced control energy. Our findings provide evidence that 5-HT2a receptor agonist compounds allow for more facile state transitions and more temporally diverse brain activity. More broadly, we demonstrate that receptor-informed network control theory can model the impact of neuropharmacological manipulation on brain activity dynamics.
Collapse
Affiliation(s)
- S Parker Singleton
- Department of Computational Biology, Cornell University, Ithaca, NY, USA.
| | - Andrea I Luppi
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, CA, USA
| | - Josephine Cruzat
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibanez, Santiago, Chile
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - David J Nutt
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center of Music in the Brain (MIB), Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - Emmanuel A Stamatakis
- Division of Anesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Amy Kuceyeski
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
26
|
Zarkali A, Luppi AI, Stamatakis EA, Reeves S, McColgan P, Leyland LA, Lees AJ, Weil RS. Changes in dynamic transitions between integrated and segregated states underlie visual hallucinations in Parkinson's disease. Commun Biol 2022; 5:928. [PMID: 36075964 PMCID: PMC9458713 DOI: 10.1038/s42003-022-03903-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Hallucinations are a core feature of psychosis and common in Parkinson's. Their transient, unexpected nature suggests a change in dynamic brain states, but underlying causes are unknown. Here, we examine temporal dynamics and underlying structural connectivity in Parkinson's-hallucinations using a combination of functional and structural MRI, network control theory, neurotransmitter density and genetic analyses. We show that Parkinson's-hallucinators spent more time in a predominantly Segregated functional state with fewer between-state transitions. The transition from integrated-to-segregated state had lower energy cost in Parkinson's-hallucinators; and was therefore potentially preferable. The regional energy needed for this transition was correlated with regional neurotransmitter density and gene expression for serotoninergic, GABAergic, noradrenergic and cholinergic, but not dopaminergic, receptors. We show how the combination of neurochemistry and brain structure jointly shape functional brain dynamics leading to hallucinations and highlight potential therapeutic targets by linking these changes to neurotransmitter systems involved in early sensory and complex visual processing.
Collapse
Affiliation(s)
- Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
| | - Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Suzanne Reeves
- Division of Psychiatry, University College London, 149 Tottenham Court Rd, London, W1T 7BN, UK
| | - Peter McColgan
- Huntington's Disease Centre, University College London, Russell Square House, London, WC1B 5EH, UK
| | - Louise-Ann Leyland
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Andrew J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Rimona S Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Consortium, University College London, London, WC1N 3BG, UK
| |
Collapse
|
27
|
Arena A, Juel BE, Comolatti R, Thon S, Storm JF. Capacity for consciousness under ketamine anaesthesia is selectively associated with activity in posteromedial cortex in rats. Neurosci Conscious 2022; 2022:niac004. [PMID: 35261778 PMCID: PMC8896332 DOI: 10.1093/nc/niac004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
It remains unclear how specific cortical regions contribute to the brain's overall capacity for consciousness. Clarifying this could help distinguish between theories of consciousness. Here, we investigate the association between markers of regionally specific (de)activation and the brain's overall capacity for consciousness. We recorded electroencephalographic responses to cortical electrical stimulation in six rats and computed Perturbational Complexity Index state-transition (PCIST), which has been extensively validated as an index of the capacity for consciousness in humans. We also estimated the balance between activation and inhibition of specific cortical areas with the ratio between high and low frequency power from spontaneous electroencephalographic activity at each electrode. We repeated these measurements during wakefulness, and during two levels of ketamine anaesthesia: with the minimal dose needed to induce behavioural unresponsiveness and twice this dose. We found that PCIST was only slightly reduced from wakefulness to light ketamine anaesthesia, but dropped significantly with deeper anaesthesia. The high-dose effect was selectively associated with reduced high frequency/low frequency ratio in the posteromedial cortex, which strongly correlated with PCIST. Conversely, behavioural unresponsiveness induced by light ketamine anaesthesia was associated with similar spectral changes in frontal, but not posterior cortical regions. Thus, activity in the posteromedial cortex correlates with the capacity for consciousness, as assessed by PCIST, during different depths of ketamine anaesthesia, in rats, independently of behaviour. These results are discussed in relation to different theories of consciousness.
Collapse
Affiliation(s)
- A Arena
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - B E Juel
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
- Center for Sleep and Consciousness, University of Wisconsin, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - R Comolatti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Giovanni Battista Grassi 74, Milano 20157, Italy
| | - S Thon
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - J F Storm
- Brain Signalling Group, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
28
|
Luppi AI, Mediano PAM, Rosas FE, Harrison DJ, Carhart-Harris RL, Bor D, Stamatakis EA. What it is like to be a bit: an integrated information decomposition account of emergent mental phenomena. Neurosci Conscious 2021; 2021:niab027. [PMID: 34804593 PMCID: PMC8600547 DOI: 10.1093/nc/niab027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/24/2021] [Accepted: 08/12/2021] [Indexed: 01/08/2023] Open
Abstract
A central question in neuroscience concerns the relationship between consciousness and its physical substrate. Here, we argue that a richer characterization of consciousness can be obtained by viewing it as constituted of distinct information-theoretic elements. In other words, we propose a shift from quantification of consciousness-viewed as integrated information-to its decomposition. Through this approach, termed Integrated Information Decomposition (ΦID), we lay out a formal argument that whether the consciousness of a given system is an emergent phenomenon depends on its information-theoretic composition-providing a principled answer to the long-standing dispute on the relationship between consciousness and emergence. Furthermore, we show that two organisms may attain the same amount of integrated information, yet differ in their information-theoretic composition. Building on ΦID's revised understanding of integrated information, termed ΦR, we also introduce the notion of ΦR-ing ratio to quantify how efficiently an entity uses information for conscious processing. A combination of ΦR and ΦR-ing ratio may provide an important way to compare the neural basis of different aspects of consciousness. Decomposition of consciousness enables us to identify qualitatively different 'modes of consciousness', establishing a common space for mapping the phenomenology of different conscious states. We outline both theoretical and empirical avenues to carry out such mapping between phenomenology and information-theoretic modes, starting from a central feature of everyday consciousness: selfhood. Overall, ΦID yields rich new ways to explore the relationship between information, consciousness, and its emergence from neural dynamics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Fernando E Rosas
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
- Data Science Institute, Imperial College London, London SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
| | - David J Harrison
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge CB2 1SB, UK
- Department of History and Philosophy of Science, University of Cambridge, Cambridge CB2 3RH, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Science, Imperial College London, London W12 0NN, UK
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
29
|
Wang R, Su X, Chang Z, Lin P, Wu Y. Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task. IEEE J Biomed Health Inform 2021; 26:1835-1846. [PMID: 34648461 DOI: 10.1109/jbhi.2021.3119940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cognition involves locally segregated and globally integrated processing. This process is hierarchically organized and linked to evidence from hierarchical modules in brain networks. However, researchers have not clearly determined how flexible transitions between these hierarchical processes are associated with cognitive behavior. Here, we designed a multisource interference task (MSIT) and introduced the nested-spectral partition (NSP) method to detect hierarchical modules in brain functional networks. By defining hierarchical segregation and integration across multiple levels, we showed that the MSIT requires higher network segregation in the whole brain and most functional systems but generates higher integration in the control system. Meanwhile, brain networks have more flexible transitions between segregated and integrated configurations in the task state. Crucially, higher functional flexibility in the resting state, less flexibility in the task state and more efficient switching of the brain from resting to task states were associated with better task performance. Our hierarchical modular analysis was more effective at detecting alterations in functional organization and the phenotype of cognitive performance than graph-based network measures at a single level.
Collapse
|
30
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Menon DK, Stamatakis EA. Brain network integration dynamics are associated with loss and recovery of consciousness induced by sevoflurane. Hum Brain Mapp 2021; 42:2802-2822. [PMID: 33738899 PMCID: PMC8127159 DOI: 10.1002/hbm.25405] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/22/2022] Open
Abstract
The dynamic interplay of integration and segregation in the brain is at the core of leading theoretical accounts of consciousness. The human brain dynamically alternates between a sub-state where integration predominates, and a predominantly segregated sub-state, with different roles in supporting cognition and behaviour. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from healthy volunteers before, during, and after loss of responsiveness induced with different concentrations of the inhalational anaesthetic, sevoflurane. We show that dynamic states characterised by high brain integration are especially vulnerable to general anaesthesia, exhibiting attenuated complexity and diminished small-world character. Crucially, these effects are reversed upon recovery, demonstrating their association with consciousness. Higher doses of sevoflurane (3% vol and burst-suppression) also compromise the temporal balance of integration and segregation in the human brain. Additionally, we demonstrate that reduced anticorrelations between the brain's default mode and executive control networks dynamically reconfigure depending on the brain's state of integration or segregation. Taken together, our results demonstrate that the integrated sub-state of brain connectivity is especially vulnerable to anaesthesia, in terms of both its complexity and information capacity, whose breakdown represents a generalisable biomarker of loss of consciousness and its recovery.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Andreas Ranft
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - Rüdiger Ilg
- Department of Neurology, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
- Department of NeurologyAsklepios ClinicBad TölzGermany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der IsarTechnische Universität MünchenMünchenGermany
| | - David K. Menon
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Wolfon Brain Imaging CentreUniversity of CambridgeCambridgeUK
| | - Emmanuel A. Stamatakis
- Division of AnaesthesiaUniversity of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|