1
|
Ambrosen KS, Fredriksson F, Anhøj S, Bak N, van Dellen E, Dominicus L, Lemvigh CK, Sørensen ME, Nielsen MØ, Bojesen KB, Fagerlund B, Glenthøj BY, Oranje B, Hansen LK, Ebdrup BH. Clustering of antipsychotic-naïve patients with schizophrenia based on functional connectivity from resting-state electroencephalography. Eur Arch Psychiatry Clin Neurosci 2023; 273:1785-1796. [PMID: 36729135 PMCID: PMC10713774 DOI: 10.1007/s00406-023-01550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Schizophrenia is associated with aberrations in the Default Mode Network (DMN), but the clinical implications remain unclear. We applied data-driven, unsupervised machine learning based on resting-state electroencephalography (rsEEG) functional connectivity within the DMN to cluster antipsychotic-naïve patients with first-episode schizophrenia. The identified clusters were investigated with respect to psychopathological profile and cognitive deficits. Thirty-seven antipsychotic-naïve, first-episode patients with schizophrenia (mean age 24.4 (5.4); 59.5% males) and 97 matched healthy controls (mean age 24.0 (5.1); 52.6% males) underwent assessments of rsEEG, psychopathology, and cognition. Source-localized, frequency-dependent functional connectivity was estimated using Phase Lag Index (PLI). The DMN-PLI was factorized for each frequency band using principal component analysis. Clusters of patients were identified using a Gaussian mixture model and neurocognitive and psychopathological profiles of identified clusters were explored. We identified two clusters of patients based on the theta band (4-8 Hz), and two clusters based on the beta band (12-30 Hz). Baseline psychopathology could predict theta clusters with an accuracy of 69.4% (p = 0.003), primarily driven by negative symptoms. Five a priori selected cognitive functions conjointly predicted the beta clusters with an accuracy of 63.6% (p = 0.034). The two beta clusters displayed higher and lower DMN connectivity, respectively, compared to healthy controls. In conclusion, the functional connectivity within the DMN provides a novel, data-driven means to stratify patients into clinically relevant clusters. The results support the notion of biological subgroups in schizophrenia and endorse the application of data-driven methods to recognize pathophysiological patterns at earliest stage of this syndrome.
Collapse
Affiliation(s)
- Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark.
| | - Fanny Fredriksson
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Simon Anhøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | | | - Edwin van Dellen
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Livia Dominicus
- Department of Psychiatry, University Medical Center Utrecht, Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mikkel E Sørensen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Birgitte Fagerlund
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bob Oranje
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
| | - Lars K Hansen
- Department of Applied Mathematics and Computer Science, DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research (CNSR) and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital, Mental Health Services CPH, Nordstjernevej 41, 2600, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Pennartz CMA, Oude Lohuis MN, Olcese U. How 'visual' is the visual cortex? The interactions between the visual cortex and other sensory, motivational and motor systems as enabling factors for visual perception. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220336. [PMID: 37545313 PMCID: PMC10404929 DOI: 10.1098/rstb.2022.0336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
The definition of the visual cortex is primarily based on the evidence that lesions of this area impair visual perception. However, this does not exclude that the visual cortex may process more information than of retinal origin alone, or that other brain structures contribute to vision. Indeed, research across the past decades has shown that non-visual information, such as neural activity related to reward expectation and value, locomotion, working memory and other sensory modalities, can modulate primary visual cortical responses to retinal inputs. Nevertheless, the function of this non-visual information is poorly understood. Here we review recent evidence, coming primarily from studies in rodents, arguing that non-visual and motor effects in visual cortex play a role in visual processing itself, for instance disentangling direct auditory effects on visual cortex from effects of sound-evoked orofacial movement. These findings are placed in a broader framework casting vision in terms of predictive processing under control of frontal, reward- and motor-related systems. In contrast to the prevalent notion that vision is exclusively constructed by the visual cortical system, we propose that visual percepts are generated by a larger network-the extended visual system-spanning other sensory cortices, supramodal areas and frontal systems. This article is part of the theme issue 'Decision and control processes in multisensory perception'.
Collapse
Affiliation(s)
- Cyriel M. A. Pennartz
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Matthijs N. Oude Lohuis
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Champalimaud Research, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Umberto Olcese
- Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Amsterdam Brain and Cognition, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|
4
|
Gunawardena R, Sarrigiannis PG, Blackburn DJ, He F. Kernel-based Nonlinear Manifold Learning for EEG-based Functional Connectivity Analysis and Channel Selection with Application to Alzheimer's Disease. Neuroscience 2023:S0306-4522(23)00253-1. [PMID: 37301505 DOI: 10.1016/j.neuroscience.2023.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Dynamical, causal, and cross-frequency coupling analysis using the electroencephalogram (EEG) has gained significant attention for diagnosing and characterizing neurological disorders. Selecting important EEG channels is crucial for reducing computational complexity in implementing these methods and improving classification accuracy. In neuroscience, measures of (dis)similarity between EEG channels are often used as functional connectivity (FC) features, and important channels are selected via feature selection. Developing a generic measure of (dis)similarity is important for FC analysis and channel selection. In this study, learning of (dis)similarity information within the EEG is achieved using kernel-based nonlinear manifold learning. The focus is on FC changes and, thereby, EEG channel selection. Isomap and Gaussian Process Latent Variable Model (Isomap-GPLVM) are employed for this purpose. The resulting kernel (dis)similarity matrix is used as a novel measure of linear and nonlinear FC between EEG channels. The analysis of EEG from healthy controls (HC) and patients with mild to moderate Alzheimer's disease (AD) are presented as a case study. Classification results are compared with other commonly used FC measures. Our analysis shows significant differences in FC between bipolar channels of the occipital region and other regions (i.e. parietal, centro-parietal, and fronto-central) between AD and HC groups. Furthermore, our results indicate that FC changes between channels along the fronto-parietal region and the rest of the EEG are important in diagnosing AD. Our results and its relation to functional networks are consistent with those obtained from previous studies using fMRI, resting-state fMRI and EEG.
Collapse
Affiliation(s)
- Rajintha Gunawardena
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 5FB, UK
| | | | - Daniel J Blackburn
- Department of Neuroscience, The University of Sheffield, Sheffield, S10 2HQ, UK
| | - Fei He
- Centre for Computational Science and Mathematical Modelling, Coventry University, Coventry, CV1 5FB, UK.
| |
Collapse
|
5
|
Dimitriadis SI. Universal Lifespan Trajectories of Source-Space Information Flow Extracted from Resting-State MEG Data. Brain Sci 2022; 12:1404. [PMID: 36291337 PMCID: PMC9599296 DOI: 10.3390/brainsci12101404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 02/15/2024] Open
Abstract
Source activity was extracted from resting-state magnetoencephalography data of 103 subjects aged 18-60 years. The directionality of information flow was computed from the regional time courses using delay symbolic transfer entropy and phase entropy. The analysis yielded a dynamic source connectivity profile, disentangling the direction, strength, and time delay of the underlying causal interactions, producing independent time delays for cross-frequency amplitude-to-amplitude and phase-to-phase coupling. The computation of the dominant intrinsic coupling mode (DoCM) allowed me to estimate the probability distribution of the DoCM independently of phase and amplitude. The results support earlier observations of a posterior-to-anterior information flow for phase dynamics in {α1, α2, β, γ} and an opposite flow (anterior to posterior) in θ. Amplitude dynamics reveal posterior-to-anterior information flow in {α1, α2, γ}, a sensory-motor β-oriented pattern, and an anterior-to-posterior pattern in {δ, θ}. The DoCM between intra- and cross-frequency couplings (CFC) are reported here for the first time and independently for amplitude and phase; in both domains {δ, θ, α1}, frequencies are the main contributors to DoCM. Finally, a novel brain age index (BAI) is introduced, defined as the ratio of the probability distribution of inter- over intra-frequency couplings. This ratio shows a universal age trajectory: a rapid rise from the end of adolescence, reaching a peak in adulthood, and declining slowly thereafter. The universal pattern is seen in the BAI of each frequency studied and for both amplitude and phase domains. No such universal age dependence was previously reported.
Collapse
Affiliation(s)
- Stavros I. Dimitriadis
- Neuroscience and Mental Health Research Institute (NMHI), College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 HQ, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff School of Medicine, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK
- Neuroinformatics Group, School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK
- MRC Integrative Epidemiology Unit (IEU), University of Bristol, Queens Road, Bristol BS8 1QU, Wales, UK
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, Passeig de la Vall d’Hebron, 171, 08035 Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Campus Mundet, Edifici de Ponent, Passeig de la Vall d’Hebron, 171, 08035 Barcelona, Spain
- Integrative Neuroimaging Lab, 55133 Thessaloniki, Macedonia, Greece
| |
Collapse
|