1
|
Lee M, Hong JK, Lee Y, Yoon IY. Transcranial alternating current stimulation in subjects with insomnia symptoms: A randomized, double-blind and controlled study. J Psychiatr Res 2025; 186:129-136. [PMID: 40239389 DOI: 10.1016/j.jpsychires.2025.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND This study evaluated whether transcranial alternating current stimulation (tACS), a non-invasive brain stimulation technique, could alleviate insomnia symptoms. METHODS Participants exhibiting insomnia symptoms without meeting the criteria for insomnia disorder were recruited and randomized into 0.5 Hz, 100 Hz, or a sham group. To maximize the delivery of intracranial stimulation, a carrier frequency of 10 kHz was utilized. Participants were required to use the device for 30 min, twice daily for six weeks. RESULTS Eighty-seven participants (74 females, mean age = 54.15 ± 0.73 years) were randomized and completed the trial. The Insomnia Severity Index scores showed significant improvement across all three groups without a significant difference between groups (sham: 13.83 to 8.45, p < 0.05; 0.5 Hz: 12.03 to 8.79, p < 0.05; 100 Hz: 12.38 to 7.83, p < 0.05). In the average sleep diary over four days, sleep latency (SL) and wake after sleep onset (WASO) decreased in all three groups (sham, 0.5 Hz, 100 Hz) without significant group by visit interaction (SL: -5.74 min, -8.94 min, -16.53 min, respectively, p = 0.345; WASO: -10.74 min, -23.62 min, -16.73 min, respectively, p = 0.431). No significant improvements were observed in actigraphy-based sleep measures. CONCLUSIONS tACS did not demonstrate greater efficacy than sham treatment in ameliorating symptoms of insomnia. Future studies should account for the potent placebo effect on sleep and the potential for high carrier frequencies to obscure the target frequencies.
Collapse
Affiliation(s)
- Minji Lee
- Department of Psychiatry, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung Kyung Hong
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Yeaeun Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - In-Young Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
2
|
Zhang J, Yan Z, Kang A, Ouyang J, Ma L, Wang X, Wu J, Suo D, Funahashi S, Meng W, Wang L, Zhang J. Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults. BIOSENSORS 2025; 15:185. [PMID: 40136982 PMCID: PMC11940117 DOI: 10.3390/bios15030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/09/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Transcranial electrical stimulation, as a means of neural modulation, is increasingly favored by researchers. The distribution and magnitude of the electric field generated within the brain may directly affect the results of neural modulation. Therefore, it is important to clarify the change trend of the cortical electric field and the determinants of the induced electric field in the endodermis at different ages during the adult life cycle. In this study, we used SimNIBS software to perform MR image segmentation and realistic head model reconstruction on 476 individuals (aged 18 to 88 years old) and calculated the cortical electric field of four electrode montages commonly used in cognitive tasks. We divided all participants into groups by age with a span of 10 years for each group and compared the electric field distribution patterns, electric field intensities, and focalities of the cortexes and regions of interest related to cognitive tasks within groups. The degree of influence of global and local anatomical parameters on the electric field was analyzed using a stepwise regression model. The results showed that, in the cortexes and regions of interest, the variability of electric field distribution patterns was highest in adolescents (<20 years old) and elderly individuals (>80 years old). Moreover, throughout the adult lifespan, the electric field induced by transcranial electrical stimulation did not decrease linearly with age but rather presented a U-shaped pattern. In terms of the entire adult life cycle, compared with global anatomical parameters (intracranial brain tissue volume), local anatomical parameters (such as scalp or skull thickness below the electrode) have a greater impact on the amplitude of the intracranial electric field. Our research results indicated that it is necessary to consider the effects caused by different brain tissues when using transcranial electrical stimulation to modulate or treat individuals of different ages.
Collapse
Affiliation(s)
- Jianxu Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (Z.Y.); (L.M.)
| | - Zilong Yan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (Z.Y.); (L.M.)
| | - Anshun Kang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Jian Ouyang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Lihua Ma
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; (J.Z.); (Z.Y.); (L.M.)
| | - Xinyue Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
| | - Wei Meng
- Radiology Department, Harbin Medical University, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150081, China
| | - Li Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| | - Jian Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; (A.K.); (J.O.); (X.W.); (J.W.); (D.S.)
| |
Collapse
|
3
|
Seo H, Han M, Choi JR, Kim S, Park J, Lee EH. Numerical Investigation of Layered Homogeneous Skull Model for Simulations of Transcranial Focused Ultrasound. Neuromodulation 2025; 28:103-114. [PMID: 38691075 DOI: 10.1016/j.neurom.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND OBJECTIVES The influence of the intracranial pressure field must be discussed with the development of a single-element transducer for low-intensity transcranial focused ultrasound because the skull plays a significant role in blocking and dispersing ultrasound wave propagation. Ultrasound propagation is mainly affected by the structure and acoustic properties of the skull; thus, we aimed to investigate the impact of simplifying the acoustic properties of the skull on the simulation of the transcranial pressure field to present guidance for efficient skull modeling in full-wave simulations. MATERIALS AND METHODS We constructed a three-dimensional computational model for ultrasound transmission with the same structure but varying acoustic properties of the skull. The structural information and heterogeneous acoustic properties of the skull were acquired from computed tomography images, and we segmented the skull into three layers (3 L), including spongy and compact bones. We then assigned homogeneous acoustic properties to a single layer (1 L) or 3 L of the skull. In addition, we investigated the influence of different types of transducers and different ultrasound frequencies (1.1 MHz, 0.5 MHz, and 0.25 MHz) on the intracranial pressure field to provide a comparison of the heterogenous and homogeneous models. RESULTS We indicated the importance of numerical simulations in estimating the intracranial pressure field of the skull owing to beam distortions. When we simplified the skull model, both the 1 L and 3 L models showed contours of the acoustic focus comparable to those of the heterogeneous model. When we evaluated the peak pressure and volume of the acoustic focus, the 1 L model produced a better estimation of peak pressure with a difference <10%, and the 3 L model is suitable to obtain smaller errors in the volume of the acoustic focus. CONCLUSIONS In conclusion, we examined the possibility of simplification of skull models using 1 L and 3 L homogeneous properties in the numerical simulation for focused ultrasound. The results show that the layered homogeneous model can provide characteristics comparable to those of the acoustic focus in heterogeneous models.
Collapse
Affiliation(s)
- Hyeon Seo
- Department of AI Convergence Engineering, Gyeongsang National University, Jinju, Republic of Korea; Department of Computer Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Mun Han
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Seungmin Kim
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea
| | - Juyoung Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea; Department of High-Tech Medical Device, College of Future Industry, Gachon University, Seongnam, Korea
| | - Eun-Hee Lee
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu, Korea.
| |
Collapse
|
4
|
Wu CW, Lin BS, Zhang Z, Hsieh TH, Liou JC, Lo WL, Li YT, Chiu SC, Peng CW. Pilot study of using transcranial temporal interfering theta-burst stimulation for modulating motor excitability in rat. J Neuroeng Rehabil 2024; 21:147. [PMID: 39215318 PMCID: PMC11365202 DOI: 10.1186/s12984-024-01451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Transcranial temporal interference stimulation (tTIS) is a promising brain stimulation method that can target deep brain regions by delivering an interfering current from surface electrodes. Most instances of tTIS stimulate the brain with a single-frequency sinusoidal waveform generated by wave interference. Theta burst stimulation is an effective stimulation scheme that can modulate neuroplasticity by generating long-term potentiation- or depression-like effects. To broaden tTIS application, we developed a theta burst protocol using tTIS technique to modulate neuroplasticity in rats. Two cannula electrodes were unilaterally implanted into the intact skull over the primary motor cortex. Electrical field of temporal interference envelopes generated by tTIS through cannula electrodes were recorded from primary motor cortex. Theta burst schemes were characterized, and motor activation induced by the stimulation was also evaluated simultaneously by observing electromyographic signals from the corresponding brachioradialis muscle. After validating the stimulation scheme, we further tested the modulatory effects of theta burst stimulation delivered by tTIS and by conventional transcranial electrical stimulation on primary motor cortex excitability. Changes in the amplitude of motor evoked potentials, elicited when the primary motor cortex was activated by electrical pulses, were measured before and after theta burst stimulation by both techniques. Significant potentiation and suppression were found at 15 to 30 min after the intermittent and continuous theta burst stimulation delivered using tTIS, respectively. However, comparing to theta burst stimulations delivered using conventional form of transcranial electrical stimulation, using tTIS expressed no significant difference in modulating motor evoked potential amplitudes. Sham treatment from both methods had no effect on changing the motor evoked potential amplitude. The present study demonstrated the feasibility of using tTIS to achieve a theta burst stimulation scheme for motor cortical neuromodulation. These findings also indicated the future potential of using tTIS to carry out theta burst stimulation protocols in deep-brain networks for modulating neuroplasticity.
Collapse
Affiliation(s)
- Chun-Wei Wu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Bor-Shing Lin
- Department of Computer Science and Information Engineering, National Taipei University, New Taipei City 237303, Taiwan
| | - Zhao Zhang
- School of Mechanical and Electrical Engineering, Wuyi University, Wuyishan City, Fujian Province, China
| | - Tsung-Hsun Hsieh
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Jian-Chiun Liou
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wei-Lun Lo
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Shao-Chu Chiu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chih-Wei Peng
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- School of Gerontology and Long-Term Care, College of Nursing, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Van Hoornweder S, Nuyts M, Frieske J, Verstraelen S, Meesen RLJ, Caulfield KA. Outcome measures for electric field modeling in tES and TMS: A systematic review and large-scale modeling study. Neuroimage 2023; 281:120379. [PMID: 37716590 PMCID: PMC11008458 DOI: 10.1016/j.neuroimage.2023.120379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Electric field (E-field) modeling is a potent tool to estimate the amount of transcranial magnetic and electrical stimulation (TMS and tES, respectively) that reaches the cortex and to address the variable behavioral effects observed in the field. However, outcome measures used to quantify E-fields vary considerably and a thorough comparison is missing. OBJECTIVES This two-part study aimed to examine the different outcome measures used to report on tES and TMS induced E-fields, including volume- and surface-level gray matter, region of interest (ROI), whole brain, geometrical, structural, and percentile-based approaches. The study aimed to guide future research in informed selection of appropriate outcome measures. METHODS Three electronic databases were searched for tES and/or TMS studies quantifying E-fields. The identified outcome measures were compared across volume- and surface-level E-field data in ten tES and TMS modalities targeting two common targets in 100 healthy individuals. RESULTS In the systematic review, we extracted 308 outcome measures from 202 studies that adopted either a gray matter volume-level (n = 197) or surface-level (n = 111) approach. Volume-level results focused on E-field magnitude, while surface-level data encompassed E-field magnitude (n = 64) and normal/tangential E-field components (n = 47). E-fields were extracted in ROIs, such as brain structures and shapes (spheres, hexahedra and cylinders), or the whole brain. Percentiles or mean values were mostly used to quantify E-fields. Our modeling study, which involved 1,000 E-field models and > 1,000,000 extracted E-field values, revealed that different outcome measures yielded distinct E-field values, analyzed different brain regions, and did not always exhibit strong correlations in the same within-subject E-field model. CONCLUSIONS Outcome measure selection significantly impacts the locations and intensities of extracted E-field data in both tES and TMS E-field models. The suitability of different outcome measures depends on the target region, TMS/tES modality, individual anatomy, the analyzed E-field component and the research question. To enhance the quality, rigor, and reproducibility in the E-field modeling domain, we suggest standard reporting practices across studies and provide four recommendations.
Collapse
Affiliation(s)
- Sybren Van Hoornweder
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium.
| | - Marten Nuyts
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Joana Frieske
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Stefanie Verstraelen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium
| | - Raf L J Meesen
- REVAL - Rehabilitation Research Center, Faculty of Rehabilitation Sciences, University of Hasselt, Diepenbeek, Belgium; Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Kevin A Caulfield
- Brain Stimulation Laboratory, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
6
|
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13:5. [PMID: 36624089 PMCID: PMC9829236 DOI: 10.1038/s41398-022-02297-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mood disorders are associated with elevated inflammation, and the reduction of symptoms after multiple treatments is often accompanied by pro-inflammation restoration. A variety of neuromodulation techniques that regulate regional brain activities have been used to treat refractory mood disorders. However, their efficacy varies from person to person and lack reliable indicator. This review summarizes clinical and animal studies on inflammation in neural circuits related to anxiety and depression and the evidence that neuromodulation therapies regulate neuroinflammation in the treatment of neurological diseases. Neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), electroconvulsive therapy (ECT), photobiomodulation (PBM), transcranial ultrasound stimulation (TUS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS), all have been reported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors, which may be one of the reasons for mood improvement. This review provides a better understanding of the effective mechanism of neuromodulation therapies and indicates that inflammatory biomarkers may serve as a reference for the assessment of pathological conditions and treatment options in anxiety and depression.
Collapse
Affiliation(s)
- Bingqi Guo
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Mengyao Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Wensi Hao
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Yuping Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XInstitute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
7
|
Optimized APPS-tDCS electrode position, size, and distance doubles the on-target stimulation magnitude in 3000 electric field models. Sci Rep 2022; 12:20116. [PMID: 36418438 PMCID: PMC9684449 DOI: 10.1038/s41598-022-24618-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a widely used noninvasive brain stimulation technique with mixed results to date. A potential solution is to apply more efficient stimulation to ensure that each participant receives sufficient cortical activation. In this four-part study, we used electric field (E-field) modeling to systematically investigate the cortical effects of conventional and novel tDCS electrode montages, with the goal of creating a new easily adoptable form of tDCS that induces higher and more focal E-fields. We computed 3000 anatomically accurate, MRI-based E-field models using 2 mA tDCS to target the left primary motor cortex in 200 Human Connectome Project (HCP) participants and tested the effects of: 1. Novel Electrode Position, 2. Electrode Size, and 3. Inter-Electrode Distance on E-field magnitude and focality. In particular, we examined the effects of placing electrodes surrounding the corticomotor target in the anterior and posterior direction (anterior posterior pad surround tDCS; APPS-tDCS). We found that electrode position, electrode size, and inter-electrode distance all significantly impact the cortical E-field magnitude and focality of stimulation (all p < 0.0001). At the same 2 mA scalp stimulation intensity, APPS-tDCS with smaller than conventional 1 × 1 cm electrodes surrounding the neural target deliver more than double the on-target cortical E-field (APPS-tDCS: average of 0.55 V/m from 2 mA; M1-SO and bilateral M1: both 0.27 V/m from 2 mA) while stimulating only a fraction of the off-target brain regions; 2 mA optimized APPS-tDCS produces 4.08 mA-like cortical E-fields. In sum, this new optimized APPS-tDCS method produces much stronger cortical stimulation intensities at the same 2 mA scalp intensity. APPS-tDCS also more focally stimulates the cortex at the intended target, using simple EEG coordinate locations and without MRI scans. This APPS-tDCS method is adoptable to any existing, commercially available tDCS device and can be used to ensure sufficient cortical activation in each person. Future directions include testing whether APPS-tDCS produces larger and more consistent therapeutic tDCS effects.
Collapse
|
8
|
Safety Evaluation of Employing Temporal Interference Transcranial Alternating Current Stimulation in Human Studies. Brain Sci 2022; 12:brainsci12091194. [PMID: 36138930 PMCID: PMC9496688 DOI: 10.3390/brainsci12091194] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/20/2023] Open
Abstract
Temporal interference transcranial alternating current stimulation (TI-tACS) is a new technique of noninvasive brain stimulation. Previous studies have shown the effectiveness of TI-tACS in stimulating brain areas in a selective manner. However, its safety in modulating human brain neurons is still untested. In this study, 38 healthy adults were recruited to undergo a series of neurological and neuropsychological measurements regarding safety concerns before and after active (2 mA, 20/70 Hz, 30 min) or sham (0 mA, 0 Hz, 30 min) TI-tACS. The neurological and neuropsychological measurements included electroencephalography (EEG), serum neuron-specific enolase (NSE), the Montreal Cognitive Assessment (MoCA), the Purdue Pegboard Test (PPT), an abbreviated version of the California Computerized Assessment Package (A-CalCAP), a revised version of the Visual Analog Mood Scale (VAMS-R), a self-assessment scale (SAS), and a questionnaire about adverse effects (AEs). We found no significant difference between the measurements of the active and sham TI-tACS groups. Meanwhile, no serious or intolerable adverse effects were reported or observed in the active stimulation group of 19 participants. These results support that TI-tACS is safe and tolerable in terms of neurological and neuropsychological functions and adverse effects for use in human brain stimulation studies under typical transcranial electric stimulation (TES) conditions (2 mA, 20/70 Hz, 30 min).
Collapse
|